Newton Az OPTIKA keletkezése és hatása. Zemplén Gábor
|
|
- Léna Dóra Katona
- 6 évvel ezelőtt
- Látták:
Átírás
1 Newton Az OPTIKA keletkezése és hatása Zemplén Gábor
2 Optikai munkák Korai kísérletek Optikai előadások, első cikk, viták 1672 Megfigyelések, Hipotézis Optikai mechanika (Principia I/XIV, Prop.94-6) OPTIKA: Előmunkák (1689 Huygensnek említi) (David Gregory látja 1694) 1703 (Hooke 1703 márciusában hal meg)
3 Optika Optika a tükrözés, fénytörés, fényelhajlás és a színek magyarázata Matematikai szövegekkel kiegészítve Angolul Ki a szerző?
4 Kiadások Optice kérdés (Queries) Opticks kérdés Optika 1721 Optika 1730 szemben a Principiával, itt kevesebb változtatás az évek során. A bővítés lazán szervezett kérdések alapján, pl. Kettős törés 1706-tól csak itt Számos optikától távoli terület említve 18. sz. kémiára nagy hatás
5 Felépítés 1. Definíciók, axiómák (1703 óta nyomai az axiomatizálásnak) Ebben a könyvben nem az a célom, hogy a fény tulajdonságait feltevésekkel magyarázzam meg, hanem hogy ezeket ésszerűen leírjam és kísérletekkel alátámasszam. Def. 1. Fénysugáron a fény legkisebb részét értem, éspedig azt, amelyik egyazon vonalban egymásután, vagy különböző vonalban egyidőben jelentkezik diszkontinuus nem folyamatos / matematikai absztrakció analitikusan felbontható a fény részecske vagy matematikai pont 1676 Roemer a fény sebességét meghatározza
6 Felépítés 2. Def 2-3. Fénysugarak törékenysége, visszaverődési képessége (diszpozíciók) Def. 4-6 Beesési vissz. ver. szög, szinuszok Def 7-8. Azonos törőerejű sugarak: egynemű. Ezek színei egyszerűek
7
8 Felépítés 3. Alaptételek geometriai optika elfogadott törvényei katoptrika visszaverődés beesési visszaverődési szögek egyenlősége dioptrika szinusz-törvény képalkotás a szemben / camera obscura Hipotetiko-deduktív felépítés? NEM idealizált matematikai elmélet majd a következmények összehasonlítása a valósággal Induktív? NEM általánosítások a tapasztalatok alapján, hiszen elméleti előfeltevések beépítve már a legelején
9 Felépítés 4. I. könyv törékenység problémája (1) fehér fény és színek elmélete (2) II. könyv vékony és vastag filmek színjelenségei III. könyv diffrakció rövid vizsgálata és kérdések
10 I. könyv A szinusz-törvény megtartása a kromatikus aberráció ellenére: különböző törékenységek bevezetése Akromatikus lencsék készítésének kizárása (Dollond, 1757) A színek magyarázata polemikus anti-modifikácionista érvek: korábban elfogadott nézetek cáfolása majd pozitív elmélet de feltételezi a végtelen különböző törékenységet és színt (ezt nem támasztja alá a tapasztalat) Mai műszereken keresztül nézve a spektrumot is nehezen látunk színkülönbséget 40 A (lila) és 90 A (vörös) belül kb A a látható tartomány (Raman mérései, de Munsell lapocskák egész jól sorba rakhatók 10 A távolságokkal) könnyen matematizálható színjelenségek vizsgálata (elmélet irányítja a tapasztalatot) Szivárvány magyarázata Színkeverés a színkörrel:
11
12 A szivárvány
13 Newton színköre az Optikából A sávok felosztása a zenei analógiai alapján Színkeverés: egyensúlyozzuk ki a lapot (középen, tűn). A színek keverésekor az arányok szerinti súlyokat helyezzük a kör peremére (színek közepére ), majd újra egyensúlyozzuk ki Kapunk a fehér (O) és egy adott szín között egy pontot komplementer színek nincsenek érvényes testek színeire is?
14 A testek színei Newton szerint a természetes testek azért színesek, mert eltérő módon és mértékben verik vissza az egyik fajta fényt mint a másikat. Ily módon bármely test bármilyen színűvé tehető. A testeknek ugyanis nincs saját színük, hanem mindig olyan színűnek látszanak, amilyen színű fénnyel megvilágítjuk őket; hogy pedig ez a valódi és teljes oka a testek színességének, az nyilvánvaló abból, hogy a testek nem képesek megváltoztatni vagy módosítani a rájuk eső különböző fajta sugarak színét, hanem mindig olyan színt öltenek, amilyenekkel megvilágítjuk őket
15 Problémák a newtoni modellel Ha a testek nem változtatják meg a rájuk eső fényt, csak a különböző törésmutatójú sugarakat különböző mértékben nyelik el, akkor homogén (vagyis azonos törésmutatójú) fénnyel megvilágítva, a tárgyak színükben nem, csak sötétségükben, vagyis az adott fény elnyelési képességét illetően fognak különbözni. az objektivista paradigma szerint. A Helson-Judd jelenség azonban pontosan ezt a triviálisnak tűnő feltételezést cáfolja meg. Homogén, vagyis spektrálisan tiszta vörös fényben egy szürke papírlap fehér háttér előtt kékeszöldnek, szürke háttérnél színtelennek, fekete háttérnél vörösnek tűnik. Másrészről megfigyelhető a színkonstancia jelensége, vagyis az az egyszerű tény, hogy egy fehér papírlapot fehérnek látunk különböző fényviszonyok között is, pedig a visszaverődő fény nyilvánvalóan más és más a látott színek gyakran azonos körülmények között sem, máskor viszont különböző körülmények között is azonosak.
16 II. Könyv (1-2) Vékony filmek színei (hullám-interferencia) Newton levelében elemzi és számításokat végez Kísérleti meghatározás és mérhetővé tétel Hooke lehetetlennek tartotta Magyarázati modell folyamatosan változik Rövid összefoglaló
17 Első leírás: Robert Hooke, 1665, Micrographia Hooke színei: Blew, Purple, Scarlet, Yellow, Green; Blew, Purple, Purple, Scarlet and so onwards (Micrographia p. 48) Newton először átveszi ezt a színsort, (Shapiro 1993: 56), de később: Kék, fehér, sárga, vörös, majd the next Circuit in order of Colours immediately encompassing these were violet, blue, green, yellow, and red. The third Circuit or order was purple, blue, green, yellow, and red; in which the purple seemed more reddish and the green was much more conspicuous the red began to be faded, inclining very much to the purple. The fourth Circuit contained a lively green, (inclining on the one side to blue, on the other to yellow) and red. (Bk II./I. Obs. 4) Magyarázatok: 1672 Of ye coloured circles twixt two contiguous glasses 1675 Hypothesis (Brief an der Royal Society) Opticks (1704- ) Observations concerning the Reflexions, Refractions, and Colours of thin transparent Bodies.
18
19 A jelenségek idealizálása mérhető görbületi sugarú lencsékből számolva planokonvex und bikonvex lencsék a sárga fény kvantifikálása számtani sor harmóniatan színek sokféle keverése ilyenek a testek színei? megfigyelési szög nagyon számít. A lencsén mért távolságból periódus számítható Monokromatikus fény sávjai sűrűsödnek A spektrumok egyre jobban átfednek a szín számításához nomogram-ot készít Newton
20 Monokromatikus fényben
21
22 A színek mind áteső fényben, mind fölülről nézhetők. A teljes érintkezés pontján átlátszóvá válik a két üveg (ránézetben fekete ) Ahol nem érintkeznek, ott vékony levegőfilm A levegőfilm vastagsága számítható a görbületi sugárból Black, Blue, White, Yellow, Red, Violet, Blew, Green, Yellow, Red, Purple, Blew, Green, Yellow, Red, Green, Red, Greenish Blew, Red, Greenish Red, Pale Red
23
24 az anyag nem, csak a vastagság számít zenei analógia ismét megjelenik szó, lá, fá, szó, lá, mi, fá, szó mint a következő számok négyzeteinek köbgyökei: 1 8/9, 5/6, ¾, 2/3, 3/5, 9/16, ½) ezen arányok alapján nomográf x tengelye Ezekre a határokra merőlegesek állítása, majd beszámozás, majd a 0 ponttól egyenesek húzása
25 A nomográf A2 a levegőréteg vastagsága ott, ahol a legintenzívebb a legtávolabbi lila szín az első sorozatban, A6 a másodikban, stb. A1-3 a színsáv vastagsága A sávok arányai: 1, 3, 5, 7 számtani sor egy adott távolságnál (vízszintes vonal) megadható a szín Első sorozat G-je 1/ hüvelyk
26 Számítások d = (D 2 /8R) d levegőréteg vastagsága D a gyűrű átmérője R planokonvex lencse sugara d = mi/2n (empirikusan meghatározott) I intervallum (m páratlan - világos, m páros sötét) n a film refrakciós indexe 2nd cos r = (m+1/2 l)
27 II. Könyv (3-4) Testek és a filmek színei közötti kapcsolat. A fény nem vibráció de vibrációkat kelt a pórusok közti térben levő anyag (éter?) vibrál Fény hogyan verődik vissza? könnyű és nehéz áthaladási régiók igen problémás, folyamatosan át- és átalakított elmélet
28 III. Könyv diffrakció vizsgálata (Newton inflexiónak nevezi) diffrakció felbomlást sugall mint modifikácionista színelméletek inflexio elhajlás hatóerő: rövid távon ható erő, amely kitéri a fényt útjából 1/280 hüvelyk vastag hajszál vizsgálata, 12 lábnyira réstől. Fal 10 cm-re: 1/28 hüvelyknyi árnyék
29 Hajszál és fényelhajlás
30 Ismét új magyarázati forma: jelenség és magyarázat együttes bemutatása két kés egymás mellett a köztük áthaladó fény által vetett árnyék
31 Az alsó késről felfelé vetül a fény, a felsőről lefelé Miért nem egyenlítik ki egymást az erők? (C körül miért van sötét folt) Newton okosan nem specifikálja az erőt A legkevésbé törékeny fény hajlítható leginkább és fordítva
32 Kérdések - Queries sok kémiai felvetés új területek összekapcsolása fiziológia, alkímia, éterhipotézis kettős törés nincsen-e különböző oldala a fénysugaraknak, amelyek számos eredeti tulajdonságot tartalmaznak? retorikai kérdések
33 A természetfilozófia fő feladata, hogy a jelenségekből induljon ki hipotézisek gyártása nélkül és dedukcióval megtalálja a hatások okait, míg el nem jutunk az első okhoz, amely bizonyára nem mechanikai; és az ilyen kérdések megválaszolása [a feladata] és nem az, hogy a világ működését [mechanism] feltárja. Miért, hogy a természet nem végez felesleges munkát; és miért a világban látható rend és szépség? Mi végre vannak az üstökösök Hogy lehet, hogy az állatok teste ily nagy művészettel lett előállítva és mi végre vannak különböző részeik? (Newton 1952: 369)
34 Az Optika fogadtatása langyos angliai fogadtatás Edmé Mariotte (bencés) kísérletei széles körben ismertek (Lucashoz hasonlóan) a spektrum ibolya sugarainak további vizsgálatával vörös és sárga sugarakat talált. Sokan elfogadják a kísérleteket: pl. Nicolas Malebranche de azokat saját hullámelméletükkel magyarázhatónak tartották Leibniz 1709-ben kijelenti: hogy az Académie Royale-ban elvégzett kísérletek ez ügyben igen nagy jelentőségűek lennének Azon a véleményen vagyok, hogy ha e színkísérleteket elvégeznék, sok olyan pontot találnának, amelyeket sem Newton sem Mariotte nem fedezett fel. Aki ezt a munkát elvégzi, nem dicstelen feladatot vállal magára. (Hall 1993: 204)
35 A kísérletek reprodukálása 1714 nyarán az angol Királyi Társaság tagjai (nem meglepő módon) meggyőzőnek találták John Theophilus Desaguliers bemutatóját ez a kísérleti bemutató nem az eredeti newtoni kísérleti beszámolót igazolta, hanem megváltoztatott kísérleti beállításokat alkalmazva a kísérlet konklúzióját támasztotta alá. A következő évben egy Franciaországban nem látható napfogyatkozás miatt Londonba utazó francia tudóscsoport egyértelműnek találták a megismételt kísérlet eredményeit. Ezt követően francia majd itáliai területeken is általános elfogadást nyertek Newton optikai kísérletei. A prizmából, a bolondok Paradicsomából megbízható és reprodukálható kísérleti eszköz lett (Schaffer 1989).
36 Egy új paradigma a 18. század egyik legfontosabb tudományos művévé vált Newton optikai munkája, számos költő verselte meg a diszperzió során megjelenő színeket (Nicolson 1963) Georg Christoph Lichtenberg, göttingai tudós, aki a paradigma kifejezést először használta mai, tudománytörténetben is alkalmazott értelmében, Newton optikai írásait említette példaként: Nem látom be ugyanis, hogy miért ne vehetnénk Newton optikáját mintául egy fémkalcinációs elmélet számára. egy fizikából kiválasztott paradigma segédletével az ember eljuthatna a kanti filozófiához (Békés 1997:23-24)
Optikai munkák. Newton. 1. Az Új elmélet,
Optikai munkák Newton Az 1672-es levél, az első optikai viták és az OPTIKA Zemplén Gábor Korai kísérletek 1664-66 Optikai előadások, első cikk, viták 1672 Megfigyelések, Hipotézis Optikai mechanika (Principia
Newton. Az 1672-es levél, az első optikai viták és az OPTIKA. Zemplén Gábor
Newton Az 1672-es levél, az első optikai viták és az OPTIKA Zemplén Gábor Optikai munkák Korai kísérletek 1664-66 Optikai előadások, első cikk, viták 1672 Megfigyelések, Hipotézis Optikai mechanika (Principia
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
A színek fizikája szakdolgozat
A színek fizikája szakdolgozat Készítette: Csépány Tamara fizika szakos hallgató Témavezető: Dr. Martinás Katalin ELTE, TTK Atomfizikai Tanszék Budapest, 2009 A szakdolgozat célja Szakdolgozatom célja
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú
Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István
OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
MateFIZIKA: Szélsőértékelvek a fizikában
MateFIZIKA: Szélsőértékelvek a fizikában Tasnádi Tamás 1 2015. április 10.,17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Energiaminimum-elv a mechanikában (ápr. 10.) Okos szappanhártyák (ápr. 10.) Legrövidebb
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése
A fény melyik tulajdonságával magyarázható, hogy a vizes aszfalton elterülő olajfolt széleit olyan színesnek látjuk, mint a szivárványt? C1:: differencia interferencia refrakció desztilláció Milyen fényjelenségen
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
d) A gömbtükör csak domború tükröző felület lehet.
Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
GEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
Fényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
Színek 2013.10.20. 1
Színek 2013.10.20. 1 Képek osztályozása Álló vagy mozgó (animált) kép Fekete-fehér vagy színes kép 2013.10.20. 2 A színes kép Az emberi szem kb. 380-760 nm hullámhosszúságú fénytartományra érzékeny. (Ez
A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
A digitális képfeldolgozás alapjai
A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
Digitális tananyag a fizika tanításához
Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai
A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
A színérzetünk három összetevőre bontható:
Színelméleti alapok Fény A fény nem más, mint egy elektromágneses sugárzás. Ennek a sugárzásnak egy meghatározott spektrumát képes a szemünk érzékelni, ezt nevezzük látható fénynek. Ez az intervallum személyenként
A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum:
I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE A NAPFÉNY ÉS A HŐ 1. A meleg éghajlatú tengerparti országokban való kirándulásaitok során bizonyára láttatok a házak udvarán fekete tartályokat kifolyónyílással
Az elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
OPTIKA. Vékony lencsék képalkotása. Dr. Seres István
OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató
B8. A CIE 1931 SZÍNINGER-MÉRŐ RENDSZER ISMERTETÉSE;
B8. A CIE 1931 SZÍNINGER-MÉRŐ RENDSZER ISMERTETÉSE; A CIE DIAGRAM, A SZÍNEK ÁBRÁZOLÁSA A DIAGRAMBAN;A NYOMTATÁSBAN REPRODUKÁLHATÓ SZÍNTARTOMÁNY SZÍNRENDSZEREK A színrendszerek kialakításának célja: a színek
1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet
A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
100 kérdés Optikából (a vizsgára való felkészülés segítésére)
1 100 kérdés Optikából (a vizsgára való felkészülés segítésére) _ 1. Ismertesse a Rayleigh kritériumot? 2. Ismertesse egy objektív felbontóképességének definícióját? 3. Hogyan kell egy CCD detektort és
A LÁTÁS BIOFIZIKÁJA AZ EMBERI SZEM GEOMETRIAI OPTIKÁJA. A szem törőközegei. D szem = 63 dioptria, D kornea = 40, D lencse = 15+
A LÁTÁS BIOFIZIKÁJA A SZÍNLÁTÁS ELMÉLETE ELEKTRORETINOGRAM Két kérdés: Sötétben minden tehén fekete Lehet-e teniszt játszani sötétben kivilágított hálóval, vonalakkal, ütőkkel és labdával? A szem törőközegei
- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)
OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve
FÉNYKÉPEZŐGÉPEK. Készítette: Musza Alexandra Anyagtudomány MSc
FÉNYKÉPEZŐGÉPEK Készítette: Musza Alexandra Anyagtudomány MSc A fotográfia vagy fényképészet a fény által közvetített képi információk rögzítése technikai eszközök (fényképezőgép, fényérzékeny anyag stb.)
c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v
Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 1 FIZ1 modul Optika feladatgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
NE HABOZZ! KÍSÉRLETEZZ!
NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10
Ugrásszerűen változó törésmutató, optikai szálak
9. Előadás Ugrásszerűen változó törésmutató, optikai szálak Ugrásszerűen változó törésmutatójú közeget két, vagy több objektum szoros egymáshoz illesztésével és azokhoz különböző anyag vagy törésmutató
ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek
ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.
24. Fénytörés. Alapfeladatok
24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza
Bevezetés Első eredmények Huygens és Newton A fény hullámelmélete Folytatás. Az optika története. SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet Az optika története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 A görög tudomány eredményei Pithagorasz: a szemből kiinduló letapogató nyaláb okozza a látásérzetet Euklidesz: tükrözés
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
f r homorú tükör gyűjtőlencse O F C F f
0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp
A tanulók gyűjtsenek saját tapasztalatot az adott szenzorral mérhető tartomány határairól.
A távolságszenzorral kapcsolatos kísérlet, megfigyelés és mérések célkitűzése: A diákok ismerjék meg az ultrahangos távolságérzékelő használatát. Szerezzenek jártasságot a kezelőszoftver használatában,
XVIII. A FÉNY INTERFERENCIÁJA
XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,
A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban.
A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. Orvosi fizika és statisztika Varjú Katalin 202. október 5. Vizsgára készüléshez ajánlott: Damjanovich Fidy Szöllősi: Orvosi biofizika
Színharmóniák és színkontrasztok
Színharmóniák és színkontrasztok Bizonyos színösszeállításokat harmonikusnak, másokat össze nem illőnek érzünk. A kontrasztjelenségekkel már Goethe (1810) és Hoelzel (1910) is foglalkozott. Végül Hoelzel
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Newton. Az 1672-es levél, az első optikai viták és az OPTIKA előmunkálatai. Zemplén Gábor
Newton Az 1672-es levél, az első optikai viták és az OPTIKA előmunkálatai Zemplén Gábor 1. Az Új elmélet, 1672 tükrös távcső első publikáció Oldenburg: a plágiumot megakadályozandó kéri a beszámolót Newton:
A SZÍNEKRŐL III. RÉSZ A CIE színrendszer
A SZÍNEKRŐL III. RÉSZ A CIE színrendszer Dr Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2011 A CIE színinger mérő rendszer (1931) Commission Internationale
Optika az orvoslásban
Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Hajdu Tamás & Sztakovics János & Perger Krisztina Bőgner Rebeka & Császár Anna 2018. március 8. 1. Távcsőtípusok 3 fő típust különböztetünk
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
SZÍNES KÉPEK FELDOLGOZÁSA
SZÍNES KÉPEK FELDOLGOZÁSA Színes képek feldolgozása Az emberi szem többezer színt képes megkülönböztetni, de csupán 20-30 különböző szürkeárnyalatot A színes kép feldolgozása két csoportba sorolható -
Pantone szín táblázat.
Pantone szín táblázat. Ez egy referencia táblázat. A színek a különbözı számítógépen másként jelenek meg! Függ a grafikus kártyától, a monitortól és az operációs rendszertıl és annak beállításától, így
2.7.2.A hét színkontraszt
2.7.2.A hét színkontraszt Kontrasztról akkor beszélünk, ha két összehasonlítandó színhatás között szembeszökő különbségek, vagy intervallumok állapíthatók meg. Érzékszerveink, csak összehasonlítás útján
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával rádióhullám infravörös látható ultraibolya röntgen gamma sugárzás
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Természettudomány középszint 1012 ÉRETTSÉGI VIZSGA 2010. október 26. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. Enzimek, katalizátorok
Nagyon vázlatos életrajz. Newton korai írásai. Az óra szerkezete. 1. Newton korai érdeklődése összefoglaló. Gyakran a filozófiából is mechanika
Nagyon vázlatos életrajz Newton korai írásai És az első optikai munkák Zemplén Gábor 1642, Karácsony, Woolsthorpe majorság, zaklatott gyermekévek, patikusgyakornok, mechanika iránti érdeklődés 1661, Trinity
Newton korai írásai. És az első optikai munkák. Zemplén Gábor
Newton korai írásai És az első optikai munkák Zemplén Gábor Nagyon vázlatos életrajz 1642, Karácsony, Woolsthorpe majorság, zaklatott gyermekévek, patikusgyakornok, mechanika iránti érdeklődés 1661, Trinity
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe)
A kísérlet célkitűzései: Az optikai tanulói készlet segítségével tanulmányozható az egyszerű optikai eszközök felépítése, képalkotása. Eszközszükséglet: Optika I. tanulói készlet Balesetvédelmi figyelmeztetés
Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.
37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban
OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István
OPTIKA Színek, szem működése Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu Színrendszerek: Additív színrendszer Seres István 3 http://fft.szie.hu
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés
újabb eredmények a levegő-hang~éter-fény analógia továbbfejlesztése Euler: Nova theoria lucis et colorum (1746) a hullámhossz - szín megfeleltetés Euler: maximális = vörös, minimális = ibolya (1752) a
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben