I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon!
|
|
- Amanda Faragóné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Név: Osztály: Próba érettségi feladatsor 2013 április 16 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű keretbe írja! A szürkített négyzetekbe ne írjon! A megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető A feladatokat tetszés szerinti sorrendben megoldhatja Megoldási idő: 45 1 Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon! Az egyenes egyenlete: 2 Írja fel b egész kitevőjű hatványaként az alábbi törtet! t b 3 2 b b 4 2 A tört alakja: 3 Az alábbi táblázat egy horgászbolt egy hétre vonatkozó eladási adatait tartalmazza egy horgászzsinór típus különböző méreteire méretek szerint csoportosítva Válaszoljon az alábbi kérdésekre! Méret Darabszám 12-es A) ös as ös as es 173 A) Mekkora a 20-as méret relatív gyakorisága? B) Melyik méret a minta mediánja? C) Tegyük fel, hogy egy másik héten összességében ugyanennyi zsinórt adtak el, de minden méretből egyenlő számút Méretenként mennyit sikerült eladni? A) B) C) 1 /
2 Név: Osztály: 4 Döntse el, hogy az alábbi állítás igaz (I) vagy hamis (H) Írja be az állítás igazságértékének betűjelét a megfelelő rubrikába! Ha egy szám osztható 6-tal és 9-cel, akkor osztható 54-gyel is Döntse el a mondat megfordításának igazságértékét! Az állítás igazságértéke: A megfordítás igazságértéke: 5 Az alábbi számok közül keretezze be azokat, amelyek megoldásai a 2 log ( x 1) 1 egyenletnek! Válaszát indokolja! 3-3; -2; -1; 0; 1; 2; 3 6 Egy ünneplő társaság minden tagja egyszer koccint a többiekkel Valaki megszámolta, és úgy találta, 37 koccintás történt Sajnos biztos, hogy rosszul számolt Feltéve, hogy nem tévedett sokat a számolásnál, hányan lehettek a csoportban? Válaszát indokolja! A csoport létszáma: 7 Béla betett egy bankba Ft-ot évenkénti 6,8 %-os kamatra Egész forintra kerekítve hány forintja lesz 3 év múlva? Válaszát indokolja! Béla pénze: 2 /
3 Név: Osztály: 8 A H halmaz elemei a BUDAPEST szó betűi, a G halmaz elemei a MICIMACKÓ szó betűi Adja meg a H \ G halmazt! A halmaz: 9 Megfigyelések szerint a felnőtt nők centiméterben mért magassága és alkarjának hossza jó közelítéssel az alábbi képlet szerint függ össze (A képletben f az alkar centiméterben mért hosszát, h a centiméterben mért magasságot jelenti) f h 10 Hány centiméter magas egy 3,1 dm-es alkarral rendelkező hölgy a képlet szerint? Válaszát egész centiméterre kerekítve adja meg! Válaszát indokolja! A magasság: 10 Hány darab különböző 6 karakter hosszú belépési kód állítható elő a 2;2; 3; 3; A; B karakterekből, ha mindegyiket csak egyszer lehet felhasználni? 11 Egy derékszögű háromszög átfogója 26 cm, egyik befogója 10 cm hosszú Mekkora a háromszög beírható körének és köréírható körének sugara? Beírható kör sugara: Köréírható kör sugara: 5 12 Adja meg log 4 sin 2 pontos értékét! 3 /
4 Név: Osztály: Próba érettségi feladatsor 2013 április 17 II RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben indokolja! A feladatok végeredményét szöveges megfogalmazásban is közölje! Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető A feladatokat tetszés szerinti sorrendben megoldhatja A B részben kitűzött három feladat közül csak kettőt kell megoldania A nem választott feladat sorszámát írja be az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, a 18 feladatra nem kaphat pontot A szürke rubrikákba ne írjon! Megoldási idő: 100 A 13 Oldja meg a következő egyenleteket a valós számok halmazán! 2 x x x 3 2 x Ö: 1 4 /
5 Név: Osztály: 14 Egy iskola (jelöljük A-val!) tanulóinak száma tízesekre kerekítve 650 A tanulók között pontosan tízszer annyian vannak a 180 cm-nél alacsonyabbak, mint azok, akik legalább 180 cm magasak Pontosan hány tanulója van az A iskolának? A szomszédos iskolában (jelöljük B-vel!) a tanulók magasságának eloszlását az alábbi táblázat tartalmazza 180 cm-nél alacsonyabb pontosan 180 cm magas 180 cm-nél magasabb 560 tanuló 8 tanuló 48 tanuló A B iskolában a legalább 180 cm magas tanulók 75 %-a kosarazik, ők alkotják az iskola kosarasainak 70 %-át Hány kosaras jár a B iskolába? A B iskolában az egyik szponzor sorsolást tartott Az összes sorsjegyet a tanulók között osztották ki, minden tanuló kapott 1 sorsjegyet c) Mekkora annak valószínűsége, hogy az egyetlen főnyereményt egy legfeljebb 180 cm magas tanuló nyeri? c) Ö: 5 pont 4 pont 3 pont 1 5 /
6 Név: Osztály: 15 Egy fényképész három különböző képet szeretne készíteni egy egymástól ismeretlen távolságra található két templomtoronyról ( T 1, illetve T 2 ) Először olyan helyet keresett, ahonnan a két torony pontosan derékszög alatt látszott (Jelöljük ezt a pontot P-vel!) Miután elkészítette a képet, az egyik tornyot a P- vel összekötő egyenes mentén, a toronnyal ellentétes irányba 120 métert haladt, 0 ahol (Q) elkészítette második fényképét is Erről a helyről a két torony 39,81 - os szög alatt látszott Ezek után visszatért a P pontba, majd a másik tornyot a P- vel összekötő egyenes mentén, a toronnyal ellenkező irányba tett meg métert (R), ahonnan a tornyokat összekötő szakasz már csak 20,56 -os szög alatt látszott Itt elkészítette utolsó képét Az adatok és a jelölések felhasználásával készítsen jól áttekinthető térképvázlatot! Számítsa ki, mekkora távolságra volt egymástól a két torony! A végeredményt méterre kerekítve adja meg! Ö: 3 pont 9 pont 1 6 /
7 Név: Osztály: B A feladatok közül csak kettőt kell kidolgoznia A kihagyott feladat sorszámát írja be az 1 oldalon álló üres négyzetbe! 16 Egy iskolai csoport barlangászással egybekötött éjszakai túrán vesz részt A kitűzött cél 1,8 km-re található a szállástól Az indulást követő első percben 1,5 m/s sebességgel haladnak egyenletesen, ám a lelkesedés hamar alábbhagy, és ezt követően percenként 5 %-kal lassulnak Hány métert tesznek meg a 6 percben? Hány perc alatt jutnak el a 966 m távolságban lévő vadászleshez? Ö: 1 17 pont 7 /
8 Név: Osztály: 17 Egy társasjáték minden körében a játékosok háromszor dobnak egy szabályos dobókockával A játék szabályai szerint a játékos az alábbi esetek mindegyikében nyer: zsetont, ha mindhárom dobás páros, vagy zsetont, ha az első dobás 1-es, és a következőkből pontosan egy páros, vagy zsetont, ha az első dobás 3-as, és mindkét további dobás páratlan, vagy zsetont, ha mindegyik dobás 5-ös Mekkora valószínűség tartozik a négy fenti lehetőséghez? Mekkora annak valószínűsége, hogy egy játékos nem nyer semmit a játék egy adott körében? Ö: 1 17 pont 8 /
9 Név: Osztály: 18 Egy ólomtömb szabályos négyoldalú (egyenes) gúla alakú, alapéle 10 cm, oldaléle 16 cm Mekkora az ólomtömb térfogata jegy pontosan adja meg! 3 cm -ben mérve? Az eredményt két tizedes A tömböt ezek után beolvasztják, és 2 mm átmérőjű ólomgolyókat öntenek belőlük A gyártási folyamatban az ólom 8 %-a nem hasznosuló hulladék Hány darab ólom golyó önthető a tömbből? Az elkészült golyókból 20-at félretesznek minőségellenőrzés céljából Tudjuk, hogy a 20 kiválasztottból 3 db mérethibás akad A minőségellenőr 2 golyót választ ki véletlenszerűen a 20-ból c) Mekkora annak valószínűsége, hogy mind a két golyó mérethibás? c) Ö: 5 pont 17 pont 9 /
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
RészletesebbenPróba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
RészletesebbenI. RÉSZ. 1. Adjon meg két olyan halmazt (A és B), amelyekre igaz: A B 1;4;5!
Próba érettségi feladatsor 014 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű keretbe írja!
RészletesebbenMatematika kisérettségi
Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Részletesebben. Próba érettségi feladatsor 2015. április 17. I. RÉSZ
Név: Osztály: Próba érettségi feladatsor 2015 április 17 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc
a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.
a feladat sorszáma maximális elért összesen II. A rész 13. 12 14. 12 15. 12 II. B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenPróba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. II. Az írásbeli próbavizsga időtartama: 135 perc Kérjük, nyomtatott
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMinta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenPróbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. Az írásbeli próbavizsga időtartama: 240 perc Kérjük, nyomtatott,
Részletesebben2. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
RészletesebbenPRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
RészletesebbenPróbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
RészletesebbenAzonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2015. február 14. I. Időtartam: 45 perc STUDIUM
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM
É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
RészletesebbenAzonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc
ÉRETTSÉGI VIZSGA 2019. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2019. május 7. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1912
RészletesebbenAzonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint
RészletesebbenPRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
RészletesebbenÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2016. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Részletesebben1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
RészletesebbenMATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Részletesebben3. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
Részletesebben4. A kézfogások száma pont Összesen: 2 pont
I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.
a feladat sorszáma elért összesen maximális II./A rész 13. 12 14. 12 15. 12 II./ B rész m nem választott feladat 17 17 ÖSSZESEN 70 maximáli s elért I. rész 30 II. rész 70 MINDÖSSZESEN 100 dátum javító
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2017. október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. október 17. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
RészletesebbenPróbaérettségi feladatsor_a NÉV: osztály Elért pont:
Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenMatematika kisérettségi május 24. I. rész
Matematika kisérettségi 2007. május 24. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA február 16.
PRÓBAÉRETTSÉGI VIZSGA 2019. február 16. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINT 2019. február 16. I. Az írásbeli vizsga időtartama: 45 perc Név Teremszám* Pontszám E-mail cím Kérjük nyomtatott nagybetűvel
RészletesebbenMatematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. összetevő 1
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA 2014. január 18.
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
Részletesebben1. MINTAFELADATSOR EMELT SZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR EMELT SZINT 2015 Az írásbeli vizsga időtartama:
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenAzonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
RészletesebbenÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70
a feladat sorszáma maximális elért összesen II./A rész 13. 1 14. 1 15. 1 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.
RészletesebbenTrigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. I. Időtartam: 45 perc Kérjük, nyomtatott, nagy betűkkel töltse
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2012. október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA
EMIR azonosító: TÁMOP-3.1.8-09/1-2010-0004 Név: MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA I. ÍRÁSBELI VIZSGA 1412 Ideje: 2014. április 24. 14:00 Időtartama: 45 perc Fontos tudnivalók 1. A feladatok
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Részletesebben} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenMatematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenPRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
RészletesebbenÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
RészletesebbenMATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA
II. A rész II. B rész a feladat sorszáma maximális 13. 11 14. 13 15. 12 17 17 ÖSSZESEN 70 elért nem választott feladat maximális I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum javító tanár összesen
RészletesebbenÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.
a feladat sorszáma maximális elért összesen II. A rész 13. 12 14. 12 15. 12 II. B rész 17 17 nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenMATEMATIKA II Január 21. PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA Január 21. STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Email Pontszám 2012. Január 21. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ írásbeli
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc
I. rész II. rész a feladat sorszáma maximális 1. 10 2. 14 3. 13 4. 14 16 elért 16 16 16 8 nem választott feladat maximális 51 64 Az írásbeli vizsgarész a 115 elért dátum javító tanár elért programba beírt
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Részletesebben2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben