Polimerek 3 dimenziós nyomtatása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Polimerek 3 dimenziós nyomtatása"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudományi Tanszék Polimerek 3 dimenziós nyomtatása Laborleirat 2015

2 1. A gyakorlat célja A 3 dimenziós (3D) nyomtatás és a digitális optikai mikroszkópia megismerése. Próbatestek 3D nyomtatása digital light processing ( DLP) technológiával, a kialakított testek vizsgálata digitális optikai mikroszkóppal (DOM). 2. Elméleti bevezető dimenziós nyomtatás A 3 dimenziós [3D] nyomtatás egy, a napjainkban egyre jobban elterjedő additív gyártási technológia, amelynek legfőbb jelentősége, hogy elősegíti a termékfejlesztési idő lerövidítését. Alapvetően eltér az olyan hagyományos megmunkálási eljárásoktól, mint az esztergálás és a marás, ahol a terméket egy tömbből alakítják ki a megfelelő részek eltávolításával. Az iparban számos területen nagy az igény a termékek tervezési idejének és a piacra kerülési folyamatok lerövidítésére. Ezeket a törekvéseket igyekeznek egyre jobban kiszolgálni a rohamosan fejlődő 3D nyomtatási eljárások. A 3D nyomtató egy olyan készülék, amely egy digitális modell alapján, a megfelelő alapanyagból rétegről rétegre építi fel a kiválasztott háromdimenziós tárgyat. Az első 3D nyomtatási eljárások az 1980-as évek vége felé váltak elérhetővé, mint gyors prototípus gyártására alkalmas technológiák (Rapid Prototyping, RP). A cél egy gyors és költséghatékony módszer megalkotása volt termékfejlesztéshez, prototípusok létrehozásához. Az első szabadalom Charles Hull nevéhez tartozik, aki 1986-ban publikálta sztereolitográfiás készülékét (stereolithography apparatus, SLA) ben a Texasi egyetem egyik munkatársa, Carl Deckard szabadalmaztatta a szelektív lézer szinterelést (Selective Laser Sintering, SLS). Még ugyanebben az évben Scott Crump szabadalmaztatta a huzalolvasztásos modellezést vagy más néven szálextrúziós nyomtatást (Fused Deposition Modelling, FDM). Az 1990-es években és a kétezres évek elején rengeteg új eljárás jelent meg és a meglévők folyamatos fejlődésen mentek keresztül. Maga a 3D nyomtatás, mint kifejezés a Massachusetts Institute of Technology [MIT] két doktoranduszától, Jim Bredt-től és Tim Anderson-tól származik, akiknek 1995-ben sikerült úgy átalakítani egy tintasugaras nyomtatót, hogy segítségével képesek voltak műanyag rétegek egymásra olvasztásával térbeli objektum előállítására. A 3D nyomtatás egyike a 21. század forradalmian új technológiáinak, 2008 és 2014 között az eladott nyomtatók száma exponenciálisan növekedik, míg áruk jelentősen csökkent [1] D nyomtatási technológiák A 3D nyomtatás viszonylag rövid sikertörténete alatt számos, eltérő koncepciójú eljárás fejlődött ki. A különböző működési elveket alkalmazó nyomtatókat főként az alapján lehet csoportosítani, hogy milyen módszerrel történik a 3 dimenziós testet felépítő rétegek 2

3 kialakítása. A különböző technológiák további eltérést mutathatnak a nyomtatáshoz alkalmazott alapanyagok és a létrehozott objektumok felbontásában is [2]. Extrúziós eljárások Az egyik legjobban elterjedt módszer műanyagok 3 dimenziós nyomtatására a szálextrúziós vagy más néven huzalolvasztásos (Fused Deposition Modeling, FDM) technológia. A készülék egy, a z-irányba mozgatható építési területből és egy x-y irányba mozgatható ömlesztő fejből áll, mely pontonként hozza létre az adott réteget ( 1. ábra). Működése során az extrúziós fejbe termoplasztikus polimerszálat adagolnak, amely ott megömlik és az építési területre érve megszilárdul. Az FDM eljárásnak létezik egy kifejezetten implantátumgyártásra használt változata, a 3D fiber deposition [3DF] technológia, melynél a műanyag betáplálás granulátum formájában valósul meg. Ez a technológia kedvelt, mert a nyomtatott szálak távolságának és irányának változtatásával szabályozható pórusalakú és méretű, valamint átjárható pórusrendszerrel rendelkező szerkezetek is megvalósíthatóak. Szobahőmérsékleten történő nyomtatáshoz használt gyakori alapanyag a politejsav [PLA], fűtött építési terület vagy kamra segítségével akrilnitrilbutadién-sztirol [ABS], és polikarbonát [PC] is feldolgozható. Több extrúziós fejjel dolgozó berendezésekkel megoldható az egyszerre többféle polimerrel történő nyomtatás. Bizonyos esetekben a nyomtatni kívánt test komplex geometriája miatt szükséges támaszanyag alkalmazása. Ilyen támaszanyag lehet például a poli(vinil-alkohol) [PVA], amely a nyomtatatás befejezését követően egyszerűen leoldható. A kialakítható test mérete függ a használt berendezés típusától, az építési terület szokásos nagysága 200 mm x 150 mm x 90 mm. Habár a pozicionálás pontossága elérheti a ±25 μm-t minden irányban [3] a termék felbontása az extrudált szál átmérőjétől függ, ahol 100 μm elérése már komoly kihívás. Az egyszerűbb, ma már interneten is megrendelhető készülékek ~400 μm-es felbontásra képesek. 1. ábra: Az extrúziós nyomtató vázlatos felépítése 2. ábra: A laminációs technológia vázlatos felépítése 3

4 Laminációs technológiák A laminációs módszernél az alapanyag feltekercselt formában van jelen, az ebből lehúzott rétegből vágja ki a nyomtató az egyes rétegeket lézer vagy vágókés segítségével, majd azokat egymásra építi. Ilyen eljárás a Laminated Object Manufactruing (LOM), amely a működési folyamat során a kivágott papírrétegeket ragasztja össze. Az eljáráshoz gyakran alkalmaznak öntapadós lapokat. Egy másik elterjedt laminációs eljárásban fém fóliát munkálnak meg (Ultrasonic Additive Manufacturing, UAM), itt a fóliarétegeket nagy frekvenciájú ultrahangos rezgetéssel forrasztják egymáshoz. Az összerögzített fólialapok közül mindig a legfelső réteget alakítják a kívánt formára (2. ábra). A technológia hátránya, hogy nem lehet vele jó minőségű és precíz testeket kialakítani. Előnye viszont, hogy az alapanyagköltsége igen kicsi [4]. Por-alapú technológiák A szelektív lézeres szinterelés (Selective Laser Sintering, SLS) során lézerrel megolvasztják a por állagú alapanyagot, ily módon létrehozva a kívánt alakzatú réteget (3. ábra). Az egyes rétegek kialakítását követően az építési terület lejjebb süllyed, majd a felületére egy henger segítségével újabb rétegnek megfelelő port visznek fel, amiből ezt követően a lézer segítségével újabb réteget képeznek. Az építési tankban a testet körülvevő por alapanyag támaszanyagként funkcionál, a nyomtatás befejezését követően lefújható a mintáról. Az SLS módszer során bármilyen port felhasználhatunk, melynek felületi rétege melegítés hatására megömlik, így alkalmaznak pl.: poliamidot, polikarbonátot, precíziós öntészeti viaszt, kerámia- és fémporokat is. A technológia segítségével állítottak már elő kompozitokat is, pl. poli(éter-éter-keton) és hidroxiapatit keverékekből. Az elérhető felbontás közelítőleg 100 μm-es [3]. 3. ábra: SLS elven működő nyomtató vázlatos felépítése 4. ábra: Lézeres porolvasztás elvén működő 3D nyomtató Az előző technológiához nagyon hasonlít az úgynevezett 3DP módszer, ahol a por adagolása és a test mozgatása hasonlóan történik, azonban az egyes rétegeket az SLS eljárástól eltérően nem lézersugár, hanem a nyomtatófej által adagolt folyékony ragasztóanyag tapasztja össze. A nyomtatás végén a felesleges alapanyag lemosható. Ez a 4

5 technológia szintén számos por állagú alapanyag (fém, kerámia, polimer) feldolgozását teszi lehetővé [3]. Fémek és kerámiák 3D nyomtatása alapvetően bonyolultabb, mint a műanyagoké. Ipari környezetet és sok esetben komplikált eljárást, többlépcsős utómunkálatokat igényelnek. Olvasztást alkalmazó technológiák, mint a szelektív lézeres olvasztás (Selective Laser Melting, SLM) és az elektronsugaras olvasztás (Electron Beam Melting, EBM) esetén teljesen megolvad az alapanyag, így tömörebb lesz a kapott termék, mint a szinterelési eljárások esetében. Előnyük az SLS módszerrel szemben, hogy vákuumban oxigénre érzékeny alapanyagok is alkalmazhatóak a nyomtatáshoz. Az SLM módszer során nagy energiájú, fókuszált lézersugár olvasztja meg vákuum alatt a por állagú fémet vagy fémötvözetet, míg az EBM módszernél fókuszált elektronsugarat alkalmaznak. Az EBM módszert leginkább orvosi fémeszközök kialakítására használják, illetve olyan alkatrészek készítésére, amelyeket extrém körülmények között használnak (pl. űrrakéták alkatrészei). Az SLM-et főleg a fogászatban és ékszerészetben alkalmazzák. Leggyakoribb alapanyagai a különféle acélok és az alumínium [5]. Külön tárgyalható por-alapú technológia a lézeres porolvasztás (Laser Powder Forming, LPF). Az alapanyag itt is fémpor, amelyet ellentétben az SLS technológiával, nem hengeres megoldással, hanem egy adagolófejen keresztül juttatnak a lézersugárba ( 4. ábra). A lézer megolvasztja a fémport, így kialakítva rétegenként a nyomtatni kívánt testet, amelyet egy mozgatható asztalon építenek fel. Ezzel a technológiával nagyméretű fém alkatrészeket és eszközöket lehet előállítani viszonylag gyorsan [5]. Fotopolimerizáció elvén működő technológiák A szetereolitográfia [SLA] az egyik legelső, fotopolimerizáció elvén működő additív gyártási technológia, amelyet alkalmaztak. A nyomtatás során a fotoiniciátort és a polimert tartalmazó alapanyaggal feltöltött építési tartály felületén fókuszált lézersugár segítségével történik az alapanyag térhálósítása a kívánt mintázatban. A lézersugár pozicionálását mozgó tükörrendszer segítségével oldják meg ( 5. ábra). Az első réteg közvetlenül a folyadékba merített építési felületen készül el, majd ez a munkafelület a beállított rétegvastagságnak megfelelő távolságot süllyed. Ekkor az alapanyag ellepi az addig elkészült modellt, helyet adva a következő réteg felépítéshez. Az alkalmazott alapanyag azonban erősen viszkózus, így az egyenletes felület előállítása érdekében egy speciális szintező halad végig a felületen, eltávolítva a felületi egyenetlenségeket. Ezt követően a gép megvilágítja és polimerizálja a következő réteget. A rétegek vastagsága a z-irányú léptetés pontosságától és a lézer teljesítményétől függ. A nyomtatás után a munkadarab tisztítást igényel a meg nem szilárdult polimertől, végül a kész modell UV fény segítségével kikeményíthető [2, 6]. Az SLA előnye az alapanyag széleskörű megválaszthatósága, mivel viszonylag sokféle polimerből készíthetőek vele térbeli modellek. A technológia nagyon jó felületi minőséget produkál, felbontása függ az egyes rétegek vastagságától és a lézerpont méretétől, ami általában μm, de 30 µm is elérhető. Az SLA egy továbbfejlesztett változata a µ-sla, amely felbontása akár 1 µm-es is lehet [2, 6]. 5

6 Másik elterjedten alkalmazott fotopolimerizációs elven működő technológia a Polymer Jetting. Alkalmazása során egy, a tintasugaras nyomtatókhoz hasonló nyomtatófejjel viszik fel a megfelelő mintázatú rétegben az alapanyagot az építési területre. Az alapanyag réteg UV lámpa segítségével megvilágítva térhálósodik. Egy másik tartályból egy második nyomtatófej segítségével támaszanyag is felvihető, amely később eltávolítható a kész testből. A Polymer Jetting technológiával működő berendezések ( 6. ábra) rövid gyártási idővel dolgoznak és a SLA technológiához hasonlóan jó minőségű testek (~16 μm rétegvastagság, 100 μm-es x, y- irányú pontosság) kinyomtatására alkalmasak [7]. 5. ábra: SLA elven működő 3D nyomtató elvi felépítése 6. ábra: Polymer Jetting technológiával működő 3D nyomtató elvi felépítése A sztereolitográfia egyik alcsoportjának is tekinthető a Digital Light Processing [DLP] 3D nyomtatás. Az alapanyag ebben az esetben is fényre térhálósodó folyékony polimer vagy polimeroldat ( jellemzően poliakrilátok), de a térhálósításért felelős fényforrást, valamint a rétegképzést tekintve más rendszerű a DLP nyomtató felépítése. Itt ugyanis egy projektor az adott réteg 2 dimenziós képét vetít ki az építési terület felületére, így a polimerizáció nem pontszerűen, hanem egy levilágítási lépés alatt egy teljes rétegben történik. A fény hatására megszilárdult első réteg képes megtapadni az építési terület felületén, a további rétegek az építési tank z-irányú mozgatásával épülnek fel rétegről rétegre kialakítva a 3 dimenziós modellt ( 7. ábra). Ha a testben bármilyen üreg, konkáv rész vagy túlnyúlás van, akkor itt függőleges támaszokkal kell biztosítani a kapcsolatot az építési területtel. Ezek a támaszok ugyanabból az alapanyagból készülnek, mint maga a test, így megfelelően vékonyra kell őket tervezni, hogy később eltávolíthatóak legyenek [6]. 6

7 7. ábra: A DLP 3D nyomtató és működési elve DLP rendszerű 3D nyomtatóhoz felhasználható alapanyagok Az ipar számos területén elterjedt szintézismódszer az akrilát alapú polimer térhálók előállítása fotoiniciált polimerizációval. A fotopolimerizáció előnye a hagyományos, termikus polimerizációval szemben, hogy kisebb aktiválási energiát igényel (fotoiniciált reakció: <40 kj/mol, termikus reakció: kj/mol). A fotoiniciált reakció gyorsan végbemegy, ami a 3D nyomtatás során alapvető igény. A fény alkalmazásának további előnye, hogy térben és időben jól irányítható. A térhálós polimereket alapvetően két különböző módon lehet előállítani. Direkt szintézis során monomerekből indulunk ki, a polimerizációs láncreakció egyszerre történik a térhálósodással. Utólagos térhálósítás során a polimer láncok között keresztkötéseket kell kialakítani (vagy külön térhálósító molekulával vagy a polimer láncokon jelen lévő funkciós csoportok felhasználásával). A 3D nyomtatásban jellemzően alkalmazott fotopolimerizációs reakciók gyökös láncreakciók. A gyökös láncreakció mechanizmusa a 8. ábrán látható. Az első lépésben a fotoiniciátor egy adott hullámhosszon elnyeli a fényt, így gerjesztett állapotba kerül és instabilizálódik. Igen reakcióképes szabad gyök jön létre, mely reagál egy monomer molekulával. A szabadgyökös polimerizáció tulajdonképpen a kiindulási, kettős kötést tartalmazó monomer sorozatos önaddíciója. Az alkén monomerből iniciálás során kialakított instabil gyök a kettős kötések felszakadása révén sorozatosan reagál további monomer molekulákkal, miközben a növekvő molekula reaktív marad mindaddig, amíg valamilyen lánczáró lépésben nem stabilizálódik (8. ábra) [8, 9]. 7

8 8. ábra: Iniciált szabadgyökös fotopolimerizáció (S: iniciátor, M: monomer, M : monomer gyök, R: lánczáró molekula: pl.: polimer gyök, láncátadó szer, stb.) A DLP nyomtatáshoz alapanyagként speciális, többkomponensű keverékeket alkalmaznak, fő alkotóelemei: egy- vagy többfunkciós akril monomer(ek) és/vagy oligomer(ek), fotoiniciátor, pigment és vagy fotoabszorbens festék. Fontos szempont, hogy az alapanyag gyorsan ( <10 másodperc) térhálósodjon, mivel így kis exponálási idővel dolgozhatunk, ami gyorsabb nyomtatási folyamatot eredményez. A végső alkalmazási terület is erősen befolyásolhatja az alapanyagok kiválasztását. A felhasználás igényelhet nagy merevségű, de egészen lágy, könnyen deformálható termékeket is. Igény lehet a precíziós öntéshez alkalmas, hamumentesen kiégethető késztermékre is. A legelterjedtebben alkalmazott monomerek és makromonomerek a mono-, di-, vagy oligoakrilátok, metakrilátok. Jellemzően ezek keverékeit alkalmazzák. A teljesség igénye nélkül ilyen monomer lehet például a metil-metakrilát, az etil-akrilát, a ciklohexil-metakrilát, a 2-hidroxietil-metakrilát, az epoxi-akrilátok, a poliészter-akrilátok, a poli(etilén-glikol)-diakrilátok, a poli(propilén-glikol)- diakrilátok, az alifás uretán-metakrilátok. Az említett komponensek esetében a polimerizáció és a térhálósítás egy lépésben megy végbe a DLP nyomatatás során. A legnépszerűbb kutatási irány a mesterséges szövetek létrehozása, amihez mindenképpen biokompatibilis alapanyagokra van szükség. Gyakran alkalmazott biokompatibilis makromonomer a poli(etilén-glikol)-diakrilát [PEGDA] ( 9. ábra), mely orvosbiológiai felhasználásra is alkalmas lehet [10, 11]. 9. ábra: A PEGDA szerkezete és fotoinicált térhálósítása (R: fotoiniciátor) 8

9 A DLP technológiánál alkalmazott fényforrás (HD illetve Full HD projektor) igen széles spektrumon világít, a közeli UV-től (300 nm) a közeli infravörös (900 nm) tartományig. Az alkalmazott fotoinicátornak ezen a tartományon kell fotont elnyelnie úgy, hogy végbemenjen a szabadgyök képződése, ami a DLP alapanyagokban alkalmazott iniciátoroknál általában α-hasításos mechanizmussal történik meg. A DLP technológiában tipikusan a foszfin-oxid alapú fotoiniciátorokat alkalmazzák. Ilyen fotoiniciátor a bisz- (2,4,6-trimetilbenzoil)fenilfoszfin-oxid, kereskedelmi nevén Irgacure 819 (λ max = 370 nm). Az Irgacure családba tartozó fotoiniciátorok közül elterjedten alkalmazzák az Irgacure 2959 iniciátort is (λ max = 270 nm) is (10. ábra). Az alapanyag térhálósításának, így a rétegképzésnek a sebességét az iniciátor mennyiségével is lehet szabályozni, így a nyomtatás során alkalmazott pár másodperces (1-10 s) expozíciós idő mellett az adott réteg biztonsággal megszilárdul [10, 12, 13]. A DLP nyomtatásban az alkalmazott iniciátor mennyiség tipikusan nagy, százalékos nagyságrendet is elérhet. 10. ábra: (a) Az Irgacure 819 és a (b) Irgacure 2959 szerkezete és a fotoiniciált szabadgyök képződése A pigmenteket fotoabszorbensként alkalmazzák, mely segíti a megfelelő geometria kialakítását. Használatukkal szabályozni lehet, hogy milyen mélyen hatoljon be az alapanyagba a besugárzó fény. A pigmentkoncentráció növelésével pontosabb, és vékonyabb rétegek kialakítására van lehetőség. A pigment lehet szervetlen, mint például titánium-oxid, cink-oxid, vas-oxid, bárium-szulfát vagy kálcium-szulfát, de alkalmaznak szerves pigmenteket is, ilyenek a különböző azoszínezékek (pl. Sudan vörös) és a kromofor csoportokat tartalmazó azo- és antrakinon pigmentek. Mennyiségük általában a teljes tömeg 0,001-5 m/m%-a [10, 13] dimenziós modellkészítés A 3D nyomtató működése során a tárgyakat, modelleket az alapanyag rétegenkénti hozzáadásával építi fel. Az egyes rétegek a térbeli modell keresztmetszetei, melyek együttesen alkotják a megkapni kívánt objektumot (11. ábra). 9

10 11. ábra: A 3D modell rétegenkénti felépítése Az additív gyártást digitális modellkészítés előzi meg. Szükség van a nyomtatni kívánt test virtuális mására, amelyet kétféle jellemző módon kaphatunk meg: Tervezésre szolgáló programok vagy animációs szoftverek használatával: Computer Aided Design (CAD). Elterjedt CAD szoftverek: CATIA, Solid Works, ProEngineer, SolidEdge, Unigraphics, AutoCAD. Meglévő modellek letapogatása 3D szkenner segítségével (reverse engineering). A geometria lemásolása számítógépes axiális tomográfia alkalmazásával (Computer ized Axial Tomography, CAT). A jelenleg forgalomban lévő nyomtatókhoz tartozó szoftverek STL (Standard Triangulation Language, standard háromszögelési nyelv) állományokat képesek beolvasni. A 3D modell STL formátumban történő tárolása nem más, mint a test felületeinek apró közelítő háromszögekre való felosztása. A háromszögek csomópontját x, y, z-koordináták halmaza írja le (12. ábra). Az STL formátumban lévő 3D modellt adott 3D nyomtatóhoz tartozó tervező program segítségével lehet a nyomtató által kezelhető formátumba hozni. A nyomtató szoftvere automatikusan elkészíti a modell vízszintes irányú, virtuális rétegeit, kiszámolja az anyag- és időszükségletet. A modell átméretezhető, mozgatható, forgatható a virtuális építési területen, ahova akár egyszerre több különböző modell is elhelyezhető és egyidejűleg kinyomtatható (13. ábra). Néhány additív gyártási technológia kétféle anyagot használ fel az alkatrészek előállításához. Az első anyag képezi az alkatrészt, a másik a nyomtatás alatt egyes részek alátámasztására szolgál. A támasztó anyagot az eljárás befejezése után leolvasztják vagy leoldják. Mindez néhány percet vesz csupán igénybe és nem igényel mérnöki közreműködést [14]. 10

11 12. ábra: 3D test háromszöghálóval közelített felülete 13. ábra: Próbatestek támaszokkal a virtuális munkatérben A nyomtatás során a készülék beolvassa a modell adatait és sorban egymásra illeszkedő rétegeket képez folyadékból, porból vagy sík lemezekből, ilyenformán fokozatosan építi fel a modellt a metszetekből. Ezek a rétegek, melyek alakra és vastagságra megegyeznek a virtuális modell metszeteivel, egymáshoz tapadnak. A 3D nyomtatók legnagyobb előnye, hogy majdnem minden formát vagy geometriai testet elő tudnak állítani. A nyomtatók x és y irányú felbontását és a rétegek vastagságát mikrométerben ( μm) adják meg. A szokásos rétegvastagság körülbelül 100 μm, de bizonyos nyomtatók akár 16 μm vékony rétegeket is képezhetnek. A mai technológiákkal egy modell kinyomtatása néhány perctől néhány óráig tart az alkalmazott módszer, valamint a test méretétől és bonyolultságától függően. A hagyományos gyártási eljárások (pl. a fröccsöntés) alkatrészek tömeggyártása esetén általában olcsóbbak, de kis darabszám esetén az additív gyártás alkalmazása gyorsabb és sokszor kifizetődőbb [14]. A DLP (Digital Light Processing) nyomtatás A gyakorlat során a DO3D Kft. által készített DLP nyomtatót fogjuk használni. Minden nyomtatás előtt lehetőség van megadni az alkalmazni kívánt paramétereket, amit a készülék elején található érintőképernyő segítségével tudunk végrehajtani. A szabályozható paraméterek: Az építési fej adott magasságra emelhető és süllyeszthető, a mozgatást végző z-irányú motor mozgatási sebessége szabályozható. Megadható az építési fej emelkedése két rétegalkotási ciklus között. Megadható a nyomtatási folyamat során jelentkező tálcabillentés. Szabályozható a kezdő- és a további rétegeket kialakító fényforrás expozíciós ideje, így az alkalmazott alapanyaghoz, valamint a kialakítani kívánt geometriához szükséges levilágítási idő optimálható. A nyomtatás során a készülék kijelzi, hogy a modellt pontosan hány rétegből fogja felépíteni, megadja az aktuális rétegalkotási ciklus számát és a hátralévő időt. Bármely nem kívánatos mozgatási folyamat a nyomtatás közben leállítható. A nyomtatás megszakítható és 11

12 az építési fej mozgatható, ezt követően a nyomtatás újraindítható. Ebben az esetben a nyomtatás a legutoljára kialakított rétegtől kezdve fog folytatódni. A DLP technológiával nagyon pontosan, kiváló felületi minőséget biztosítva lehet nyomtatni, köszönhetően a μm-es felbontásnak. A nyomtatási terület nagysága függ az alkalmazott projektor felbontásától és a nyomtatás során elérni kívánt felbontásától. Például adott projektor esetén 75 μm x-y irányú felbontás esetén 76,8 mm x 57,6 mm az elérhető nyomtatási terület, míg 50 μm-es x-y irányú felbontást igényelve 51,2 mm x 38,4 mm-re csökken a nyomtatási terület. Mivel DLP technológiánál egy levilágítási fázisban megtörténik egy teljes réteg térhálósítása, a pontszerűen térhálósító 3D nyomtatási technológiákhoz képest sokkal gyorsabb rétegkészítési időt biztosít. Az egyes rétegek elkészítési ideje nem függ a nyomtatott modellek geometriai komplexitásától sem. Az általunk alkalmazott nyomtatónál az elérni kívánt x-y irányú felbontás ~47 μm. Mivel a nyomtatóban egy Full HD projektort építettek (felbontása 1920x1080 pixel) így az építési tér alapterülete 90,2 mm x 50,8 mm. 12

13 2.2. Digitális optikai mikroszkópia A fénymikroszkóp története Amikor mikroszkópról hallunk, akkor általában sok lencsés, tekintélyes eszközre gondolunk. Pedig mikroszkópnak tekinthetünk egyetlen domború lencsét is, hiszen rajta keresztül a kis tárgyakat nagyítva láthatjuk (mikro = kicsiny, szkopein = nézni). A XVI. század végéről vannak irodalmi bizonyítékaink arra nézve, hogy egyetlen lencsét (lupe) kis rovarok képének megnagyítására használtak (1592 Hufnagel, 1625 Stellutus). Az egy lencsével történő nagyítást Anton von Leeuwenhoek már az 1600-as években olyan magas szintre emelte saját készítésű lencséivel, hogy egysejtű élőlények megfigyelésével új tudományágakat alapító felfedezéseket tett. Ezt követően a norvég Janssen testvérek és az olasz Galilleo munkásságának köszönhetően létrejöttek az olyan mikroszkóp összeállítások, amelyek két lencséből, a vizsgált tárgyhoz közeli tárgylencséből (objektív) és a vizsgáló szeméhez közelebb eső szemlencséből (okulár) álltak (például Robert Hooke mikroszkópja). Az objektív előállította a vizsgált tárgy valódi, fordított állású képét a mikroszkóp tubus belsejében és a szemlencse elé vetítette azt. Ez utóbbi pedig tovább nagyította a képet és létrehozta a tárgy látszólagos képét az emberi szemben (a teljes nagyítás az objektív lencse és az okulár lencse nagyításának a szorzata). 14. ábra: Robert Hooke mikroszkópja 15. ábra: Az összetett mikroszkóp működési elve Bár gyakorlatilag a kétlépcsős nagyítási mód az alapja a ma használatos, modern mikroszkópoknak is, a 18. századig mégsem terjedtek el széleskörűen az összetett mikroszkópok. Ennek alapvető oka, hogy az akkoriban gyártott lencsék minősége és a mikroszkóp építéséhez alkalmazott gyártástechnológia pontatlansága olyan mértékű volt, hogy a kétlépcsős nagyítással létrehozott képek minősége elmaradt az egyszerű nagyítókétól. A 18. és 19. században azonban mind az optikai mind a mechanikai alkatrészek minősége jelentősen javult. Ekkoriban az angol és német mikroszkópgyártók fejlődése és későbbi versengése révén nagyot lépett előre a mikroszkópok teljesítménye. Az 1900-as évekre a gyártók már túlléptek a mikroszkóp felépítmények tökéletesítésén és a cél a lencsehibák minél nagyobb mértékű kiküszöbölése, a különböző speciális üvegtípusok és lencsebevonatok létrehozása, valamint a lehető legnagyobb részletgazdagságú képalkotás lett. A 20. század 13

14 elején kidolgoztak számos, az eltérő megvilágítási módokon és fényszűrési technikákon alapuló módszert a kontraszt növelésére, majd az integrált áramkörök és az elektronikai fényérzékelők megjelenésével elkészítették az első digitális mikroszkópokat A fénymikroszkóp felépítése A manapság használatos optikai mikroszkópok felhasználási területei és felépítésük rendkívül szerteágazó, de működésük elve és alapegységeik hasonlóságot mutatnak. A legfontosabb részeket mutatja be a 3. ábra. 16. ábra: A mikroszkóp felépítése A tárgylencse (objektív) feladata, hogy a vizsgált tárgyról nagyított képet készítsen. A ma kapható objektívek gyakorlatilag mindegyike valamilyen szinten optikai hibákra korrigált, több lencsét tartalmazó rendszer. Az objektív alapvetően meghatározza a mikroszkóp nagyítási tartományát és azt, hogy milyen kis részleteket lehet a mikroszkópi képen megkülönböztetni. A tárgylencse valós (ernyőn felfogható) képet ad, amit a tubusba vetít. A szemlencse (okulár) feladata, az objektív által készített kép további nagyítása. A szemlencse látszólagos képet ad, amit a szemünkkel érzékelünk. A modern mikroszkópokban a szemlencse is egy összetett lencserendszer, hasonlóan az objektívhez. A tubus a szemlencse és a tárgylencse közötti cső. Ez szolgál az okulár és az objektív megfelelő távolságú és azonos optikai tengelyű pozícionálására, de akár további nagyító vagy fénytörő, megosztó optikai elemeket (prizmák) is tartalmazhat. Az élességállító rendszerrel a minta és a mikroszkópfej közötti távolság állítható oly módon, hogy a tárgy fókuszba kerüljön. Általában külön durva és finommechanikájú élességállító szerkezet is van. A tárgyasztal, a mintamozgató szerkezettel biztosítja a minta megfelelő rögzítését és mozgatását. Az elektronikus vezérlésű mikroszkópoknál a tárgyasztal X-Y és néha Z irányban is képes mozogni (aká r 100 nm-es léptetéssel is), így önmagában elláthatja az élességállítás feladatkörét is. A mechanikus és elektromos részeknek a megfelelő védelmet, stabilitást, illetve rezgésmentességet a robosztus váz és állvány biztosítja. Korábban csak tükröket alkalmaztak a szórt napfény 14

15 összegyűjtésére és a minta megvilágítására. Később lámpaházban elhelyezett halogén izzó majd xenonnal töltött kisülőlámpa lett a fényforrás. Ezek széles spektrumú ( nanométer közötti), fehér fényt szolgáltatnak. Ma már nem ritka a LED-es megvilágítás sem. Az optimális fényviszonyok eléréséhez azonban biztosítani kell a fényforrás és a lencserendszer egytengelyűségét, valamint a megfelelő fényrekesz beállításokat is. A kollektor és kondenzor lencsék feladata a fényforrásból jövő fény összegyűjtése és párhuzamosítása. A tárgy közelében lévő kondenzor lencserendszer az összes fényt a tárgylencse látómezejébe fókuszálja, így érthető, hogy egy mikroszkóp teljesítményének maximális kihasználásához a kondenzor és az objektív gondos összehangolására, beállítására van szükség Digitális képalkotás és elemzés a mikroszkópiában Az elmúlt néhány évtizedben a digitális kamerák robbanásszerű fejlődésen mentek keresztül. Közel 40 különböző gyártó kínálja termékeit világszerte a legkülönbözőbb igényeket kielégítve. A működési elv egyszerű: az objektív lencserendszere által felnagyított képet valódivá alakítjuk és egy érzékelőre vetítjük ernyő és film felhasználása nélkül. Bár az érzékelőkben megtalálható pixelek száma (amik a rájuk eső fény érzékelésére képesek), évről évre növekszik, a manapság alkalmazott chipekkel elérhető felbontás elmarad a fotópapír minőségéhez képest. Ennek ellenére a digitális technológia létjogosultsága a mikroszkópia területén is bizonyított. Ez könnyen belátható akkor is, ha csak néhány példát említünk, ami a számítástechnika és a mikroszkópia ötvözése révén jön létre: digitális adattárolás, keresés, archiválás lehetősége; a képi információk gyors és egyszerű kinyerése (számtalan mérési, összehasonlítási lehetőség, kvalitatív és kvantitatív kiértékelések), mindezek automatizálása; videofelvételek készítése, automatikus fókuszkeresés stb. Bár korábban, a digitális mikroszkópia kezdetén (80-as évek) az elektronikus kamerák piacán jelen voltak az egyszerű és olcsó megoldást kínáló csőkamerák (Vidicon család) a 90- es évektől kezdve felváltották őket az akkor rohamos fejlődést mutató CCD (charge coupled device = töltéscsatolt eszköz) érzékelővel ellátott kamerák. Egy CCD érzékelő minden egyes pixele képes a ráeső fénysugár hatására létrejövő töltést (fotoelektromos effektus) tárolni a besugárzás megszűnését követő jelkiolvasásig. A CCD-k előnyös tulajdonsága a kis torzítás, a nagy érzékenység és a válaszjel nagyfokú linearitása. Bár a videokamerák hétköznapi elterjedése a CCD-k megjelenésének köszönhető, azonban a CCD érzékelők hátránya, hogy a működtetésükhöz szükséges segédáramkörök száma meglehetősen nagy és ez bonyolítja, drágítja a gyártást. Emiatt a digitális képalkotásban a jövőben fokozatosan felváltja őket a CMOS (complementary metal oxide semiconductor) vagy más néven camera on chip technológia. A CMOS eszközök gyártása relatíve gazdaságos és a mikroprocesszorok vagy a memóriakártyák területén megjelenő folyamatos újítások viszonylag könnyen adaptálhatók a szenzorokba. 15

16 17. ábra: Egy CMOS szenzor felépítésének sematikus rajza A CMOS érzékelő működése ugyanazon a fotoelektromos effektuson alapul, mint a CCD-é, de a hasonlóság itt véget is ér, hiszen a töltéskép-kiolvasás módja, a jelfeldolgozó áramkörök kialakítása, a színszűrési módszer, a félvezető technológia már jelentős műszaki és gyártástechnológiai eltéréseket mutat. A CMOS integrált áramkör közepén is egy optikai érzékelő található, amely periodikus mátrixba rendezett, fényszűrőkkel egybeépített, különálló fotódiódákból áll. Minden egyes pixel zöld, kék és piros színszűrőkkel ellátott fotódiódákat tartalmaz hasonlóan a CCD-khez. A CMOS-nál azonban minden pixelhez külön jelerősítő tartozik és a fotonok által a diódákban gerjesztett jel is egymástól függetlenül olvasható ki a pixelekből. Ez a független erősítés jelentősen növeli az érzékelő teljesítményét (kisebb zaj és torzítás). Az egymástól független jelerősítésből fakadó kis eltérések és a CMOS szenzor CCD-vel szembeni kisebb fényérzékenysége (egyelőre a CMOS szenzorok kisebb területűek) azonban rontja a képminőséget. Mindezek ellenére a CMOS szenzorok felépítésüknél fogva a CCD-k több hátrányos tulajdonságát is kiküszöbölik, így további terjedésük várható a jövőben Mintakészítés Az optikai mikroszkópiában használatos mintakészítési (vágás, preparálás, színezés, kontrasztosítás stb.) módszerek részletes ismertetése és összefoglalása a szerteágazó tudományágak miatt enciklopédiai méreteket öltene, így a jegyzet keretein belül csak néhány általánosan használt technikát mutatunk be. Az optikai mikroszkópia előnye, hogy sok esetben egyáltalán nem vagy csak nagyon egyszerű minta-előkészítést igényel (összevetve az elektronmikroszkópos és atomi erő mikroszkópos módszerekkel). Különböző porok és szálak vagy tömbi minták morfológiai vizsgálatához elegendő azokat egy mintatartóra vagy tárgylemezre helyezni és azonnal vizsgálhatók átmenő fényben vagy reflexiós üzemmódban. Kis szemcseméretű anyagok (polimer porok, pigmentek, ásványi anyagok porai stb.) aggregátumokat képezhetnek, így ezekből szuszpenziók készítése és tárgylemezre cseppentése a legcélszerűbb. 16

17 Tömbi minták belső szerkezetének vizsgálatát elvégezhetjük töret felületek létrehozásával (szobahőmérsékletű vagy fagyasztva törés). Különböző ásványok, polimerek, fémek és fémötvözetek kristály vagy fázisszerkezetének vizsgálata is elképzelhető tört felületeken, de a törés során létrejövő egyenetlen felület a hagyományos fénymikroszkópok kis mélységélessége miatt megnehezíti részletgazdag képek készítését. Ez digitális mikroszkópok használatával részben megoldható, ugyanis a különböző tárgyasztalmagasságokban készített felvételek megfelelő számítási kapacitás mellett háromdimenziós képekké konvertálhatók. Ennél általában olcsóbb és könnyebben hozzáférhető megoldás csiszolatok készítése. Ezek előállításához különböző működési elvű csiszoló berendezések szerezhetők be, amelyek eltérő finomságú csiszoló vásznakkal szerelhetők fel a jobb felületi minőség eléréséhez. Modernebb berendezések ipari gyémánt porokat is használnak polírozott felületek létrehozására. Porózus minták (pl. habok, membránok), biológiai szervezetek belső szerkezetének vizsgálatára a mintákból olyan vékony szeleteket kell vágnunk, amelyek átvilágíthatók a mikroszkóp alatt. Ez a vastagság függ a minta anyagától és szerkezetétől, de az esetek többségében néhány tíz mikrométernél vastagabb szelet már nem világítható át. A legegyszerűbben egy éles pengével készíthetünk metszeteket, de ez csak kevés mintánál valósítható meg és reprodukálhatósága nagyon rossz. A metszés történhet mikrotómmal is. A mikrotómban egy elektronikusan vezérelt mechanikus szerkezet, éles kés segítségével adott vastagságú szeletet vág le a mintából. A kések anyaga lehet fém, üveg vagy akár gyémánt is. A kés anyagának keménysége nyilvánvalóan limitálja az elvágható minta anyagi minőségét. A kapott szeletek minőségét befolyásolja a metszet területe, a vágás sebessége, a kés él- és mintafelülettel bezárt szöge, valamint a metszetkészítés hőmérséklete. A mikrotómos vágáshoz általában be kell ágyazni a mintát egy mátrixba, annak érdekében, hogy a vágáshoz megfelelő szilárdsággal rendelkezzen. A leggyakrabban alkalmazott beágyazó szerek a paraffin, az epoxigyanta és az akril polimerek. A szelet vastagságát gyakorlatilag az alkalmazott kés élessége, a hőmérséklet és a mikrotóm szerkezetének precizitása szabja meg. Egy modern, precíziós mechanikával szerelt, folyékony nitrogénnel hűthető úgynevezett ultrakriomikrotómmal akár 50 nm vastagságú szeletek is készíthetők, amelyek már transzmissziós elektronmikroszkópiával is vizsgálhatók. Ezeknek a berendezéseknek az ára azonban már összevethető egy jól felszerelt mikroszkópéval. Fénymikroszkópiás vizsgálatra az 1 mikrométer vastagságú szelet már több mint elegendő, de alacsony üvegesedési hőmérsékletű polimerek és elasztomerek vizsgálatánál a hűthető mintatér nagyon hasznos. A fénymikroszkópiás minta-előkészítések közül, talán a biológiai minták preparálása a legösszetettebb. Egy egyszerű nyúzat készítése után is számos kiegészítő lépés szükséges az eredeti mintakép megőrzéséhez (fixálás, de/rehidr atálás, színezés) és ezt sok esetben beágyazással, metszetkészítéssel vagy keményebb anyagok (csont, fog) esetén csiszol at készítéssel kell kombinálni. 17

18 Irodalomjegyzék [1] Sipos J., Apostol A., Molnár J.: Gyors prototípusgyártás, fordított mérnöki tevékenység (reverse engineering) a fegyveralkatrész gyártásban, Repüléstudományi Konferencia Közlemények, Szolnok, 2010 [2] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials, 33, , 2002 [3] K. F. Leong, C.M. Cheah, C.K. Chua: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials 24, , 2003 [4] B. Mueller, D. Kochan: Laminated object manufacturing for rapid tooling and patternmaking in foundry industry, Computers in Industry, 39, 47 53, 1999 [5] L. E. Murra, S. M. Gaytana, D. A. Ramireza, E. Martineza, J. Hernandeza, K. N. Amatoa, P. W. Shindoa, F. R. Medinaa, R. B. Wickera: Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology, 28, 1 14, 2012 [6] N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci- Unal, M. R. Dokmeci, N. A. Peppas, Ali Khademhosseini: 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine, Advanced Materials, 26, , 2014 [7] F. Fischer: FDM and PolyJet 3D printing, Stratasys Inc, 2014 [8] J.P. Fouassie, X. Allonas, D. Burget: Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications, Progress in Organic Coatings, 47, 16 36, 2003 [9] P. Weiss: Photo-induced polymerization, Pure and Applied Chemistry, 15, , 2009 [10] Three-dimensional fabricating material systems for producing dental products, US A1, 2014 [11] H. Zhang, L. Wang, L. Song, G. Niu, H. Cao, G. Wang, H. Yang, S. Zhu: Controllable Properties and Microstructure of Hydrogels Based on Crosslinked Poly(ethylene glycol) Diacrylates with Different Molecular Weights, Journal of Applied Polymer Science, 121, , 2011 [12] E. Andrzejewska: Photopolymerization kinetics of multifuncitonal monomers, Progress in Polymer Science, 26, , 2001 [13] Photo-curable resin compositions and method of using the same in three-dimensional printing for manufacturing artificial teeth and denture base US A1, 2014 [14] B. Dybala: Mechatronika Modul 9: Gyors prototípusgyártás, Oktatói segédlet, Wroclaw Egyetem, Lengyelország,

3D nyomtatás. Történelme és típusai

3D nyomtatás. Történelme és típusai 3D nyomtatás Történelme és típusai Irányzatok additív szubtraktív Additív 3D nyomtatás - az első lépés A 3D nyomtatás 1955-ben érett meg gondolatként, az MIT két doktorandusza, Jim Bredt és Tim Anderson

Részletesebben

Rapid prototyping technológiák additív technikák Dr. habil Husi Géza, Dr. Szemes Péter Tamás

Rapid prototyping technológiák additív technikák Dr. habil Husi Géza, Dr. Szemes Péter Tamás Rapid prototyping technológiák additív technikák Dr. habil Husi Géza, Dr. Szemes Péter Tamás Készült: 2015.09.30. A tananyag elkészítését "Az élettudományi- klinikai felsőoktatás gyakorlatorientált és

Részletesebben

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15.

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15. CCD detektorok Spektrofotométerek Optikai méréstechnika Németh Zoltán 2013.11.15. Detektorok Működésük, fontosabb jellemző adataik Charge Coupled Device - töltéscsatolt eszköz Az alapelvet 1970 körül fejlesztették

Részletesebben

Fém, kerámia és biokompozit bioanyagok lézersugaras felületmódosítása

Fém, kerámia és biokompozit bioanyagok lézersugaras felületmódosítása Fém, kerámia és biokompozit bioanyagok lézersugaras felületmódosítása Bitay Enikő 1, Olasz Sándor 2, Dobránszky János 3 1 Sapientia Erdélyi Magyar Tudományegyetem, Marosvásárhely-Koronka, ebitay@ms.sapientia.ro

Részletesebben

Konfokális mikroszkópia elméleti bevezetõ

Konfokális mikroszkópia elméleti bevezetõ Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes

Részletesebben

Diagnosztikai röntgen képalkotás, CT

Diagnosztikai röntgen képalkotás, CT Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak

Részletesebben

HÍRKÖZLÉSTECHNIKA. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA 8. Dr.Varga Péter János 2 Megjelenítés 3 Megjelenítés - paraméterek 4 Üzemmód: karakteres (karakterhelyek), grafikus (pixelek) Képátló: pl. 17, 19,21, 15,4, stb ( látható képátló) Képarány:

Részletesebben

PROTOTÍPUS FRÖCCSÖNTŐ SZERSZÁMOZÁS TECHNOLÓGIÁJÁNAK FEJLESZTÉSE PHD ÉRTEKEZÉS

PROTOTÍPUS FRÖCCSÖNTŐ SZERSZÁMOZÁS TECHNOLÓGIÁJÁNAK FEJLESZTÉSE PHD ÉRTEKEZÉS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK PROTOTÍPUS FRÖCCSÖNTŐ SZERSZÁMOZÁS TECHNOLÓGIÁJÁNAK FEJLESZTÉSE PHD ÉRTEKEZÉS KÉSZÍTETTE: KOVÁCS NORBERT KRISZTIÁN

Részletesebben

2. MODUL: Műszaki kerámiák

2. MODUL: Műszaki kerámiák 2. MODUL: Műszaki kerámiák A műszaki kerámiák különböző fajtáival, tulajdonságaival és alkalmazásaival ismerkedünk meg. A tudásanyag segítséget nyújt abban, hogy képesek legyünk meghatározni a műszaki

Részletesebben

Kvantitatív Makyoh-topográfia 2002 2006, T 037711

Kvantitatív Makyoh-topográfia 2002 2006, T 037711 ZÁRÓJELENTÉS Kvantitatív Makyoh-topográfia 2002 2006, T 037711 Témavezető: Riesz Ferenc 2 1. Bevezetés és célkitűzés; előzmények A korszerű félvezető-technológiában alapvető fontosságú a szeletek felületi

Részletesebben

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) Segédlet az Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) tárgy hallgatói számára Készítette a BME Anyagtudomány és Technológia Tanszék Munkaközössége Összeállította: dr. Orbulov Imre Norbert 1 Laborgyakorlatok

Részletesebben

Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással

Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással A MÛANYAGOK FELDOLGOZÁSA 2.1 2.2 1.1 Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással Tárgyszavak: átlátszó műanyag; fröccsöntés; dombornyomás; hibalehetőségek; új technológiák; extrudálás;

Részletesebben

V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE

V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE Minden olyan optikai eszközt, amely arra szolgál, hogy a tiszta látás távolságán belül megnövelje a látószöget abból a

Részletesebben

Robotika. 3. Érzékelés Magyar Attila. Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék

Robotika. 3. Érzékelés Magyar Attila. Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék 3. Érzékelés Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. február 24. 3. Érzékelés 2 3. Tartalom 1. Mobil

Részletesebben

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA Bevezető AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA A műanyagok felhasználási területe egyre bővül, így mennyiségük is rohamosan növekszik. Elhasználódás után csekély hányaduk kerül csak újrahasznosításra,

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Prototípus-készítés és kisszériás gyártás különböző rétegfelépítő technológiákkal A műanyag-feldolgozás hagyományos technológiái csak tömegtermelés esetén gazdaságosak, mivel a termék

Részletesebben

2 modul 3. lecke: Nem-oxid kerámiák

2 modul 3. lecke: Nem-oxid kerámiák 2 modul 3. lecke: Nem-oxid kerámiák A lecke célja, az egyes nem-oxid kerámia fajták szerkezetének, tulajdonságainak, alkalmazásainak a megismerése. Rendkívül érdekes általános és speciális alkalmazási

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézeres felületkezelés a műanyag-feldolgozásban A lézerrel működő berendezések és technológiák ma már sokoldalú felhasználást tesznek lehetővé. A műanyagfelületek feliratozása már

Részletesebben

Gyors prototípus gyártás (Rapid Prototyping, RPT) 2009.11.09.

Gyors prototípus gyártás (Rapid Prototyping, RPT) 2009.11.09. Gyors prototípus gyártás (Rapid Prototyping, RPT) 2009.11.09. Konkurens (szimultán) tervezés: Alapötlet Részletterv Vázlat Prototípus Előzetes prototípus Bevizsgálás A prototípus készítés indoka: - formai

Részletesebben

Dobránczky János. Hegesztés. 60 percig fog hegeszteni MINDENKI gyakorlaton, pontos érkezés elvárt. A hegesztés egy alakadási technika.

Dobránczky János. Hegesztés. 60 percig fog hegeszteni MINDENKI gyakorlaton, pontos érkezés elvárt. A hegesztés egy alakadási technika. Dobránczky János Hegesztés 60 percig fog hegeszteni MINDENKI gyakorlaton, pontos érkezés elvárt. A hegesztés egy alakadási technika. Alakadási lehetőségek: öntés, porkohászat, képlékeny alakítás, forgácsolás,

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA A fóliagyártó-technológiák középpontjában az anyagés energiaköltségek csökkentése A fóliagyártásban elsősorban technológiai innovációkkal lehet anyag- és energiatakarékosságot elérni.

Részletesebben

ismerd meg! A PC vagyis a személyi számítógép XIX. rész A szkenner

ismerd meg! A PC vagyis a személyi számítógép XIX. rész A szkenner ismerd meg! A PC vagyis a személyi számítógép A szkenner XIX. rész 1. Bevezetés A digitális képfelvételt és képfeldolgozást a gyakorlatban már az ötvenes évek elejétol kezdték alkalmazni. A számítógépes

Részletesebben

Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén

Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén MÛANYAGFAJTÁK 1.5 1.1 1.2 Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén Tárgyszavak: erősített műanyagok; hőre keményedés; epoxigyanta; üvegszál; felületkezelés; rétegelválás;

Részletesebben

Az egyszázalékos rácspont visszaadása a flexónyomtatásban

Az egyszázalékos rácspont visszaadása a flexónyomtatásban Az egyszázalékos rácspont visszaadása a flexónyomtatásban Maxim Siniak, PHD, X-Rite Inc, Pierre Paul Moyson, ASAHI Photoproducts (Europe)n.v/s.a. Fordította: Tátrai Sándor Az elmúlt néhány évben a flexónyomtatással

Részletesebben

A DR-PAck fejlesztései PE fólia gyártástechnológiában

A DR-PAck fejlesztései PE fólia gyártástechnológiában A DR-PAck fejlesztései PE fólia gyártástechnológiában Transpack fõoldal vissza, home A DR-PAck fejlesztései PE fólia gyártástechnológiában Hazánkban számos vállalkozás tevékenykedik a fóliagyártás területén.

Részletesebben

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: Üveg és PMMA struktúrák CO 2 és Nd:YAG lézeres megmunkálással Készítette: Nagy Péter dr. és Varga Máté A mérés célja: CO 2 és Nd:YAG lézerek fontosabb tulajdonságainak

Részletesebben

IX. Az emberi szem és a látás biofizikája

IX. Az emberi szem és a látás biofizikája IX. Az emberi szem és a látás biofizikája IX.1. Az emberi szem felépítése A szem az emberi szervezet legfontosabb érzékelő szerve, mivel a szem és a központi idegrendszer közreműködésével az elektromágneses

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézertechnika a műanyagok megmunkálásában A lézertechnika egyre nagyobb szerepet kap a műanyagok formaadás utáni megmunkálásában; hegesztéshez, vágáshoz, a felület strukturálásához,

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Korszerű fóliák elektronikai alkalmazásokra A nyomtatott elektronika segítségével a műanyag fóliák és vezető szerkezetek kombinációjával számos új kapcsolási funkció alakítható ki.

Részletesebben

EBSD-alkalmazások. Minta-elôkészítés, felületkezelés

EBSD-alkalmazások. Minta-elôkészítés, felületkezelés VISSZASZÓRTELEKTRON-DIFFRAKCIÓS VIZSGÁLATOK AZ EÖTVÖS LORÁND TUDOMÁNYEGYETEMEN 2. RÉSZ Havancsák Károly, Kalácska Szilvia, Baris Adrienn, Dankházi Zoltán, Varga Gábor Eötvös Loránd Tudományegyetem, Természettudományi

Részletesebben

POLIMEREK KEMÉNYSÉGE

POLIMEREK KEMÉNYSÉGE POLIMEREK KEMÉNYSÉGE Elméleti áttekintés A keménység olyan anyagi tulajdonság, amely azt fejezi ki, hogy egy anyag mennyire szilárd, milyen mértékben ellenálló a külső mechanikai behatásokkal szemben.

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Kötő- és rögzítőtechnológiák

Kötő- és rögzítőtechnológiák Kötő- és rögzítőtechnológiák Szilárd anyagok illeszkedő felületük mentén külső (fizikai eredetű) vagy belső (kémiai eredetű) erővel köthetők össze. Külső erőnek az anyagok darabjait összefogó, összeszorító

Részletesebben

Szén nanoszerkezetekkel adalékolt szilícium-nitrid. nanokompozitok. Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet

Szén nanoszerkezetekkel adalékolt szilícium-nitrid. nanokompozitok. Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet Szén nanoszerkezetekkel adalékolt szilícium-nitrid nanokompozitok PhD értekezés Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet Témavezető: Dr. Balázsi Csaba MTA TTK Műszaki Fizikai

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 3D nyomtatás http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése.

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. A MÛANYAGOK TULAJDONSÁGAI Tömítések áteresztőképessége Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. Szigorodó előírások Áteresztésnek

Részletesebben

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÍRTA: SZABÓ LAJOS OKLEVELES IPARI TERMÉK- ÉS FORMATERVEZŐ MÉRNÖK KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI MÉRÉSTECHNIKÁK CÍMŰ TÉMAKÖRBŐL, AMELLYEL

Részletesebben

7. Alapvető fémmegmunkáló technikák. 7.1. Öntés, képlékenyalakítás, préselés, mélyhúzás. (http://hu.wikipedia.org/wiki/képlékenyalakítás )

7. Alapvető fémmegmunkáló technikák. 7.1. Öntés, képlékenyalakítás, préselés, mélyhúzás. (http://hu.wikipedia.org/wiki/képlékenyalakítás ) 7. Alapvető fémmegmunkáló technikák A fejezet tartalomjegyzéke 7.1. Öntés, képlékenyalakítás, préselés, mélyhúzás. 7.2. Kovácsolás, forgácsolás. 7.1. Öntés, képlékenyalakítás, préselés, mélyhúzás. (http://hu.wikipedia.org/wiki/képlékenyalakítás

Részletesebben

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság OMR Adó-vevõs fotokapcsolók A mûködés aelve: 1. Az adó-vevõs érzékelõ két részbõl áll, egy adóból (fénykibocsátó), és egy vevõbõl (fényelnyelõ). Egy fénysugár kapcsolja össze a két eszközt egymással. vevõ

Részletesebben

Tartalom: Bevezetés. 1. Karbidok. 1.1 Szilíciumkarbid

Tartalom: Bevezetés. 1. Karbidok. 1.1 Szilíciumkarbid Tartalom: Bevezetés Az oxidkerámiákhoz hasonlóan a nem-oxid kerámiák is kizárólag szintetikus előállítás útján fordulnak elő. A nem-oxid elnevezés általában karbid, nitrid, vagy oxinitrid tartalomra utal.

Részletesebben

SZABADALMI LEÍRÁS. (21) A bejelentés ügyszáma: P 99 02367 (22) A bejelentés napja: 1999. 07. 14.

SZABADALMI LEÍRÁS. (21) A bejelentés ügyszáma: P 99 02367 (22) A bejelentés napja: 1999. 07. 14. (19) Országkód HU SZABADALMI LEÍRÁS!HU000221552B1_! (11) Lajstromszám: 221 552 B1 (21) A bejelentés ügyszáma: P 99 02367 (22) A bejelentés napja: 1999. 07. 14. (51) Int. Cl. 7 F 23 G 7/00 MAGYAR KÖZTÁRSASÁG

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Nyújtáskor mindkét irányban méretüket növelő polimerek Vannak olyan különleges anyagok, amelyek mérete nyújtáskor mindkét irányban megnő. Ezeket kezdetben antigumi -nak nevezték,

Részletesebben

Tárgyszavak: kompozit; önerősítés; polipropilén; műanyag-feldolgozás; mechanikai tulajdonságok.

Tárgyszavak: kompozit; önerősítés; polipropilén; műanyag-feldolgozás; mechanikai tulajdonságok. MŰANYAGFAJTÁK Önerősített műanyagkompozitok Az önerősített polimerrendszerek amelyek alapanyaga döntően polipropilén előállítására ma már több technológia ismert. Ütésállóságuk és szilárdságuk nagyobb

Részletesebben

Tárgyszavak: alakmemória-polimerek; elektromosan vezető adalékok; nanokompozitok; elektronika; dópolás.

Tárgyszavak: alakmemória-polimerek; elektromosan vezető adalékok; nanokompozitok; elektronika; dópolás. MŰANYAGFAJTÁK Elektroaktív polimerek Nikkel és vas-oxid tartalmú keverékek előállítását és tulajdonságait vizsgálták a vezetőképesség növelése és alakmemóriával rendelkező polimerek előállítása céljából.

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

(11) Lajstromszám: E 005 422 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 1A. ábra

(11) Lajstromszám: E 005 422 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. 1A. ábra !HU000005422T2! (19) HU (11) Lajstromszám: E 005 422 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 020041 (22) A bejelentés napja:

Részletesebben

Ciklikus butilén-tereftalát mint polimer alapanyag és polimer adalékanyag

Ciklikus butilén-tereftalát mint polimer alapanyag és polimer adalékanyag FIATALOK FÓRUMA Ciklikus butilén-tereftalát mint polimer alapanyag és polimer adalékanyag Halász István PhD-hallgató, BME Polimertechnika Tanszék, Budapest A ciklikus butilén-tereftalát egy a poliészterek

Részletesebben

Többet látni... Többet nyújtani... testo 875 és testo 881

Többet látni... Többet nyújtani... testo 875 és testo 881 A jövõ elkötelezettje Többet látni... Többet nyújtani... testo 875 és testo 881 ÚJ A professzionális ipari termográfiáért testo 875 és testo 881 a professzionális ipari termográfia eszközei testo 881 hõkamera

Részletesebben

Funkcionálisan gradiens anyagszerkezetű kompozit görgő végeselemes vizsgálata

Funkcionálisan gradiens anyagszerkezetű kompozit görgő végeselemes vizsgálata FIATALOK FÓRUMA Funkcionálisan gradiens anyagszerkezetű kompozit görgő végeselemes vizsgálata Felhős Dávid, Dr. Váradi Károly, Dr. Klaus Friedrich Gépszerkezettani Intézet, Budapesti Műszaki és Gazdaságtudományi

Részletesebben

2.3 V ÉGBERENDEZÉSEK. Részterületek fejlődése

2.3 V ÉGBERENDEZÉSEK. Részterületek fejlődése 2.3 V ÉGBERENDEZÉSEK Végberendezéseken az informatikai berendezések és a külvilág közötti kapcsolat különböző formáit megvalósító eszközöket, az ún. perifériákat értjük. Az ember és környezete viszonyát

Részletesebben

Lebomló polietilén csomagolófóliák kifejlesztése

Lebomló polietilén csomagolófóliák kifejlesztése Dr. Deák György *, Holup Péter **, Ferroni Liz Priscila **, Dr. Zsuga Miklós ***, Dr. Kéki Sándor *** Lebomló polietilén csomagolófóliák kifejlesztése Célul tűztük ki egy biológiailag lebomló polietilén

Részletesebben

Leica A60 F Kézikönyv

Leica A60 F Kézikönyv Leica A60 F Kézikönyv Tartalomjegyzék A Leica A60 F sztereomikroszkóp 12 Gratulálunk 13 A Leica A60 F áttekintése 14 A Leica A60 F összeszerelése 15 Az asztali rögzítő 16 A mozgatható karú állvány és az

Részletesebben

Mérnöki Optimálás Példatár

Mérnöki Optimálás Példatár Mérnöki Optimálás Példatár A példa megnevezése: A példa száma: A példa szintje: A feladat rövid leírása: Autó tetőbokszának optimálása több célfüggvény alkalmazásával OPT-BME-3 alap A mérnöki optimálás

Részletesebben

Intelligens és összetett szenzorok

Intelligens és összetett szenzorok Intelligens és összetett szenzorok Galbács Gábor Összetett és intelligens szenzorok Bevezetés A mikroelektronika fejlődésével, a mikroprocesszorok (CPU), mikrokontrollerek (µc, MCU), mikroprogramozható

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Egy- és többrétegű PE-LLD fóliák tulajdonságai a feldolgozási paraméterek függvényében A polietilének egyik legfontosabb feldolgozási módja a fóliagyártás. A polietilének sokféle

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Speciális adalékok töltőanyagok mellett A töltőanyagok sok esetben javítják az alapanyagok mechanikai tulajdonságait, emellett azonban rontják a hő- és fényállóságot. Ezt a negatív

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka Polimerek / Műanyagok monomer egységekből,

Részletesebben

Számítógépes grafika

Számítógépes grafika Számítógépes grafika XVII. rész A grafikai modellezés A modellezés A generatív számítógépes grafikában és a képfeldolgozás során nem a valódi objektumokat (valóságbeli tárgyakat), hanem azok egy modelljét

Részletesebben

Autóalkatrészek hosszú üvegszálas poliolefinekből

Autóalkatrészek hosszú üvegszálas poliolefinekből A MÛANYAGOK FELHASZNÁLÁSA 4.2 3.13 1.5 Autóalkatrészek hosszú üvegszálas poliolefinekből Tárgyszavak: kompozit; hosszú üvegszállal erősített poliolefin; PP; PE-HD; direkt bekeverés; fröccsöntés; fúvóformázás;

Részletesebben

Keresztmetszeti megmunkálás többfejes gyalugépekkel

Keresztmetszeti megmunkálás többfejes gyalugépekkel Szabó Árpád Kálmán Keresztmetszeti megmunkálás többfejes gyalugépekkel A követelménymodul megnevezése: Alapvető tömörfa megmunkálási feladatok A követelménymodul száma: 2302-06 A tartalomelem azonosító

Részletesebben

2. Légköri aeroszol. 2. Légköri aeroszol 3

2. Légköri aeroszol. 2. Légköri aeroszol 3 3 Aeroszolnak nevezzük valamely gáznemű közegben finoman eloszlott (diszpergált) szilárd vagy folyadék részecskék együttes rendszerét [Més97]. Ha ez a gáznemű közeg maga a levegő, akkor légköri aeroszolról

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés 1. Hőre lágyuló kompozitok előállítása és feldolgozása Tevékenység: A lecke áttanulmányozása után, a követelményekben meghatározottak alapján rögzítse, majd foglalja össze a lecke tartalmát, készítsen

Részletesebben

I. EXPOZÍCIÓS PROGRAMOK FÉLAUTOMATA PROGRAMOK...

I. EXPOZÍCIÓS PROGRAMOK FÉLAUTOMATA PROGRAMOK... Haladó Tanfolyam Tartalomjegyzék I. EXPOZÍCIÓS PROGRAMOK FÉLAUTOMATA PROGRAMOK... 3 1. BEVEZETŐ AZ EXPOZÍCIÓS PROGRAMOKBA... 3 1. ISO érzékenység... 5 2. WB Fehér egyensúly beállítása... 9 3. Fénymérési

Részletesebben

A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.

A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24. Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

4. Sajtolás és fröccs-sajtolás

4. Sajtolás és fröccs-sajtolás 4. Sajtolás és fröccs-sajtolás Sajtolás A sajtolás a legrégibb feldolgozási módszer formadarabok készítésére. Elsősorban a termoreaktiv (térhálósodó) anyagok feldolgozására használják. A sajtolás folyamata:

Részletesebben

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK Hibrid szerkezetek szerves bádoggal A hibrid szerkezetek tömege jelentősen csökkenthető, ha a fémkomponens helyett is műanyagot, ún. szerves bádogot használnak. A szerves

Részletesebben

Kompozit elemek tervezése az Amber One elektromos sportautó számára

Kompozit elemek tervezése az Amber One elektromos sportautó számára Kompozit elemek tervezése az Amber One elektromos sportautó számára Makai Zoltán, Sápi Zsombor, Székely András, Székely Béla, Tarcsai Roland Az Amber One projekt célja egy elektromos sportautó prototípusának

Részletesebben

6. Gyors prototípus készítés. 6.1 Történeti áttekintés

6. Gyors prototípus készítés. 6.1 Történeti áttekintés 6. Gyors prototípus készítés 6.1 Történeti áttekintés 1983: kísérletek 3D nyomtatás előállítására, kalifornia, Nagoya, Minneapolis 1986: C. Hull megalapítja a 3D System nevű céget eljárása a fotopolimerizáción

Részletesebben

Lézeráteresztő fém-polimer kötés kialakításának vizsgálata

Lézeráteresztő fém-polimer kötés kialakításának vizsgálata Lézeráteresztő fém-polimer kötés kialakításának vizsgálata Bauernhuber Andor 1*, Markovits Tamás 1, Takács János 1 1 BME Gépjárművek és Járműgyártás Tanszék * andor.bauernhuber@gjt.bme.hu A műanyag és

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Fóliagyártás versenyképesen Az öntött és a fújt fóliák közül is jelenleg a 3-rétegűek a legnépszerűbbek mind a gyártók, mind a felhasználók körében. Megkezdődött azonban az átrendeződés

Részletesebben

Ötvözetek mikroszkópos vizsgálata

Ötvözetek mikroszkópos vizsgálata Név: Szatai Sebestyén Zalán Neptun: C7283Z N I 11 A Ötvözetek mikroszkópos vizsgálata Mérésnél használt eszközök: Alumínium-magnézium-szilícium minta (5/6) Acélminta (5) Etalon (29) Célkeresztes skálázott

Részletesebben

(11) Lajstromszám: E 008 405 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 008 405 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000008T2! (19) HU (11) Lajstromszám: E 008 (13) T2 MAGYAR KÖZTÁRSASÁG Szellemi Tulajdon Nemzeti Hivatala EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 77970 (22) A bejelentés napja:

Részletesebben

(11) Lajstromszám: E 003 081 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 003 081 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU0000081T2! (19) HU (11) Lajstromszám: E 003 081 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 816664 (22) A bejelentés napja:

Részletesebben

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig. Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február

Részletesebben

(11) Lajstromszám: E 007 121 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: H01B 1/00 (2006.01)

(11) Lajstromszám: E 007 121 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: H01B 1/00 (2006.01) !HU000007121T2! (19) HU (11) Lajstromszám: E 007 121 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 06 2 (22) A bejelentés napja: 06.

Részletesebben

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Az ultrarövid, 100 fs hosszú fényimpulzusokat előállító lézerek 90-es évek elején, a 10 fs és rövidebb impulzusú lézerek a 90-es

Részletesebben

IND C2Z és C2T ipari zoom sztereomikroszkóp

IND C2Z és C2T ipari zoom sztereomikroszkóp IND C2Z és C2T ipari zoom sztereomikroszkóp Tartalom Bevezető Felépítés Használat Karbantartás és tárolás Mikroszkópos szakkifejezések Technikai jellemzők Összeszerelés Üzembe helyezés, használat Hibás

Részletesebben

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006674T2! (19) HU (11) Lajstromszám: E 006 674 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 7326 (22) A bejelentés napja:

Részletesebben

NC technológia és programozás I.

NC technológia és programozás I. NC technológia és programozás I. Történeti áttekintés Hagyományos szerszámgépek (egyetemes szerszámgépek) Gépészmérnök szak Dr. Sipos Jenő főiskolai tanár 2 Történeti áttekintés Másoló gépek Gépészmérnök

Részletesebben

ELEKTROKOZMETIKAI KÉSZÜLÉKEK Indirek készülékek fénykezelésekről

ELEKTROKOZMETIKAI KÉSZÜLÉKEK Indirek készülékek fénykezelésekről ELEKTROKOZMETIKAI KÉSZÜLÉKEK Indirek készülékek fénykezelésekről 2 Összeállította: Makrai Ferenc 1 Azokat a kozmetikai eljárásokat, ahol a kezeléshez felhasznált energiát elektromos áram szolgáltatja,

Részletesebben

10. Lézer Alkalmazási Fórum Bréma Újdonságok a Lézersugaras technológiák területén első rész

10. Lézer Alkalmazási Fórum Bréma Újdonságok a Lézersugaras technológiák területén első rész 10. Lézer Alkalmazási Fórum Bréma Újdonságok a Lézersugaras technológiák területén első rész Halász Gábor MAHEG szakmai ankét 2017.03. 30. Tartalom Mikro-megmunkálások (lézeres lökéshullám alkalmazások,

Részletesebben

Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval

Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval MÛANYAGFAJTÁK 1.3 1.5 3.18 Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval Tárgyszavak: poliészterszövet; poliuretán; ömledékragasztó; ragasztás; felületkezelés; ragasztási szilárdság.

Részletesebben

1. táblázat. Szórt bevonatokhoz használható fémek és kerámiaanyagok jellemzői

1. táblázat. Szórt bevonatokhoz használható fémek és kerámiaanyagok jellemzői 5.3.1. Termikus szórási eljárások általános jellemzése Termikus szóráskor a por, granulátum, pálca vagy huzal formájában adagolt hozag (1 és 2. táblázatok) részleges vagy teljes megolvasztásával és így

Részletesebben

MŰANYAGFAJTÁK ÉS KOMPOZITOK

MŰANYAGFAJTÁK ÉS KOMPOZITOK MŰANYAGFAJTÁK ÉS KOMPOZITOK Új nagy teljesítményű műanyagok megjelenése a piacon Új monomerek és polimerek kidolgozása hosszú és költséges folyamat. Napjainkban a nagy teljesítményű műszaki műanyagok csoportjában

Részletesebben

41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése

41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése készült az UElektronikai gyártás és minıségbiztosításu c. tárgy elıadásainak diáiból 41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése 1.Mik a teljeskörő minıségszabályozás (=TQM)

Részletesebben

Összehasonlító elmozdulásmérés új lehetőségei a koherens optikai méréstechnikában

Összehasonlító elmozdulásmérés új lehetőségei a koherens optikai méréstechnikában Összehasonlító elmozdulásmérés új lehetőségei a koherens optikai méréstechnikában PhD értekezés Készítette: Gombkötő Balázs Témavezető: Dr. Füzessy Zoltán Professor emeritus Konzulens: Kornis János Egyetemi

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Öntözőszivattyúk Öntöző berendezések, szórófejek Öntözési módok árasztó öntözés barázdás

Részletesebben

Félvezető és mágneses polimerek és kompozitok

Félvezető és mágneses polimerek és kompozitok A MÛANYAGOK ALKALMAZÁSA 3.3 Félvezető és mágneses polimerek és kompozitok Tárgyszavak: polimerkeverék; magnetit töltőanyag; poli(ferrocenil-szilán); szintézis; félvezető; mágneses kerámiák; mikrogömb;

Részletesebben

A fröccsöntési zsugorodás és a technológia összefüggése

A fröccsöntési zsugorodás és a technológia összefüggése A MÛANYAGOK ELÕÁLLÍTÁSA ÉS FELDOLGOZÁSA A fröccsöntési zsugorodás és a technológia összefüggése Tárgyszavak: fröccsöntés; fröccsöntési paraméterek; zsugorodás; vetemedés; szálerősített műanyagok; kompozitok.

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyag felületek módosítása különleges bevonatokkal A műanyagok felületét bevonatokkal, fóliázással, adalékolással és technológiai módszerekkel is lehet változtatni a felhasználási

Részletesebben

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Polimerdiszperziókkal módosított habarcsok és betonok Ismert, hogy a cementalapú komponenseknél drágább polimerekkel javítani lehet a betonok és habarcsok számos tulajdonságát, pl.

Részletesebben

2. modul 2. lecke: Oxidkerámiák

2. modul 2. lecke: Oxidkerámiák 2. modul 2. lecke: Oxidkerámiák A lecke célja, az egyes oxidkerámia fajták szerkezetének, tulajdonságainak, alkalmazásainak a megismerése. Rendkívül érdekes általános és speciális alkalmazási területekkel

Részletesebben

Földhasználati tervezés és monitoring 3.

Földhasználati tervezés és monitoring 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Verőné Dr. Wojtaszek Malgorzata Földhasználati tervezés és monitoring 3. FHT3 modul Távérzékelés, mint földhasználati adatforrás SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai optimalizálás céljából

Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai optimalizálás céljából Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar Gyártástudomány és technológia Tanszék DOKTORI TÉZISFÜZET Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai

Részletesebben

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06 The Green Company LUMI-HOD 107-B fólia Javaslatok az alkalmazásokra LUMI-HOD 107-B fólia Az LN egy új osztálya az újonnan kifejlesztett foszforeszkáló (sötétben világító) pigmenteknek, nagymértékben különböznek

Részletesebben

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 61 70. A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN SIGNIFICANCE OF SHAPE SEPARATION

Részletesebben

Ipari robotok megfogó szerkezetei

Ipari robotok megfogó szerkezetei ROBOTTECHNIKA Ipari robotok megfogó szerkezetei 7. előad adás Dr. Pintér József Tananyag vázlatav 1. Effektor fogalma 2. Megfogó szerkezetek csoportosítása 3. Mechanikus megfogó szerkezetek kialakítása

Részletesebben