A távérzékelés mint elsődleges információszerzési lehetőség

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A távérzékelés mint elsődleges információszerzési lehetőség"

Átírás

1 Végh Gábor mérnök százados A távérzékelés mint elsődleges információszerzési lehetőség 1. Távérzékelés fogalma, jellemzői, fizikai alapjai 1.1 A távérzékelés fogalma Azok a vizsgálati módszerek tartoznak a távérzékelés gyűjtőfogalmába, melyekkel a közelünkben vagy tágabb környezetünkben található tárgyakról vagy jelenségekről gyűjtünk adatokat, úgy hogy az adatgyűjtő berendezés (szenzor) nincs közvetlen kapcsolatban a vizsgált tárggyal vagy jelenséggel. A fényképezés egy tipikusan távérzékelési adatgyűjtési forma. A távérzékelést szót először azonban a földfelszínt pásztázó vagy fényképező műholdakra szerelt berendezések üzembeállítása kapcsán kezdték használni, és csak ezután terjesztették ki az adat-felvételezési technikákra is. Meg kell jegyezni azonban, hogy a távérzékelés fogalmába nem csak az adatok gyűjtését lehetővé tevő szenzorok, az adatok gyűjtésének folyamata, hanem a kapott adatok feldolgozása is beletartozik. A különböző hordozóeszközökön (melyek lehetnek pld.:repülőgép, helikopter, sárkányrepülő, műhold stb.) elhelyezett szenzorok úgy gyűjtenek adatokat, hogy a földfelszín tárgyai által különböző hullámhosszon visszavert vagy kisugározott elektromágneses energiát rögzítik. Az így rögzített adatok a feldolgozás után információval szolgál(hat)nak a vizsgált felszínrészről. A rögzített elektromágneses sugárzás feldolgozásában alapvető szerepe van a felszínről rendelkezésre álló tudásunknak. Az ún. referencia adatok alkalmazása elengedhetetlen feltétele a rögzített adatok elemzésének. A referencia adatok gyűjtése a kiértékelés alapvető mozzanata. Az adatok értelmezését nem csak a referált területekre, hanem a teljes adatmezőre lehetővé teszi. A kiértékelés lehet vizsgálódás-szerű, minőségi és mennyiségi elemzés, továbbá érintheti a távérzékelt adatok bizonyos részeit vagy az egészet.

2 A távérzékelésnek rendkívüli jelentősége van a természeti erőforrások térképezésénél, állapotának felmérésénél, állapotváltozásainak nyomon követésénél (monitoring). A távérzékelés előnyeit a következő pontokban foglalhatjuk össze: Olcsó és automatizálható adatnyerés A jelenlegi műholdfelvételek km2 területről nyújtanak információt. Az űrfelvételek rendkívül kedvező, kb. 1 Ft/ha fajlagos költségen beszerezhetők. A légifényképezés is néhány száz Ft/ha-os áron megrendelhető. A felvételek elkészítése jóval kevesebb munkaerőt igényel, mint amennyi a hagyományos terepi felmérésekhez szükséges. Gyors, naprakész adatgyűjtés Az adatgyűjtés űrfelvételek esetében néhány másodperc, de légifényképezésnél is néhány óra alatt kivitelezhető. A felvételek néhány óra, illetve nap elteltével a felhasználónál lehetnek. Jó térbeli, időbeli mintavételezés A távérzékelés egy sűrű szabályos rácshálózatban történő mérésként fogható fel, a térben pontszerű, mintavételezéseken alapuló eljárásokkal szemben ez rendkívül jó térbeli lefedést nyújt. A távérzékelés, mint olcsó és automatizálható adatnyerés, az időbeli visszatérést is megfelelő módon tudja biztosítani. Nagy területről kapunk homogén adatrendszert A távérzékelő szenzor gyorsan, pillanatszerűen készít felvételeket nagy kiterjedésű területekről. A felvételen megfigyelt földfelszín közel azonos állapotban rögzítődik. A terepi mérések időben hosszasan elhúzódhatnak és emiatt általában nagy szórással jellemezhetők. A földfigyelő műholdak kvázipoláris napszinkron műholdpályán keringenek, visszatérési idejük nap és helyi idő szerint ugyanakkor készítik a felvételeket. A digitális felvételek számítógéppel feldolgozhatók A számítástechnika lehetővé teszi a digitális felvételek objektív, hatékony feldolgozását. A digitális képeket és a kiértékelés eredményeit közvetlenül integ- 2

3 rálhatjuk egy geoinformációs rendszerbe. A számítógépes feldolgozás adja meg távérzékelés hatékony gyakorlati alkalmazhatóságának lehetőségét. A távérzékelés hátrányaként a kiértékelésben rejlő nehézségeket kell megemlítenünk. A távérzékelt felvételeken a tematikus tartalom meghatározása jelentős szakértelmet és speciális képfeldolgozási rendszerek alkalmazását igényli. A tematikus tartalom meghatározásának pontossága, megbízhatósága rendkívül sok tényezőtől függ. 1.2 Az elektromágneses sugárzás alapvető fizikai törvényei Az elektromágneses sugárzás forrása természetesen leggyakrabban a Nap. A földfelszín távérzékeléssel történő vizsgálatában a Napból eredő és a felszín által visszavert sugárzást mérik. Ugyancsak fontos adat a felszín által kibocsátott hőmérsékleti sugárzás. A Napból jövő és a felszín által visszavert vagy saját kibocsátott sugárzás mérése esetén passzív távérzékelésről beszélünk. Mivel a légkör az elektromágneses spektrumnak csak meghatározott hullámhossz értékű részét engedi át, ennek megfelelően távérzékelésre csak az ún. légköri ablakok használhatók. Aktív távérzékelési rendszerekről beszélhetünk, ha az elektromágneses sugárzás forrása és az érzékelők egyaránt repülőgépen vagy műholdon vannak elhelyezve. A távérzékelésben használható légköri ablakok a következők: -Látható fény tartománya -Infravörös tartomány (közeli-, középső- és távoli infravörös) -Mikrohullámú tartomány Természetesen a légkör hat az elektromágneses sugárzásra A légköri ablakok ugyan alkalmasak az áthaladó elektromágneses sugárzás mérésére, de a légkör zavaró hatása a légköri ablakokon belül is igen jelentős. Két jelenség figyelhető meg: az elektromágneses hullámok részben szóródnak, részben elnyelődnek (abszorpció). Az atmoszférikus szóródást az atmoszférában található részecskék okozzák. A szóródásnak különböző fajtáit ismerjük attól függően, hogy a részecskék átmérője hogyan aránylik a vele kölcsönhatásba lépő sugárzás hullámhosszával. Rayleigh-szóródásnak hívjuk a szóródást, ha a légkörben lebegő részecskék (molekulák, szilárd részecskék) átmérője lényegesen kisebb, mint a sugárzás hullámhossza. Ez a típusú sugárzás okoz- 3

4 za a műholdképek homályosságát, ami a kép élességének csökkenésében, a kontraszt romlásában nyilvánul meg. A Mie-szóródás akkor lép fel, ha a lebegő részecskék átmérője azonos a sugárzás hullámhosszával. A Mie-szóródást elsősorban a vízgőz és a porrészecskék okozzák. A harmadik típusú szóródás akkor jön létre, ha a részecske átmérője sokkal nagyobb (pl. vízcseppek), mint a sugárzás hullámhossza. Ezt a típusú szóródást nem-szelektív szóródásnak nevezzük. Az abszorpció következtében az elektromágneses hullám energiáját elnyelik az abszorbeáló molekulák (elsősorban a vízgőz-, a széndioxid- és ózonmolekulák). A légkört alkotó egyes molekulák jellegzetes abszorpciós hullámhosszokkal rendelkeznek, ezeken a hullámhosszokon távérzékelést nem lehet végezni. A mikrohullámú tartományokban az abszorpció alacsony szintje következtében a távérzékelés alkalmazását a légköri viszonyok nem zavarják. Ráadásul az elektromágneses hullám a földfelszínt elérve kölcsönhatásba lép vele, melynek következtében az energia részben elnyelődik, részben visszaverődik (reflexió), vagy átlátszó közegen (pl. víz) áthalad. A visszaverődésnek két szélsőséges típusát különböztetjük meg: a tükrös reflexiót és a diffúz reflexiót. A tükrös reflexió esetében a beeső és a visszaverődő hullám haladási iránya azonos szöget zár be a beesési merőlegessel. A diffúz reflexió esetén a felszín egyenetlenségei a beeső energiát minden irányban egyenletesen verik vissza. A visszavert, az elnyelt és az áthaladó energia aránya a felszín anyagának típusától és állapotától függ. Általában elmondható, hogy a különböző tárgyak, felszíni formák másképpen reflektálnak a különböző hullámhossztartományokban. Ezen alapszik a távérzékelésben széles körben alkalmazott multispektrális adat-felvételezés, amely éppen a különböző felszínrészek különböző spektrális tulajdonságait használja fel információ gyűjtésére az adott tárgyról. A spektrális tulajdonságok szemléltetésére szolgál a spektrális visszaverődési görbe (1.sz. ábra). Spektrális visszaverődési görbének (spektrális reflektanciagörbének) nevezzük a tárgynak vagy a felszínrésznek a hullámhossz függvényében kifejtett spektrális visszaverődési értékeit ábrázoló grafikont. A spektrális visszaverődési görbe 4

5 egyrészt a tárgy vagy a felszínrész spektrális tulajdonságairól tájékoztat, másrészt meghatározza azokat a hullámhossz-tartományokat, melyekben a tárgy vagy a felszínrész távérzékelési módszerrel vizsgálható. Megemlíthető még az emittált sugárzás, amely a távoli infravörös és a passzív mikrohullámú tartományokban az objektumok által kibocsátott (saját) elektromágneses sugárzás az információhordozó. A térképészeti alkalmazásokban nincs különösebb jelentősége. 1. ábra 2. Távérzékelő rendszerek A távérzékelő rendszerek hordozói általában repülőgépek és műholdak. A felvevők lehetnek fényképező és digitális pásztázó eszközök. A fényképező rendszerek a m m-es hullámhossz tartományt használják a felvételek készítésére. A felvételeket fényérzékeny többrétegű filmre rögzítik. A többsávos, multispektrális fényképező rendszerekben több precízen összeépített, szűk áteresztőképességű szűrővel szerelt kamera szinkronban készíti a felvételeket. A fényképező rendszerekhez lehet sorolni a 5

6 TV-kamerás rendszereket. A felvételek felbontása rosszabb, de a gyors és olcsó információszerzés miatt kitűnő eszköz az agrár szférában és a környezetvédelemben. A többsávos digitális pásztázók (multispectral scanner) eleinte repülőgépen, majd műholdakra szerelve a 60-as évektől léteznek. A pásztázók a földfelszínnek, a repülésre merőleges sávjáról a detektorokba érkező elektromágneses sugárzás intenzitás értékeit rögzítik a különböző hullámhossz tartományokban. A régebbi pásztázóknál egy forgó tükör biztosította a vizsgált földfelszíni egységről beérkező sugarak továbbítását (Landsat). Újabban egy detektorsor végzi el ugyanezt. Ezekkel az eszközökkel sikerült csökkenteni az elemi pixel terepi méretét (SPOT, CCD kamerák). A SPOT műholdak és repülőgépre szerelt CCD rendszerek képesek az oldalra/hátra tekintésre, ezzel térbeli (sztereo) kiértékelésre alkalmas felvételeket tudnak előállítani. A letapogatás eredménye a sávok számával megegyező digitális raszterkép. A digitálisan rögzített képet adatvesztés nélkül lehet tárolni, illetve a földi figyelőállomásra továbbítani. A 2. számú ábra a SPOT műhold felvételezési üzemmódjait mutatja: A SPOT felvételezési üzemmódjai 2. ábra 6

7 A SPOT pánkromatikus felvételeken már az apróbb részletek is felismerhetők (3.ábra): Pánkromatikus felvétel 3. ábra A többsávos pásztázók jellemzése a következő táblázat alapján történik: Jellemző Landsat Landsat TM Noaa/Avhrr SPOT P SPOT XS MSS Terepi felbontás 80 m 0.5 ha 30 m 0.1 ha 1100 m 120 ha 10 m 0.01 ha 20 m 0.04 ha Spektrális felbontás 4 sáv 7 sáv 5 sáv 1 sáv 3 sáv Radiometriai felbontás érték érték érték érték érték Időbeli felbontás 18 nap 6 nap 1 nap (13) 26 nap (13) 26 nap Felvett terület szélessége 185 km 185 km 2700 km km km Pálya-magasság 700 km 900 km 1450 km 830 km 830 km További jellemzők lehetnek a spektrális sávok hullámhossz-tartományai, a felvételek geometriai jósága, a rögzített adatokhoz való hozzáférési idő, a felvételek fajlagos költségei, illetve a felhasználó számára szükséges információ költségének és az információ által megszerzett bevétel aránya. 7

8 Többcsatornás műholdas vagy légi spektrométerek a m m-es tartományt egyforma széles csatornára bontják és ezzel egy majdnem folytonos spektrumot alkotnak a felszínről. Ilyen rendszerek az AIS, AVIRIS és a NASA EOS, MODIS felvevők. A MODIS eszköz m m hullámhossz intervallumban pásztáz 250, 500, illetve 1000 méteres terepi felbontással 36 sávban, sávonként 4096 intenzitás értéket elkülönítve. A mikrohullámú felvevők az 1 mm - 1 m hullámhossz-tartományt hasznosítják. A mikrohullámú távérzékelés alapvető jellemzői a következők: a mikrohullám áthatol a légköri párán és a felhőzeten, ezáltal időjárásfüggetlen a mikrohullám nagyon érzékeny a felszíni objektumok térbeli struktúrájára a víz jelenlétét nagy dinamikával érzékeli hullámhossztól függően be tud hatolni részben a földfelszín alá is a hullám amplitúdóján kívül annak fáziskésése és polarizációja is fontos (polarizáció alapján megkülönböztetünk HH,HV,VH és VV felvételeket) durvább felszín és magasabb víztartalom esetén növekszik a hullámok visszaverése. A 4. Ábrán lévő két radarfelvétel ugyanazt a területet mutatja eső előtt és után: 4. ábra Radarfelvétel eső előtt és után A Landsat rendszer 1972 júliusában Earth Resources Technology Satellite (ERTS) néven állították pályára az első erőforrás-kutató műholdat a sorozatból a NASA (National Aeronautics and Space Administration) irányításával, de csak később, 1975-ben kapta a Landsat nevet. 8

9 Az első műhold működését egyéves időtartamra tervezték, végül hat évig üzemelt kifogástalanul. Az első Landsat műhold 1972-es fellövése óta még további ötöt állítottak pályára. Az első három (első generáció) két szenzorral működött: RBV (Return Beam Vidicon) és MSS (Multispectral Scanner). A második generációs Landsat műholdak a Landsat es fellövésétől kezdődően [Salomonson, 1984] az MSS mellett fedélzetükön ott volt a Thematic Mapper-t (TM) októberében a Landsat-6 pályára állítása kudarcba fulladt, fedélzetén a Landsat-7 műholdra tervezett Enhanced Thematic Mapper (ETM+) berendezéshez hasonló ETM volt ben pályára állították a Landsat-7 műholdat fedélzetén az Enhanced Thematic Mapper (ETM+), valamint egy új nagyfelbontású pásztázó működik. A Landsat műholdakon elhelyezett szenzorok pásztázási szélessége: 185 km. A Thematic Mapper (= TM) kipróbálása a Landsat 4 fedélzetén történt. A Landsat 5 fedélzetén az előzővel azonos szenzort helyeztek el. A Landsat 7 a multispektrális sávok mellett egy pankromatikus sávban is készít felvételeket. A Landsat 7 nyolc spektrális sávban vevő-berendezés, melyekből 7 reflexiós. Az 5. ábrán egy természetes színben készült Landsat TM felvétel látható. Landsat TM felvétel 5. ábra 9

10 A SPOT rendszer A francia űrprogram keretében 1986 óta működik a SPOT-műhold (Satellite Pour l Observation de la Terre) sorozat. A műholdat a CNES (Centre National d Etudes Spatiales) tervezte, svéd és belga segítséggel fejlesztették ki. A pásztázási szélesség: 60 km. Jelenleg a SPOT 2 és a SPOT 4 műhold üzemel, a két műhold együttesen a 40 szélességtől É-ra bármely területre naponta készíthet képeket. A SPOT műhold-felvételezés növekvő igényeinek megfelelően a SPOT 1-et a közeljövőben.ismét működésbe fogják hozni A SPOT 1, 2, 3 műholdakon két nagyfelbontású adatrögzítő (High Resolution Vidicon) működik, együtt és egymástól függetlenül is rögzítenek adatokat. Mindkét HRV bemeneti tükre földi irányítással a függőleges iránytól 27 -kal elmozdítható, ezzel megnövelik az egy pályáról készíthető képek számát, ill. ez a technikai megoldás lehetőséget biztosít sztereo képek készítésére. Mindkét HRV párhuzamosan vagy egymástól függetlenül üzemeltethető pankromatikus és multispektrális módban egyaránt. A SPOT 4-nél az előző három műholdon alkalmazott képalkotó berendezéseket egy középső infravörös sávval egészítették ki (1,58-1,75 mm), a berendezés neve HRVIRre változott. A két HRVIR egymástól függetlenül programozható. További újdonság a spektrális sávok fedélzeti illesztése (registration). Ezt a korábbi PAN (0,51-0,73 mm) sáv helyett az új B2 (0,61-0,68 mm) sáv alkalmazásával érik el, ugyanis ebben a sávban 10 és 20 m-es felbontású adatrögzítés is lehetséges. A SPOT 4 még egy képalkotó berendezést üzemeltet: ez a VEGETATION, amely 2000 km széles sávban 1 km-es terepi felbontással készít képeket 4 spektrális sávot használva. 10

11 A SPOT képek rendkívül jó földi felbontást nyújtanak: pankromatikus módban:10x10 m, multispektrális módban pedig 20x20 m. Pankromatikus módban a műhold felvevő berendezése az elektromágneses spektrum látható tartományának egyetlen sávjában működik, tehát fekete-fehér képeket készít. A SPOT1, SPOT2 és SPOT3 műholdakon a pankromatikus csatorna, az alábbi táblázat szerinti 0,51-0,73 mm között üzemel. A SPOT4 esetében ez a tartomány 0,61-0,68 mm-re szűkül. Természetes színű SPOT 5 felvétel 6. ábra A topográfiai térképezés szempontjából fontos a 2002-ben pályára állított SPOT 5 műholdon elhelyezett HRG (High Resolution Geometry) szenzor adatainak ismertetése. HRG High Resolution Geometry. Az új berendezés főbb jellemzői: terepi felszíni felbontás 5 és 3 méteres (a jelenlegi 10 méter helyett) a pankromatikus üzemmódban; terepi felbontás a multispektrális üzemmódban is 10 m (a jelenlegi 20 m helyett), mind a három sávban, a látható és a közeli infravörös tartományban; közülük a középső infravörös (vegetációs szempontból létfontosságú) sáv továbbra is 20 m-es felbontású marad; 11

12 a fenti terepi felbontások biztosítása esetén a sztereo kiértékelés síkrajzi hibája 10 m, a magassági hiba 5 m lesz, ami az 1: es méretarányú térképek pontosságának felel meg. A 6. ábrán egy természetes színben készült SPOT 5 felvétel látható. Nagyfelbontású űrfelvételeket szolgáltató rendszerek Az erőforrás-kutató műholdak (geometriai felbontásuk m körüli) kifejlesztése és üzemeltetése állami beruházásokból valósult meg, a műholdak által vett adatok terjesztését, az értéknövelt termékek előállítását pedig utólag bízták, általában kereskedelmi cégekre (ilyenek pld.: az EOSAT, Space Imaging, EURIMAGE, SPOT IMAGE és egyebek). A kilencvenes évek végére a műszaki haladás következtében olyan szenzorok előállítása is lehetségessé vált, amelyek az eddigieknél lényegesen nagyobb geometriai felbontású képeket is tudnak készíteni. Ezekre az adatokra az előrejelzések szerint nagy szükségük volt (ill. van) az állami térképészeti szervezeteknek a saját kataszteri és topográfiai térképrendszereik létrehozására vagy felújítására. Ezzel belátható közelségbe került a hordozóra és a szenzorra valamint az üzemeltetésre fordított költségek megtérülése, ill. lehetőség nyílt profit képzésére. Bár néhány év késéssel, de sikerült pályára állítani és ma már operatívan szolgáltat adatokat az IKONOS-műhold. Nagy várakozás előzte meg ennek a kereskedelmi műholdnak a pályára állítását. Az 1 m-es felbontású képek nagy ugrást jelentenek az eddig készített műholdfelvételekhez képest, és most először nyílik lehetőség arra, hogy a légifényképek felbontásához közeli felbontással rendelkező adatforrást is megvizsgálhassunk nagyméretarányú (1:10 000) térképek készítésének és felújításának szempontjából. Az 1 m-es felbontást a pankromatikus tartományban biztosítja a felvevő (szemben a SPOT pankromatikus 10 m felbontású sávjával), multispektrális üzemmódban az IKONOS által elérhető maximális felbontás 4 m (szemben a SPOT multispektrális 20 m-es felbontású sávjával). Nem csak a felbontásban van azonban különbség az IKO- NOS és a SPOT műhold által készített adatok között. Talán még fontosabb az adatok szigorú geometriája, ami nem mondható el a SPOT- vagy a Landsat-képekre. Az IKONOS (Space Imaging) műhold ill. a szenzor műszaki adatai: 12

13 A műhold neve: IKONOS Pályára állítás időpontja: szeptember 24. Pálya adatai A pálya magassága Max. geometriai felbontás Spektrális sáv Keringési idő Visszatérési idő Közel poláris napszinkron körpálya 680 km 1 m (11 km-es sávban) 1 pankromatikus, 4 multispektrális 98 perc 5 nap Inklináció 98 A pontos magassági adatok alapvető fontosságúak a topográfiai térképezésben. A SPOT pankromatikus képekből előállított magassági értékek pontossága terepi illesztőpontok alkalmazása esetén 10 m körüli, amely nem elégíti ki az 1: es topográfiai térképek pontossági követelményeit. A SPOT-rendszerben a sztereo képek előállítása vételi sávok között (cross-track) történik, az IKONOS esetében azonban vételi sávon belül (in-track). 1 méteres felbontású IKONOS felvétel 7. ábra 13

14 A 7. ábrán egy 1 méteres felbontású IKONOS felvétel látható. A szuper nagyfelbontású műholdak előnyei a következők: a polgári célra valaha készült legnagyobb felbontás; a kamera fókusztávolsága nagyon nagy, elérheti a 10 m-t; előre, nadírban és hátra néző töltéscsatolt sordetektor alkalmazásával vételi sávon belüli sztereó adatfolyam készítése; a bázis/magasság arány (a szenzor bázisvonalának és a pálya magasságának aránya) 0,6 vagy nagyobb, ami hasonlatos a légifényképezésnél alkalmazott arányhoz. Sztereokép létrehozásakor egy felszíni objektum képe háromszor képeződik le: egyszer előrenéző, egyszer nadír állású és egyszer hátranéző kameraállásnál. A sordetektor minden alkalommal egy-egy képcsíkot alkot. Ennek megfelelően a felvételi sáv irányú sztereó felvételezés a sztereopárok három kombinációját hozza létre. A bázisvonal hossza az IKONOS esetében 680, ill km. A bázis/magasság arány a kritikus érték a magassági kiértékelés szempontjából. Az IKONOS esetében ez az arány egyenlő 1-gyel, ami azt jelenti, hogy az IKONOS által készített sztereopárok alkalmasak a domborzati információk kivonására. A felvételi sávok között (across-track) is kialakítható sztereó átfedés. A domborzatábrázolás szempontjából a két egymás melletti adatfolyam azonos eredményt ad hasonlóan a vételi sávon (in-cross) belüli sztereoképpárhoz. A következőkben még két nagyfelbontású űrfelvételeket szolgáltató távérzékelési rendszert mutatok be. Az egyik a Quick Bird (EarthWatch Inc.) a másik pedig az OrbView (ORBIMAGE) rendszer. Az EarthWatch Inc. által üzemeltetett Quick Bird szuper nagyfelbontású képeket szolgáltató műholdat 2001 októberében állították pályára. A Quick Bird-ön két szenzor működik párhuzamosan: az egyik pankromatikus, a másik multispektrális üzemmódban. A felbontás pankromatikus üzemmódban 0.61 m, míg multispektrális üzemmódban 2.44 m. A 8. ábrán egy 0.61 m-es felbontással készült Quick Bird kép látható. Az OrbView műholdcsaládnak - melyet az ORBIMAGE üzemeltet- jelenleg két tagja szolgáltat adatokat az Orb View 2 és az Orb View 3. Az OrbView-2 8 multispektrális csatornán 1 km-es felbontással szolgáltat adatokat, az Orb View 3 pedig multrispektrális csatornán 4m-es, míg pankromatikus csatornán 1 m-es felbontásra 14

15 képes. Az ORBIMAGE 2007-ben tervezi üzembe állítani az Orb View 5 műholdat, melynek a felbontása 0.41 m lesz pankromatikus és 1.64 m multispektrális csatornán. A 8. ábrán egy Quick Bird, a 9. ábrán pedig egy Orb View felvétel látható. Quick Bird felvétel Orb View felvétel 8. ábra 9. Ábra 3. Új távérzékelési eljárások Az űrtávérzékelés mellett a hagyományos fotogrammetriának egyre komolyabb más vetélytársai is helyet követelnek a terepre vonatkozó adatok gyűjtésében. A gyors (operatív) hadszíntér megjelenítés ma már nem tudja nélkülözni olyan korszerű technológiai eszközök alkalmazását, mint a LIDAR (Light Detection and Ranging fény érzékelés és távmérés) és IFSAR (Interferometric Syntetic Aperture Radar szintetikus nyílású interferencia radar). Ezek az eszközök alkalmasak nagyfelbontású digitális domborzatmodellek (Digital Terrain Modell DTM, amely a topográfiai felszín tereptárgyak nélkül mért magassági adatait tartalmazza) és digitális felszín modellek (Digital Elevation Modell, amely magában foglalja a tereptárgyak magasságát is.) előállítására, objektumokra vonatkozó adatok kinyerésére. A LIDAR és IFSAR alkalmazhatóságát és előnyeit jól szemléltette Precision Strike Demonstration Project Office által 1996-ban Fort Belvoir-ban folytatott kísérletek, amelyek bizonyították, hogy a DHC-7 repülőgépre telepített LIDAR és IFSAR eszközökkel kielégíthetők a korszerű hadműveleti követelmények. Ennek megfelelően a rendszer alkalmas arra, hogy 18 óra alatt 400 km 2 -ről, illetve 72 óra alatt km 2 -ről alapanyagot biztosítson a Level 4 15

16 és 5 szintű (3 illetve 1 méteres pixelnagyság) domborzat modell, valamint 12 nap alatt km 2 -ről alapanyagot biztosítson a Level 3 szintű (10 m) domborzatmodell elkészítéséhez. A LIDAR technológia (10. ábra) egy repülőgép, egy lézertávmérő és a GPS navigációs rendszer házasságából született, amely inerciális navigációs rendszerrel is kiegészülhet. A LIDAR felvételek egyre szélesebb körű alkalmazást nyernek a polgári életben is. A 90-es évek végétől kezdték el alkalmazni a komplex LIDAR topográfiai térképező rendszereket. Ezek különösen jól alkalmazhatók építkezések tervezéséhez, árvízvédelmi elemzések készítéséhez. A LIDAR felvételezés eredményei alapján nagypontosságú digitális domborzatmodell, digitális felület modellés szintvonalak egyaránt előállíthatóak. A LIDAR rendszerek felhasználásával előállított domborzatmodellek pontossága eléri a repülési magasság 1/8 000 részét. Így például méter repülési magasság esetén 15 cm, méter esetén 75 cm pontosság érhető el. A LIDAR-nak a pontosság mellett számos más előnye is van. A technológia lényegesen kevésbé időjárásfüggő, mint a hagyományos mérőkamerás légifényképezés. A LIDAR felvételeket bármelyik napszakban elkészíthetjük, azok minősége nem függ a napállástól (árnyéktól), sőt az éjszaka kimondottan kedvező a munkák számára. A LIDAR technológia bemutatása 10. ábra 16

17 A korszerű LIDAR rendszerek képesek több visszaverődést regisztrálni. Ez lehetővé teszi, hogy a rendszer egyaránt rögzítse a felszín és a fakorona magasságot. Különösen kedvező a rendszer a magas épületekkel beépített városi területek felmérésére. További előnye, hogy megfelelő technológia alkalmazásával alkalmas távvezetékek háromdimenziós megjelenítésére egyidejűleg rögzítve a felszín a fakorona és a vezeték magasságát. A rendszer ára meglehetősen magas (1 millió $ felett) és termelékenysége viszonylag alacsony: 90 km 2 /óra nagy pontosságú felmérés esetén. Az adatok feldolgozása általában a felvételezési idő háromszorosát igényli. Amennyiben nem szükséges szélső pontosság elérése, úgy a termelékenység fokozható és ezzel párhuzamosan a fajlagos költségek csökkenthetők. A másik korszerű távérzékelési eljárás a rádiólokációs elven működő IFSAR eszközök használatán alapul. A képalkotó radarokat már régóta alkalmazzák a katonai felderítésben. Ezen eszközök fejlődése a radarok felbontásának növekedése lehetővé tette a térképezési célú felhasználásukat. Az IFSAR a LIDAR-hoz hasonlóan elsősorban a digitális domborzatmodell és digitális felszín modell létrehozására alkalmas. Az elkészült radarfelvétel ugyanakkor lehetővé teszi topográfiai információk kinyerését is, különösen a vízrajz és az úthálózat elemeire vonatkozóan. Az IFSAR technológia topográfiai célú hasznosíthatóságát jól szemlélteti Venezuela topográfiai térképezési programja, valamint az Egyesült Államok térképezési programja a Panama-csatorna övezetében. Venezuela új topográfiai térképét teljes egészében IFSAR felvételek alapján készítették el, mivel az őserdők feletti páraréteg nagyon megnehezítette volna a hagyományos légifelvételek elkészítését, viszont a radarfelvételek problémamentesen előállíthatóak voltak. A korszerű eszközök nagypontosságú termékek előállítását teszik lehetővé. Azt is meg kell jegyezni, hogy az IFSAR technológiával előállított termékek lényegesen olcsóbbak, mint a LIDAR produktumok. Teljesen újszerű távérzékelési eszközt fejlesztett ki 1997-ben a német Űrkutatási Központ (DLR). A HRSC (High Resolution Stereo Kamera nagyfelbontású sztereó kamera egyszerre öt pánchromatikus (sztereo) felvételt és négy infraspektrális felvételt készít. A digitális felvételek felbontása 24 cm-től 1 m-ig terjedhet, pontosságuk eléri a 20 cm-t. A HRSC kamerát nagyon hatékonyan lehet alkalmazni sűrűn beépített telepü- 17

18 lések térképezésére, a települések telekommunikációs hálózatának tervezésére. A rendszerhez tartozó szoftverek segítségével az ortofotók mellett digitális felszín modellek is előállíthatók. Az eszköz érzékenysége lehetővé teszi kedvezőtlen meteorológiai körülmények között is az alkalmazását. A feldolgozó szoftverek gyakorlatilag teljesen automatizálják a képfeldolgozás folyamatait, beleértve a képek abszolút tájékozását, a felszín modell előállítását és az ortofotó készítést is. A jelenlegi fejlesztések a felvételek interpretálásának automatizálására irányulnak. A Holland Katonai Térképész Szolgálat (Topografische Dienst) eredményes kísérleteket végzett a HRSC felvételek felhasználására a topográfiai adatbázis tartalmának helyesbítésére. Ezen belül megoldották az épületek automatikus detektálását. 4. A digitális képfeldolgozás alapvető lépései 4.1 Előfeldolgozás Az űrfelvételek előfeldolgozásához tartoznak azok az optikai vagy digitális képátalakítási eljárások, melyek ahhoz szükségesek, hogy a nyers adatokból meghatározott célokra való felhasználásra alkalmas felvételeket állítsunk elő. Az előfeldolgozáshoz sorolhatók a radiometriai és a geometriai korrekciók, a térképi illesztés, a légköri korrekció. Radiometriai korrekció Általában jellemző, hogy a radiometriai korrekciót az adatok vétele után azonnal a vevőállomáson végzik el. A radiometriai korrekcióra azért van szükség, mert a felvételt készítő detektorok között bizonyos aszinkronitás jelentkezik, vagyis ugyanarra a radianciára különböző kimeneti jelet rögzítenek. A detektorok érzékenysége a működési idő folyamán is változik. Fenti jelenség következménye a felvételeken megjelenő csíkosság, melynek eltüntetéséhez képelemenkénti korrigálás szükséges. Geometriai korrekció A geometriai korrekció célja, hogy a felvevő berendezés által készített képet térképszerűvé alakítsa. A nyers űrfelvételt többféle geometriai hiba is terheli: a Föld elfordu- 18

19 lása, a látószög változása, a lengő tükör egyenetlen mozgása, a földfelszín görbülete, a műhold egyenetlen mozgása következtében előálló hibák. A felsorolt hibákat ugyancsak az adatok vétele után a vevőállomáson korrigálják. Térképi vetületbe történő illesztés (transzformálás) A műholdfelvételből kivont információ általában térképi formában jelenik meg. Gyakori a más forrásból nyert információkkal történő összevetés, elemzés. Ezért szinte minden esetben elengedhetetlen a műholdkép térképi vetületbe való transzformálása. A geometriai korrekció nem eredményez megfelelő térképi pontosságot, ezért általában illesztőpontpárok segítségével, majd az ezek alapján történő interpolációval kell elvégezni az adott térképi vetületbe történő illesztést. Digitális terep modell (DTM) alkalmazásával az illesztés pontossága növelhető. 4.2 Ismeret alapú (knowledge based ) képfeldolgozási módszerek A műholdadatok térképészeti célú interpretálásakor az adatbázisnak sokkal inkább a nem-spektrális (objektum-leíró) információit használjuk, és kevésbé a spektrális információkat (spektrális információk: visszaverődési adatok és texturális adatok; objektum-leíró információk: alak, méret, struktúra, objektumok közötti térbeli viszony stb.). Az objektumok jelentős alakbeli eltéréseket mutatnak (pl. folyók, települések vagy egy erdő területe). Jelentős a strukturális eltérés (pl. települések jellegzetes utcahálózata, ami teljesen eltér egy természetes felszínrésztől). Az objektumok közötti térbeli kapcsolat bizonyos szabályok alapján ragadható meg (pl. település/utca, utca/épületek viszonya vagy mezőgazdasági tábla/gazdasági épületek térbeli viszonya, stb.) Mindezen információk azonban bizonytalanságokat tartalmaznak, melynek figyelembevétele a műholdadatok interpretálása és minősítése folyamatában komoly figyelmet érdemel. Még teljesen automatizált objektum-felismerési algoritmusok alkalmazása esetén is szükséges előzetes ismeret az adott területről és az ott található objektumokról, azok tulajdonságairól, térbeli elhelyezkedésük törvényszerűségeiről. A digitális topográfiai adatbázis (a Magyar Topográfiai Program keretében létrehozandó topográfiai térképek) vagy a jelenleg használatban lévő nyomtatott, különböző méretarányú topográfiai térképek szolgáltathatják (szolgáltatják) a szükséges ismere- 19

20 teket (területről, méretekről, alakzatokról, az objektumok szemantikai adatairól) a műholdfelvételek térképészeti alkalmazásához a megfelelő ismereteket. Európa és Észak-Amerika országaiban használatban vannak vagy a közeljövőben használatba kerülnek azok a topográfiai digitális adatbázisok, melyek tartalmazzák a műholdfelvételek térképészeti alkalmazásához szükséges valamennyi információt (pl. az ATKIS = Amtlich Topographisch-Kartographisches Informationssystem). Az ismeret alapú interpretációs metódust mind az automatikus információkivonási műveletekben (automated feature extraction), mind a vizuális interpretációba (visual interpretation) jól alkalmazhatók. 4.3 Objektumfelismerési eljárások. Jelenleg nincsenek olyan alakfelismerő algoritmusok, melyek segítségével valamennyi felszíni objektum azonosítása lehetséges lenne, de néhány felszíni objektum automatikus interpretálására történtek kísérletek. A jelenlegi alakfelismerő algoritmusokat tematikus információ kivonásaként, térbeli osztályozásként vagy geometriai alakfelismerésként, illetve ezek kombinációjaként írhatjuk le. A hagyományos multispektrális osztályozási eljárások igen sikeresek nagy területi kiterjedéssel rendelkező felszínrészek (pl. erdők, mezőgazdasági táblák, vízfelszínek stb.) interpretálásában. A topográfiai térképek azonban nem csak ezeket a felszínrészeket ábrázolják, hanem jelentős számban kis térbeli kiterjedésű objektumokat (pl. épületek, néhány m széles utak, vasútvonalak stb.) valamint a legbonyolultabb térbeli struktúrával rendelkező településeket is. A kis méretű vagy hosszan elnyúló, de keskeny objektumok felismerésének akadálya a rendelkezésre álló űrfelvételek geometriai felbontásának elégtelensége. Az ilyen bonyolult struktúrával rendelkező objektumok felismerésének és helyes interpretációjának akadályait abban lehet összefoglalni, hogy a multispektrális osztályozási módszerek az egyes képpontok spektrális tulajdonságát használják fel, de egyáltalán nem veszik figyelembe az objektum leíró, pl. méret-, alak-, struktúra- stb. információit. A térképészeti alkalmazás területén az alakfelismerési algoritmusok jelentős része az épületek és az utak automatikus kiválasztására szolgál. 20

Térinformatika és Geoinformatika

Térinformatika és Geoinformatika Távérzékelés 1 Térinformatika és Geoinformatika 2 A térinformatika az informatika azon része, amely térbeli adatokat, térbeli információkat dolgoz fel A geoinformatika az informatika azon része, amely

Részletesebben

Fotogrammetria és távérzékelés A képi tartalomban rejlő információgazdagság Dr. Jancsó Tamás Nyugat-magyarországi Egyetem, Geoinformatikai Kar MFTTT rendezvény 2012. Április 18. Székesfehérvár Tartalom

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 9. Távérzékelési adatok alkalmazása Érzékelők Hullámhossz tartományok Visszaverődés Infra felvételek,

Részletesebben

Távérzékelés, a jöv ígéretes eszköze

Távérzékelés, a jöv ígéretes eszköze Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban

Részletesebben

A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet

A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet Előzmények A távérzékelés az elmúlt évtizedben rohamosan fejlődésnek indult. A felhasználók részéről megjelent az igény az egyre

Részletesebben

Környezeti információs rendszerek II. Légi és űrfelvételek beszerzése

Környezeti információs rendszerek II. Légi és űrfelvételek beszerzése Környezeti információs rendszerek II. Légi és űrfelvételek beszerzése Légi felvételek: meglévő: FÖMI, HM, Eurosense készítendő: megrendelés, repülési terv Űrfelvételek: a kínálatból kell választani 1 Mesterséges

Részletesebben

Földhasználati tervezés és monitoring 3.

Földhasználati tervezés és monitoring 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Verőné Dr. Wojtaszek Malgorzata Földhasználati tervezés és monitoring 3. FHT3 modul Távérzékelés, mint földhasználati adatforrás SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók. Leíró adatok vagy attribútumok: az egyes objektumok sajátságait, tulajdonságait írják le számítógépek számára feldolgozható módon. A FIR- ek által megválaszolható kérdések: < 1. Mi van egy adott helyen?

Részletesebben

A hiperspektrális képalkotás elve

A hiperspektrális képalkotás elve Távérzékelési laboratórium A VM MGI Hiperspektrális laborja korszerű hardveres és szoftveres hátterére alapozva biztosítja a távérzékelési technológia megbízható hazai és nemzetközi szolgáltatását. Távérzékelés

Részletesebben

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról 29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról A földmérési és térképészeti tevékenységről szóló 2012. évi XLVI. törvény 38. (3) bekezdés b) pontjában kapott felhatalmazás

Részletesebben

A GEOINFORMÁCIÓS TÁMOGATÁS KORSZERŰ ELEMEI, AVAGY ÚJ SZÍNFOLTOK A GEOINFORMÁCIÓS TÁMOGATÁS PALETTÁJÁN

A GEOINFORMÁCIÓS TÁMOGATÁS KORSZERŰ ELEMEI, AVAGY ÚJ SZÍNFOLTOK A GEOINFORMÁCIÓS TÁMOGATÁS PALETTÁJÁN IV. Évfolyam 4. szám - 2009. december Koós Tamás koos.tamas@zmne.hu A GEOINFORMÁCIÓS TÁMOGATÁS KORSZERŰ ELEMEI, AVAGY ÚJ SZÍNFOLTOK A GEOINFORMÁCIÓS TÁMOGATÁS PALETTÁJÁN Absztrakt A szerző bemutatja a

Részletesebben

Fotointerpretáció és távérzékelés 6.

Fotointerpretáció és távérzékelés 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Verőné Wojtaszek Malgorzata Fotointerpretáció és távérzékelés 6. FOI6 modul A távérzékelés alkalmazási területeinek áttekintése SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Városi környezet vizsgálata távérzékelési adatok osztályozásával

Városi környezet vizsgálata távérzékelési adatok osztályozásával Városi környezet vizsgálata távérzékelési adatok osztályozásával Verőné Dr. Wojtaszek Małgorzata Óbudai Egyetem AMK Goeinformatika Intézet 20 éves a Térinformatika Tanszék 2014. december. 15 Felvetések

Részletesebben

PTE PMMF Közmű- Geodéziai Tanszék

PTE PMMF Közmű- Geodéziai Tanszék Légi fotogrammetria A légi fotogrammetria bemenő adatai az analóg vagy digitális légifényképek. Analóg fényképező kamara és egy légifelvétel. A fényképezés geometriai modellje centrális perspektíva. Ebben

Részletesebben

Távérzékelt felvételek és térinformatikai adatok integrált felhasználása a FÖMI mezőgazdasági alkalmazásaiban

Távérzékelt felvételek és térinformatikai adatok integrált felhasználása a FÖMI mezőgazdasági alkalmazásaiban Távérzékelt felvételek és térinformatikai adatok integrált felhasználása a FÖMI mezőgazdasági alkalmazásaiban László István Földmérési és Távérzékelési Intézet laszlo.istvan@fomi.hu Adatintegráció, adatfúzió

Részletesebben

A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL

A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL 35. Meteorológiai Tudományos Napok, Magyar Tudományos Akadémia, 2009. november 20. A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL Dezső Zsuzsanna, Bartholy Judit, Pongrácz Rita Eötvös

Részletesebben

A fotogrammetria fejlődési tendenciái

A fotogrammetria fejlődési tendenciái A fotogrammetria fejlődési tendenciái Dr. Engler Péter Dr. Jancsó Tamás Nyugat-magyarországi Egyetem, Geoinformatikai Kar Fotogrammetria és Távérzékelés Tanszék GIS Open 2011. Fejlődési irányt befolyásoló

Részletesebben

Földmérési és Távérzékelési Intézet. GISopen 2013: Jogi változások informatikai válaszok. 2013. március 13. NymE - Geoinformatikai Kar, Székesfehérvár

Földmérési és Távérzékelési Intézet. GISopen 2013: Jogi változások informatikai válaszok. 2013. március 13. NymE - Geoinformatikai Kar, Székesfehérvár Az állami digitális távérzékelési adatbázisok létrehozása, kezelésének feladatai Zboray Zoltán igazgató Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) GISopen 2013: Jogi változások informatikai

Részletesebben

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,

Részletesebben

Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel

Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel Verőné Dr. Wojtaszek Malgorzata http://www.civertan.hu/legifoto/galery_image.php?id=8367 TÁMOP-4.2.1.B-09/1/KONV-2010-0006 projekt Alprogram:

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

A felhasználói szegmens GPS technikák 4. A felhasználói szegmens mindenki, aki hely, sebesség és időadatokat akar meghatározni mindenki, aki a légkörön átmenő elektromágneses hullámokat akar vizsgálni

Részletesebben

Adatgyűjtés pilóta nélküli légi rendszerekkel

Adatgyűjtés pilóta nélküli légi rendszerekkel Adatgyűjtés pilóta nélküli légi rendszerekkel GISOpen-2015 2015.03.26. Miről lesz szó? Az eljárásról Eddigi munkáinkról A pontosságról A jogi háttérről csak szabadon:) Miért UAS? Elérhető polgári forgalomban

Részletesebben

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:

Részletesebben

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Informatika és információ technológia alkalmazása a vízgazdálkodásban 45.lecke Mi a

Részletesebben

Monitoring távérzékeléssel Természetvédelmi alkalmazások (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK GISopen 2011 2011. március 16-18. Konasoft Project Tanácsadó Kft. Maros Olivér - projektvezető MIÉRT MOBIL TÉRKÉPEZÉS? A mobil térképezés egyetlen rendszerben

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

VÁGÓ JÁNOS, SERES ANNa, Hegedűs ANDRÁS, ALKaLMaZOTT TÉRINFORMaTIKa

VÁGÓ JÁNOS, SERES ANNa, Hegedűs ANDRÁS, ALKaLMaZOTT TÉRINFORMaTIKa VÁGÓ JÁNOS, SERES ANNa, Hegedűs ANDRÁS, ALKaLMaZOTT TÉRINFORMaTIKa 3 III. LEGISMERTEBB földmegfigyelő műholdak ÉS RENDSZEREK jellemzői 1. BEvEZETÉS A következőkben néhány olyan műholdat, műholdcsaládot

Részletesebben

HULLADÉKCSÖKKENTÉS. EEA Grants Norway Grants. Élelmiszeripari zöld innovációs program megvalósítása. Dr. Nagy Attila, Debreceni Egyetem 2014.10.28.

HULLADÉKCSÖKKENTÉS. EEA Grants Norway Grants. Élelmiszeripari zöld innovációs program megvalósítása. Dr. Nagy Attila, Debreceni Egyetem 2014.10.28. Élelmiszeripari zöld innovációs program megvalósítása EEA Grants Norway Grants HULLADÉKCSÖKKENTÉS Dr. Nagy Attila, Debreceni Egyetem HU09-0015-A1-2013 1 Beruházás oka A vágóhidakról kikerülő baromfi nyesedék

Részletesebben

Távérzékelés Aktív érzékelők (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és Távérzékelési

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék MÁSODLAGOS ADATNYERÉSI ELJÁRÁSOK Meglévő (analóg) térképek manuális digitalizálása 1 A meglévő

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÁJÉKOZTATÁS TANTÁRGYI TEMATIKA 1 Előadás 1. GPS műszerek és kapcsolódó szoftvereik bemutatása

Részletesebben

Városökológiai vizsgálatok Székesfehérváron TÁMOP B-09/1/KONV

Városökológiai vizsgálatok Székesfehérváron TÁMOP B-09/1/KONV Városökológiai vizsgálatok Székesfehérváron TÁMOP 4.2.1.B-09/1/KONV-2010-0006 Balázsik Valéria Fény-Tér-Kép konferencia Gyöngyös, 2012. szeptember 27-28. Projekt TÁMOP 4.2.1.B-09/1/KONV-2010-0006 A felsőoktatás

Részletesebben

A térinformatika lehetőségei a földrajzórán

A térinformatika lehetőségei a földrajzórán A térinformatika lehetőségei a földrajzórán Geolokáció az oktatásban konferencia AKG, Budapest, 2013. november 30. Dr. Sik András adjunktus, ELTE Természetföldrajzi Tanszék sikandras@gmail.com Mit jelent?

Részletesebben

Hatékony módszer a nagyfeszültségű távvezetékek. dokumentáció-felújítására a gyakorlatban

Hatékony módszer a nagyfeszültségű távvezetékek. dokumentáció-felújítására a gyakorlatban Hatékony módszer a nagyfeszültségű távvezetékek dokumentáció-felújítására a gyakorlatban MEE 57. VÁNDORGYŰLÉS 2010. szeptember 15-17. SIÓFOK Új technológia bevezetése A FUGRO INPARK B.V. Holland céggel

Részletesebben

MEGHATÁROZOTT FÖLDRAJZI TÉRSÉGEKBEN ELHELYEZKEDŐ LOKÁLIS TEREPFELSZÍNI ANOMÁLIÁK, OBJEKTUMOK FELDERÍTÉSE TÉRINFORMATIKAI RENDSZER SEGÍTSÉGÉVEL

MEGHATÁROZOTT FÖLDRAJZI TÉRSÉGEKBEN ELHELYEZKEDŐ LOKÁLIS TEREPFELSZÍNI ANOMÁLIÁK, OBJEKTUMOK FELDERÍTÉSE TÉRINFORMATIKAI RENDSZER SEGÍTSÉGÉVEL MEGHATÁROZOTT FÖLDRAJZI TÉRSÉGEKBEN ELHELYEZKEDŐ LOKÁLIS TEREPFELSZÍNI ANOMÁLIÁK, OBJEKTUMOK FELDERÍTÉSE TÉRINFORMATIKAI RENDSZER SEGÍTSÉGÉVEL Dr. Winkler Gusztáv, Dr. Juhász Attila A következőkben leírt

Részletesebben

Távérzékelés - műholdak

Távérzékelés - műholdak Távérzékelés - műholdak Dr. Berke József www.digkep.hu Kvark Bt., Keszthely Műholdak típusai 1. Csillagászati műholdak: csillagászati méréseket végző műholdak. 2. Távközlési műholdak: rádió és mikrohullámú

Részletesebben

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra)

1. ábra Egy terület DTM-je (balra) és ugyanazon terület DSM-je (jobbra) Bevezetés A digitális terepmodell (DTM) a Föld felszínének digitális, 3D-ós reprezentációja. Az automatikus DTM előállítás folyamata jelenti egyrészt távérzékelt felvételekből a magassági adatok kinyerését,

Részletesebben

Benapozásvédelmi eszközök komplex jellemzése

Benapozásvédelmi eszközök komplex jellemzése Budapesti Műszaki és Gazdaságtudományi Egyetem, Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék, 1111 Budapest, Műegyetem rkp. 3. K.II.31. Benapozásvédelmi eszközök komplex jellemzése

Részletesebben

Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007

Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu Ismerkedés a térképekkel 1. Miért van

Részletesebben

Fotointerpretáció és távérzékelés 1.

Fotointerpretáció és távérzékelés 1. Fotointerpretáció és távérzékelés 1. A távérzékelés fizikai alapjai Verőné Wojtaszek, Malgorzata Fotointerpretáció és távérzékelés 1.: A távérzékelés fizikai alapjai Verőné Wojtaszek, Malgorzata Lektor:

Részletesebben

Nagysebességű repülőgépes távérzékelés és hozzá kapcsolódó adatfeldolgozási módszerek

Nagysebességű repülőgépes távérzékelés és hozzá kapcsolódó adatfeldolgozási módszerek Nagysebességű repülőgépes távérzékelés és hozzá kapcsolódó adatfeldolgozási módszerek Bakó Gábor 1 Szent István Egyetem, Növénytani és Ökofiziológiai Intézet, Interspect Kutatócsoport, bakogabor@interspect.hu

Részletesebben

kompakt fényképezőgép

kompakt fényképezőgép kompakt fényképezőgép A digitális fényképezőgépek legszélesebb kategóriája, minden olyan, viszonylag kis méretű gép ide sorolható, amely egymagában sokféle fotós feladatra alkalmas. Előnyük a relatíve

Részletesebben

Geoinformatikai rendszerek

Geoinformatikai rendszerek Geoinformatikai rendszerek Térinfomatika Földrajzi információs rendszerek (F.I.R. G.I.S.) Térinformatika 1. a térinformatika a térbeli információk elméletével és feldolgozásuk gyakorlati kérdéseivel foglalkozó

Részletesebben

MUNKAANYAG. Horváth Lajos. A távérzékelés adatgyűjtő rendszerei. A követelménymodul megnevezése: Fotogrammetria feladatai

MUNKAANYAG. Horváth Lajos. A távérzékelés adatgyűjtő rendszerei. A követelménymodul megnevezése: Fotogrammetria feladatai Horváth Lajos A távérzékelés adatgyűjtő rendszerei A követelménymodul megnevezése: Fotogrammetria feladatai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-50

Részletesebben

Terepi adatgyűjtés mobil eszközökkel a természetvédelemben

Terepi adatgyűjtés mobil eszközökkel a természetvédelemben T E R M É S Z E T V É D E L E M Terepi adatgyűjtés mobil eszközökkel a természetvédelemben Dr. Takács András Attila Takács Gábor Biró Csaba Tartalom Bevezetés háttér információk GPS Természetvédelmi feladatok

Részletesebben

Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet

Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet 1. A téma célkitűzés Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet A kutatási téma célja különböző haszon- és gyomnövények,

Részletesebben

TÁMOP-4.2.3.-12/1/KONV-0047

TÁMOP-4.2.3.-12/1/KONV-0047 A KRF távérzékelési és térinformatikai tevékenysége a gazdasági szférában Dr. Burai Péter főiskolai docens Zöld energiával a Zöld Magyaroszágért TÁMOP-4.2.3.-12/1/KONV-0047 Tartalom Károly Róbert Főiskola

Részletesebben

AISA hiperspektrális távérzékelő rendszer ismertetése

AISA hiperspektrális távérzékelő rendszer ismertetése - 1 - FVM Mezőgazdasági Gépesítési Intézet 2100 Gödöllő Tessedik Sámuel út 4. Tel.: (28) 511-622, (28) 511-628, Fax.:(28) 420-960 AISA hiperspektrális távérzékelő rendszer ismertetése Készítették: 1. Bevezetés

Részletesebben

KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR

KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR A TÉRKÉP A HAGYOMÁNYOS VILÁG FELFOGÁSA SZERINT A TÉRKÉP ÉS EGYÉB TÉRKÉPÉSZETI ÁBRÁZOLÁSI FORMÁK (FÖLDGÖMB, DOMBORZATI MODELL, PERSPEKTIVIKUS

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Mobil térképészeti eszközök és a térinformatika

Mobil térképészeti eszközök és a térinformatika Mobil térképészeti eszközök és a térinformatika GIS OPEN Székesfehérvár 2013.03.12 14. Amiről szó lesz Mi is az az MTR (MMS) Hogyan működik? Mire képes? Melyek az előnyei? Milyen geodéziai, térinformatikai

Részletesebben

Ingatlan-nyilvántartási megoldás a magyar állami erdőgazdálkodás számára. 2010. március 18. GIS open 2010 Székesfehérvár Nyull Balázs DigiTerra Kft.

Ingatlan-nyilvántartási megoldás a magyar állami erdőgazdálkodás számára. 2010. március 18. GIS open 2010 Székesfehérvár Nyull Balázs DigiTerra Kft. Ingatlan-nyilvántartási megoldás a magyar állami erdőgazdálkodás számára 2010. március 18. GIS open 2010 Székesfehérvár Nyull Balázs DigiTerra Kft. Erdőgazdálkodási Információs Rendszer Ingatlan-nyilvántartási

Részletesebben

Általános nemzeti projektek Magyar Topográfiai Program (MTP) - Magyarország Digitális Ortofotó Programja (MADOP) CORINE Land Cover (CLC) projektek Mez

Általános nemzeti projektek Magyar Topográfiai Program (MTP) - Magyarország Digitális Ortofotó Programja (MADOP) CORINE Land Cover (CLC) projektek Mez Távérzékelés Országos távérzékelési projektek (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Ingatlan felmérési technológiák

Ingatlan felmérési technológiák Ingatlan felmérési technológiák Fekete Attila okl. földmérő és térinformatikai mérnök Photo.metric Kft. www.photometric.hu geodézia. épületfelmérés. térinformatika Áttekintés Mérési módszerek, technológiák

Részletesebben

A földhasznosítás változásának követése távérzékeléssel

A földhasznosítás változásának követése távérzékeléssel A földhasznosítás változásának követése távérzékeléssel http://www.nasa.gov/centers/langley/news/releases/1998/dec98/98-098.html Verőné Dr. Wojtaszek Małgorzata Balázsik Valéria Copyright: ESA, EURIMAGE,

Részletesebben

A sínek tesztelése örvényáramos technológiákat használva

A sínek tesztelése örvényáramos technológiákat használva A sínek tesztelése örvényáramos technológiákat használva A DB Netz AG tapasztalatai DB Netz AG Richard Armbruster / Dr. Thomas Hempe/ Herbert Zück Fahrwegmessung / Fahrwegtechnik Békéscsaba, 2011.09.01.

Részletesebben

Robotika. Relatív helymeghatározás Odometria

Robotika. Relatív helymeghatározás Odometria Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)

Részletesebben

Távérzékelés Analóg felvételek feldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Különböző osztályozási eljárások alkalmazása mesterséges felszínek térképezéséhez Klujber Anikó

Különböző osztályozási eljárások alkalmazása mesterséges felszínek térképezéséhez Klujber Anikó Különböző osztályozási eljárások alkalmazása mesterséges felszínek térképezéséhez Klujber Anikó A térinformatika és a digitális távérzékelés ma intenzíven fejlődő területek, melyeknek komoly szerepe lehet

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 1. Agrártéradat- és egyéb adatbázisok Földmérési és Távérzékelési Intézet fontosabb adatbázisai

Részletesebben

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*, International GTE Conference MANUFACTURING 2012 14-16 November, 2012 Budapest, Hungary MÉRŐGÉP FEJLESZTÉSE HENGERES MUNKADARABOK MÉRETELLENŐRZÉSÉRE Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék ELSŐDLEGES ADATNYERÉSI ELJÁRÁSOK 1. Geodézia Fotogrammetria Mesterséges holdak GEOMETRIAI

Részletesebben

Mobil Térképező Rendszer hazai felhasználása

Mobil Térképező Rendszer hazai felhasználása 1149 Budapest, Bosnyák tér 5. 1591 Budapest, Pf. 304. (1) 252-8222 Titkárság: (1) 363-6801 Fax: (1) 363-5808 Mobil Térképező Rendszer hazai felhasználása A lézerszkennerrel történő felmérés a legmodernebb

Részletesebben

Általános követelmények a kép tartalmával és minőségével kapcsolatban

Általános követelmények a kép tartalmával és minőségével kapcsolatban Általános követelmények a kép tartalmával és minőségével kapcsolatban A következő követelmények egyrészt azért fontosak, hogy megfelelően dokumentálják az eseményeket (bizonyítékként felhasználóak legyenek),

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Műholdakról távérzékelt adatok feldolgozása és hasznosítása János, Mika Zoltán, Utasi Csaba, Biró Erika, Pénzesné Kónya

Műholdakról távérzékelt adatok feldolgozása és hasznosítása János, Mika Zoltán, Utasi Csaba, Biró Erika, Pénzesné Kónya Műholdakról távérzékelt adatok feldolgozása és hasznosítása János, Mika Zoltán, Utasi Csaba, Biró Erika, Pénzesné Kónya Műholdakról távérzékelt adatok feldolgozása és hasznosítása János, Mika Zoltán, Utasi

Részletesebben

Háromdimenziós képkészítés a gyakorlatban és alkalmazási területei

Háromdimenziós képkészítés a gyakorlatban és alkalmazási területei Háromdimenziós képkészítés a gyakorlatban és alkalmazási területei Bálint Tamás Dr. Berke József e-mail: balinttamas85@gmail.com, berke@gdf.hu Gábor Dénes Főiskola Hogyan működik a 3D? Az emberi látás

Részletesebben

EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia

EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia DElosztott I S T R I B U T EEsemények D EV E N T S A NElemzé A L Y S I S se R E SKutatólaboratór E A R C H L A B O R A T Oium R Y L I D A R B a s e d S u r v e i l l a n c e Városi LIDAR adathalmaz szegmentációja

Részletesebben

PTE PMMF Közmű- Geodéziai Tanszék

PTE PMMF Közmű- Geodéziai Tanszék digitális állományok átvétele, meglévő térképek digitalizálása, meglévő térképek, légifelvételek, illetve speciális műszaki rajzi dokumentációk szkennelése és transzformálása. A leggyorsabb, legolcsóbb

Részletesebben

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA SHINKAWA Certified by ISO9001 Örvény-áramú sínpálya vizsgáló a Shinkawa-tól Technikai Jelentés A vasút életéhez A Shinkawa örvény-áramú sínpálya vizsgáló rendszer, gyors állapotmeghatározásra képes, még

Részletesebben

II. TÉRKÉPÉSZETI ALAPISMERETEK

II. TÉRKÉPÉSZETI ALAPISMERETEK ÁLTALÁNOS TERMÉSZETFÖLDRAJZ II. TÉRKÉPÉSZETI ALAPISMERETEK 1 A FÖLDI TÉR ÁBRÁZOLÁSA A TÉRKÉP A földi környezet sok félek éppen ábrázolható. A látrajz, vagy látkép oldalnézeti képet ábrázol. A hegy tetejéről

Részletesebben

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6 Papp Ferenc Barlangkutató Csoport Barlangtérképezés Fotómodellezés Holl Balázs 2014 negyedik változat hatodik kiegészítés 4.6 (első változat 2011) A felszíni térképezés már egy évszázada a légifotókon

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

A zalaszántói őskori halmok kataszterének elkészítése

A zalaszántói őskori halmok kataszterének elkészítése SZAKDOLGOZATVÉDÉS 2008.11.21. A zalaszántói őskori halmok kataszterének elkészítése Havasi Bálint Geoinformatika szak A felmérés okai. 1. KÖH kezdeményezte a 2001. évi LXIV. törvény alapján a Zalaszántó-Vár

Részletesebben

DIGITÁLIS KÖZTERÜLETI M SZAKI TÉRKÉP

DIGITÁLIS KÖZTERÜLETI M SZAKI TÉRKÉP DIGITÁLIS KÖZTERÜLETI M SZAKI TÉRKÉP Az önkormányzatok a közterületek dönt részének gazdái. A közterületekkel kapcsolatos, nyilvántartási és üzemeltetési feladatokhoz a földhivatalokban beszerezhet földmérési

Részletesebben

A NAPSUGÁRZÁS MÉRÉSE

A NAPSUGÁRZÁS MÉRÉSE A NAPSUGÁRZÁS MÉRÉSE A Napból érkező elektromágneses sugárzás Ø Terjedéséhez nincs szükség közvetítő közegre. ØHőenergiává anyagi részecskék jelenlétében alakul pl. a légkörön keresztül haladva. Ø Időben

Részletesebben

Digitális felszínmodellek előállítása és alkalmazásának lehetőségei

Digitális felszínmodellek előállítása és alkalmazásának lehetőségei Digitális felszínmodellek előállítása és alkalmazásának lehetőségei Zboray Zoltán igazgató Távérzékelési és Kozmikus Geodéziai Igazgatóság (TKGI) Fény-Tér-Kép Konferencia 2012. szeptember 27-28. Károly

Részletesebben

Magyarország nagyfelbontású digitális domborzatmodellje

Magyarország nagyfelbontású digitális domborzatmodellje Magyarország nagyfelbontású digitális domborzatmodellje Iván Gyula Földmérési és Távérzékelési Intézet Földminősítés, földértékelés és földhasználati információ A környezetbarát gazdálkodás versenyképességének

Részletesebben

2.3 Mérési hibaforrások

2.3 Mérési hibaforrások A fólia reflexiós tényezője magas és az összegyűrt struktúrája miatt a sugárzás majdnem ideálisan diffúz módon verődik vissza (ld. 2.3. ábra, az alumínium fólia jobb oldala, 32. oldal). A reflektált hőmérséklet

Részletesebben

GIS és Távérzékelés a közlekedési adatnyerésben

GIS és Távérzékelés a közlekedési adatnyerésben GIS és Távérzékelés a közlekedési adatnyerésben Lovas Tamás Fotogrammetria és Térinformatika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom - Térinformatika Adatnyerés Távérzékelési technológiák

Részletesebben

A Viharvadászok Egyesületének tagi szolgáltatásai

A Viharvadászok Egyesületének tagi szolgáltatásai A Viharvadászok Egyesületének tagi szolgáltatásai Érdekel a viharvadászat? Szeretnéd minél közelebbről és minél eredményesebben megfigyelni a közeledő szupercellákat? Olyan eszközöket szeretnél használni,

Részletesebben

Térinformatikai DGPS NTRIP vétel és feldolgozás

Térinformatikai DGPS NTRIP vétel és feldolgozás Térinformatikai DGPS NTRIP vétel és feldolgozás Méréseinkhez a Thales Mobile Mapper CE térinformatikai GPS vevıt használtunk. A mérést a Szegedi Tudományegyetem Egyetem utcai épületének tetején található

Részletesebben

BME-ÁFGT. MÉRNÖKGEODÉZIA A XXI. században. Külszíni bányamérés támogatása Mobil Térképező Rendszerrel. Sopron-II. gneisz Süttő-I.

BME-ÁFGT. MÉRNÖKGEODÉZIA A XXI. században. Külszíni bányamérés támogatása Mobil Térképező Rendszerrel. Sopron-II. gneisz Süttő-I. Külszíni bányamérés támogatása MMS-sel BME-ÁFGT MÉRNÖKGEODÉZIA A XXI. században Külszíni bányamérés támogatása Mobil Térképező Rendszerrel Sopron-II. gneisz Süttő-I. mészkő, főmérnök Geodézia Zrt. Amiről

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. GPS, GPRS (mobilkommunikációs) ismeretek Helymeghatározás GPS rendszer alapelve GNSS rendszerek

Részletesebben

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják.

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják. 54 581 01 0010 54 01 FÖLDMÉRŐ ÉS TÉRINFORMATIKAI TECHNIKUS 54 581 01 0010 54 02 TÉRKÉPÉSZ TECHNIKUS szakképesítések 2244-06 A térinformatika feladatai A térinformatika területei, eszközrendszere vizsgafeladat

Részletesebben

GIS adatgyűjtés zseb PC-vel

GIS adatgyűjtés zseb PC-vel GIS adatgyűjtés zseb PC-vel Mit jelent a midas GIS kifejezés? Mapping Information Data Acquisition System Térképi Információ- és Adat Gyűjtő Rendszer Terepi adatgyűjtés a felhasználó által definiált adatbázisban.

Részletesebben

Számítógépes grafika

Számítógépes grafika Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás

Részletesebben

Alter Róbert Báró Csaba Sensor Technologies Kft

Alter Róbert Báró Csaba Sensor Technologies Kft Közúti forgalomelemzés kamerával e_traffic Alter Róbert Báró Csaba Sensor Technologies Kft Előadás témái Cégbemutató Videó analitikai eljárások Forgalomszámláló eszközök összehasonlítása e_traffic forgalomelemző

Részletesebben

Nagyméretarányú térképezés 7.

Nagyméretarányú térképezés 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Vincze László Nagyméretarányú térképezés 7. NMT7 modul Digitális fotogrammetriai módszerek és dokumentálása DAT készítéséhez SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

Rádiófrekvenciás kommunikációs rendszerek

Rádiófrekvenciás kommunikációs rendszerek Rádiófrekvenciás kommunikációs rendszerek Adó Adó Vevő Jellemzően broadcast adás (széles földrajzi terület besugárzása, TV, Rádió műsor adás) Adó Vevő Vevő Adó Különböző kommunikációs formák. Kis- és nagykapacitású

Részletesebben

KOGENERÁCIÓS NAPENERGIA HASZNOSÍTÓ BERENDEZÉS KIFEJLESZTÉSE VILLAMOS- ÉS HŐENERGIA ELŐÁLLÍTÁSÁRA ÉMOP-1.3.1-12-2012-0051

KOGENERÁCIÓS NAPENERGIA HASZNOSÍTÓ BERENDEZÉS KIFEJLESZTÉSE VILLAMOS- ÉS HŐENERGIA ELŐÁLLÍTÁSÁRA ÉMOP-1.3.1-12-2012-0051 KOGENERÁCIÓS NAPENERGIA HASZNOSÍTÓ BERENDEZÉS KIFEJLESZTÉSE VILLAMOS- ÉS HŐENERGIA ELŐÁLLÍTÁSÁRA ÉMOP-1.3.1-12-2012-0051 A Mályiban székhellyel rendelkező, 2012-ben alakult Roligenergo Kft. műszaki kutatással,

Részletesebben