Válasz Dr. Koppa Pál bírálatára

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Válasz Dr. Koppa Pál bírálatára"

Átírás

1 Válasz Dr. Koppa Pál bírálatára Ezúton szeretném megköszönni Dr. Koppa Pál professzor úrnak az értekezésem alapos átolvasására szánt időt, pozitív bírálói véleményét és releváns kérdéseit. Az alábbiakban először a 7. tézisponttal kapcsolatos észrevételre válaszolok, utána pedig a feltett kérdésekre. A 7. tézispont megítélésem szerint új tudományos eredményt tartalmaz, hiszen a szakirodalomban nem található példa nanotűk egymáshoz történő közelítésének a téremissziós áram mérésén alapuló módszerére. Tehát az általam kidolgozott, demonstrált és validált módszer egymással szembe fordított nanotűk piezopozicionálókkal történő reprodukálható közelítésére megfelel az eredmények újdonságával kapcsolatban támasztott követelménynek, hiszen az újdonság nem a piezopozicionálókban rejlik (ami jelen esetben egy nem túl lényeges technikai részlet), hanem a közelítés visszacsatolási mechanizmusán, amely a két tű között, x-y pásztázással mérhető áramprofil félértékszélességének meghatározásán alapul. A módszer lényegét a tézispont második felében összefoglaltam és a dolgozat 8.5 ábráján mutattam be. A módszerem nincs kapcsolatban pl. lézer fényének üvegszálba csatolásával, már csak azért sem, mert még 4-5 mikrométer magátmérőjű, egymódusú szálaknál sem szükséges az az 50 nm alatti laterális és tengelyirányú pozicionálási reprodukálhatóság, amit a nanotűk közötti téremissziós egyenáram mérése biztosít (ld. a disszertáció 8.5 ábrája). Mindezek alapján úgy gondolom, hogy a tézispont megfogalmazása, mondatszerkesztése vélhetően félreértésre adott okot, így a 7. tézisemnek az alábbiakban megadom a kissé részletesebb, ám a lényeget változatlanul hagyó megfogalmazását. Egyúttal pedig kérem a bírálót, hogy a tézispontot a fenti tisztázás és az itteni pontosított megfogalmazás figyelembevételével szintén új tudományos eredményként ismerje el. 7. tézispont Hatékony laboratóriumi módszert dolgoztam ki egymással szembe fordított nanotűknek a tűk közötti téremissziós áramprofil meghatározására épülő reprodukálható közelítésére, melynek segítségével megalapoztam egy nanoméretű, működő ultragyors vákuumdiódaelrendezést. Kísérleteim alapján optimális közelítési módszernek a következő bizonyult. Két, vákuumba helyezett, szembefordított nanotűre egyenfeszültséget kapcsoltam, majd az egyik tű síkbeli, laterális (piezopozicionálókkal történő) pásztázásával mértem a tűk közti áramot. Felismertem, hogy az áram eloszlásának a félértékszélessége egyértelmű, lineáris kapcsolatban áll a tűtávolsággal 100 nm alatti távolságokig. Az erre a módszerre épülő kísérleti elrendezést femtoszekundumos lézerimpulzusokkal meghajtva sikerült 1 ps alatti időtartammal áramot indukálnunk a két nanotű között, melyet a nanotűk fordított előfeszítésével meg lehet szüntetni. Természetesen igaz az az állítás is, hogy így demonstrálni tudtunk egy nanoméretű, működő ultragyors vákuumdióda-elrendezést, amit az általam kidolgozott laboratóriumi módszerre építve sikerült megvalósítani. 1. kérdés: Jelölt dolgozatában sokfotonos és alagúteffektuson alapuló emisszióval kibocsátott elektronokat is vizsgál. Kérdés, hogy közepes intenzitástartományban meghatározható-e a két folyamat valószínűségének aránya, és a különböző módon kibocsátott elektronok kísérleti módszerekkel megkülönböztethetők-e? A kérdés egy, az erős-tér kölcsönhatások szakirodalmában jelenleg is intenzíven vizsgált problémát érint. A jelenséget a dolgozatban is bemutatott Keldis-féle szám ( ) alapján lehet paraméterezni. γ >> 1 esetben egyértelmű a többfotonos, < 1-nél pedig az alagutazási emissziós csatorna.

2 A két egyértelmű eset közti átmeneti intenzitástartományban viszont nem beszélhetünk az egyes mechanizmusok valószínűségéről, hanem egy olyan, mindkét eset jellemzőit hordozó köztes folyamatról, amelyet a szakirodalom egy részében nemadiabatikus alagutazásnak is neveznek [1], jól kifejezve az ebben az intenzitástartományban lejátszódó érdekes emissziós folyamat kettős természetét. Ennek illusztrálására, a köztes folyamatot leíró elmélet [1] alapján bemutatom az intenzív lézertér által keltett többfotonos, nemadiabatikus alagutazási valamint tiszta alagutazási fotoáram időfüggését az 1. ábrán. Az 1(a) ábra vastag görbéje mind a teret követő alagutazási mind a burkolót követő többfotonos folyamat jellegzetességeit hordozza ("nemadiabatikus alagutazás"). Nagyobb intenzitások felé a fotoáram folytonosan megy át a tiszta (adiabatikus) alagutazási esetbe (ld. 1(b) ábra). 1. ábra (a) A fotoáram időbeli lefutása (vastag vonallal) 800 nm-es központi hullámhosszal rendelkező, 5 fs-os gaussi lézerimpulzusra, W/cm 2 -es lokális csúcsintenzitás mellett (Keldis-gamma: 3,2), a többfotonos illetve az alagutazási tartomány közti átmenet esetén. (b) Ugyanez W/cm 2 -es lokális csúcsintenzitásra (Keldis-gamma: 0,83). 2. kérdés: A jelölt 3.2 fejezetben megmutatja, hogy az általa felépített autokorrelációs kísérletben az elektronemisszió tipikusan 4-fotonos folyamat, amellyel negyedrendű autokorrelációs függvényt kap. Diszkutálja az új módszer előnyeit a hagyományos alacsonyabb rendű korrelációméréshez képest! Ugyan a dolgozatban ezt a járulékos előnyt nem mutattam be részletesen, de a magasabb rendű korrelációmérés valóban számos előnyt biztosít a leginkább megszokott másodrendű autokorrelációhoz képest. Egyrészt a negyedrendű autokorreláció sokkal érzékenyebb a lézerimpulzus, vagy esetünkben a plazmon-hullámcsomag bármilyen típusú fázistorzulására, melyet a 2. ábrán illusztrálok egy 5 fs-os lézerimpulzus egyszerű példáján. A bemutatott (45 cm-es, levegőben történő terjedésnek megfelelő) fázistorzulás mind az oszcillációs csúcsok között mind az oszcilláló tartomány kiterjedésében lényegesen nagyobb különbséget eredményez a negyedrendű autokorreláció esetén (ld. 2(b) ábra). Ha ezen felül még a laboratóriumi munka során megszokott zajforrásokat is figyelembe vesszük, akkor egyértelműen a magasabbrendű korreláció esetén diagnosztizálható könnyebben a fázistorzulás. A fotoemissziós korrelációmérés azonban nem csak optikai hullámcsomagok jellemzésére alkalmas, hanem pl. az elektron kilépése során esetlegesen megjelenő, véges élettartamú köztes állapotok azonosítására, amelyek befolyásolják a folyamat dinamikáját [2]. Ezt a kérdéskört az időbontott többfotonos fotoemisszió szakirodalma részletesen is bemutatja [2]. A fotoemissziós (vagyis magasabb nemlinearitású) autokorrelációra épülő kísérleti technikát a közelmúltban kiterjesztették lokalizált plazmonok dinamikájának térben is feloldott vizsgálatára fotoelektron-

3 emissziós mikroszkóppal (PEEM-mel) [3]. Ezzel az új módszerrel a plazmontér lokális dinamikája szondázható. A módszer jelentős előnye a hagyományos korrelációméréshez képest, hogy nanoskálán feloldott dinamikai információt lehet nyerni nanooptikai közelterekről. 2. ábra (a) Számolt másodrendű és (b) negyedrendű autokorrelációs függvények gaussi, 5 fs-os, 800 nm-es központi hullámhosszal rendelkező lézerimpulzusokra, csak a pozitív késleltetést bemutatva. A folytonos görbék a transzformációkorlátozott esetet mutatják be. A szaggatott görbék esetén csekély, 8 fs 2 csoportkésleltetés-diszperziót adtam az impulzusokhoz, ami 45 cm-es levegőbeli terjedésnek felel meg. A két görbe közti különbség nagyobb a negyedrendű esetben. 3. kérdés: Jelölt állítása szerint az autokorrelációs kísérlet pontosságát a felület nanométeres skálán mért egyenetlensége korlátozza. Lehetséges-e mesterséges nanostrukturálással pontosabb eredményt elérni? Az általam használt kísérleti konfigurációban a haladó plazmonhullámokat biztosító felület mesterséges nanostrukturálásával lehetséges pontosabb eredmény elérni mégpedig egy kimondottan érdekes speciális esetre vonatkozóan. Ha ugyanis a felületre periodikusan olyan nanorészecskéket helyezünk, amelyeken kelthető lokalizált plazmonoszcilláció a felületi haladóhullámhoz tud csatolódni, akkor ezeken a felületi nanorészecskéken elérhetők olyan forró pontok, melyeknél a térerősség lényegesen meghaladja a felület bármely egyéb pontjában mérhetőt. Ekkor a fotoemisszió erős nemlinearitása miatt a mért autokorrelációs jelet elsősorban az ilyen forró pontokból kilépő elektronok adják majd, így ezzel a módszerrel az elektromos térnek a legnagyobb térerősségű pontokban végbemenő dinamikája mérhető. A mesterséges nanostrukturálás mellett egy másik lehetőség is elképzelhető, mégpedig ugyanennek a kísérletnek elvégzése atomi szinten sík, szuperpolírozott szubsztrátra készített vékonyréteggel. Ebben az esetben a kísérlet során az értekezés 3.4(b) ábrája vörös görbéjének megfelelő rövidségű autokorrelációs jel várható. 4. kérdés: A 4.3 fejezetben vizsgált, haladó felületi plazmon terét leíró analitikus modell és a referenciaként használt numerikus modell eredménye jó kvalitatív egyezést mutat (ld és 4.7 ábrák), ugyanakkor jól észrevehető, hogy a numerikus modell a tengelyes szimmetriától eltérést mutat. Minek köszönhető az aszimmetria, és megfigyelhető-e az emittált elektronok pályájánál? Az aszimmetria a teljes visszaverődés miatt megjelenő evaneszcens térnek köszönhető, amit az is alátámaszt, hogy az elektromágneses térre vonatkozó numerikus modellekben hasonló jelenség akkor is megjelenik, amikor aranyréteg nélküli üvegfelületről történő totálreflexiót tekintünk. Plazmon haladóhullámok esetén tehát az észlelt jelenséget a plazmontér és a totálreflexió miatt megjelenő tér

4 Elektronjel (rel. egység) szuperpozíciója okozza. Ezt a jelenséget a saját analitikus elektrongyorsítási modellben az általánosság megtartása érdekében nem vettük figyelembe, hiszen ez a dolgozat 4.10 és 4.11 ábráinak tanúsága szerint a modellezett elektronspektrumok karakterisztikus alakjában eltérést nem okoz. 5. kérdés: A 4.4 fejezetben a haladó felületi plazmon terében gyorsuló elektronok spektrumát a saját analitikus modell és a referenciaként használt numerikus modell alapján diszkutálja. Miért nem hasonlítja a modellezési eredményeket az előző fejezetben megkapott kísérleti görbékhez? Ennek az az oka, hogy a saját analitikus modellünk nem alkalmas a felületi érdesség figyelembe vételére. A kísérleteink során viszont az derült ki, hogy a releváns jelenségek szempontjából a minták véges felületi érdességétől nem tekinthetünk el. Az analitikus modell tehát kiválóan alkalmas a folyamattal kapcsolatos kvalitatív következtetések levonására, a spektrumok reprodukálására azonban inkább a numerikus modellel nyílik lehetőség. Ez utóbbi feladatot kérésemre az érdes felület modelljét megalkotó kanadai kollégám, Scott Irvine végezte el, az ő eredményének és egy kísérleti spektrumnak az összehasonlítását mutatom be a 3. ábrán, melynek adatai azonosak a [9] publikációban közöltekkel mért spektrum, 1,35x10 12 W/cm 2 modell, érdes felületre, 1,35x10 12 W/cm (a) Kinetikus energia (ev) 3. ábra 800 nm-es központi hullámhosszal rendelkező, 6,5 fs-os lézerimpulzusokkal, 1, W/cm 2 -es fókuszált csúcsintenzitással keltett felületi plazmonok által indukált fotoelektronok mért spektruma (zöld körök) és egy, a felületi érdességet is figyelembe vevő numerikus modellből nyerhető spektrum ugyanezen paraméterek esetén (folytonos vonal). Az adatok azonosak a [9] publikációban megjelentekkel. Ezen túlmenően felmerült a bemutatott kísérletekhez hasonló mérések elvégzése atomi szinten sík, szuperpolírozott szubsztrátra készített vékonyréteggel, azonban ezt a kísérlet korlátozott tudományos érdekessége miatt végül is nem valósítottam meg. Ettől függetlenül az analitikus modell általános természetének köszönhetően számos érdekes jelenséget sikerült előrejeleznünk, mint például a vivő-burkoló fázisfüggő elektrongyorsítás [4], a laterálisan is nanolokalizált térbeli fotoemisszió [5] vagy a nemponderomotoros jelenségek [6], melyeket részben kísérletekkel is igazoltak a későbbiekben [7]. 6. kérdés: A 6.4 fejezetben a lokalizált felületi plazmon hatására kilépő elektronspektrumokat vizsgálja, modellezési eredményeket nagyon helyesen a kísérleti görbékhez hasonlítva, azonban a 6.5(a) ábrán a modellezett elektronspektrumokat nagyobb energiáknál elfedik a kísérleti eredmények. A 6.5(a) ábra ábrázolásmódja valóban nem túl szerencsés, hiszen nagy energiáknál nem látszik a folytonos görbékhez képest a szaggatott görbék helyzete. Valójában kb. 7 ev fölött a két, numerikusan számolt görbe azonos, fedik egymást. A szaggatott görbe a szokásos modellezési módszerrel nyerhető elektronokat mutatja, a folytonos görbe pedig csak a Keldis-paraméter 2-nél alacsonyabb értékeinél (nagy térerősségeknél) kilépő elektronok figyelembevételével nyerhető

5 spektrumokat. A 6.3 ábrával összevetve megfigyelhető, hogy a spektrum alacsonyabb energiás részeit csak akkor tudjuk jól reprodukálni, ha csak azokat az elektronokat vesszük figyelembe, amelyek a lokális Keldis-paraméter alacsonyabb értékének megfelelő térerősség mellett fotoemittálódtak, vagyis a minta forró pontjaiból lépnek ki. Ebből azt a következtetést vonhatjuk le, hogy a modellezés során felhasznált nemadiabatikus alagutazást is leíró fotoemissziós formula [1] alulbecsüli az alagutazási típusú emissziós események számát és fémekre csak korlátozottan használható, ahogyan arra egy közelmúltbeli tanulmányban is rámutattak [8]. Független kísérletek is alátámasztják, hogy a tisztán többfotonos és a tisztán alagutazási tartomány közötti átmenet gyorsabban lezajlik az intenzitás növelésével, mint amint azt a Yudin-Ivanov-féle nemadiabatikus alagutazási képlet [1] alapján várnánk [9,10]. Mivel azonban a többfotonos és alagutazási emissziós jelenségeket egyidejűleg máshogyan nem lehet figyelembe venni, ezért meghagytam ezt a közelítést. 7. kérdés: A 8. fejezetben vizsgált nanoméretű, ultragyors vákuumdióda milyen alkalmazásokban lehet vetélytársa a ma használt hagyományos elektronikai eszközöknek? A vákuumdióda a demonstrált formában még nem alkalmas az elektronikában ezzel analóg eszköz kiváltására. Számottevő előrelépést akkor lehet elérni, ha egy ilyen eszközt integrált optikai formában, pl. üvegfelületen valósítunk meg, a szabadon terjedő nyalábot felületi plazmonnal, a hagyományos fókuszálást pedig adiabatikus nanofókuszálással [11] helyettesítve. Egy ilyen, integrált nanooptikai eszköz koncepcióját Richter Péter bírálatára adott válaszom 6. ábráján is bemutattam. Amennyiben a dióda által biztosított funkciókat (i) nanométeres méretben és (ii) az optikai frekvenciák által biztosított, akár 100 fs alatti kapcsolási időkkel meg lehet valósítani, akkor lehetővé válik az ilyen kapukra épülő optikai számítógépek építése, amely kétségkívül előnyös lenne abból a szempontból, hogy a processzorok jelenleg néhány GHz-nél megrekedt órajelét legalább a THz-es tartományig növelni lehessen [12]. Hivatkozások [1] G. Yudin, M. Yu. Ivanov, Nonadiabatic tunnel ionization: Looking inside a laser cycle, Phys. Rev. A 64, (2001). [2] H. Petek, S. Ogawa, Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals, Prog. Surf. Sci. 56, (1997). [3] E. Marsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, A. L. Cord, H. Xu, A. L Huillier, A. Mikkelsen, Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna, Nano Lett. 15, (2015). [4] P. Dombi, P. Rácz, Ultrafast monoenergetic electron source by optical waveform control of surface plasmons, Opt. Express 16, 2887 (2008). [5] P. Dombi, P. Rácz, B. Bódi, Surface plasmon-enhanced electron acceleration with few-cycle laser pulses, Laser Part. Beams 27, (2009). [6] P. Rácz, P. Dombi, Non-ponderomtive electron acceleration in ultrashort surface plasmon fields, Phys. Rev. A 84, (2011). [7] G. Herink, D. R. Solli, M. Gulde, C. Ropers, Field-driven photoemission from nanostructures quenches the quiver motion, Nature 483, (2012).

6 [8] S. V. Yalunin, M. Gulde, C. Ropers, Strong-field photoemission from surfaces: Theoretical approaches, Phys. Rev. B 84, (2011). [9] P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuska, T. Fuji, F. Krausz, A. Y. Elezzabi, Observation of few-cycle, strong-field phenomena in surface plasmon fields, Opt. Express 18, (2010). [10] R. Bormann, M. Gulde, A. Weisman, S. V. Yalunin, C Ropers, Tip-Enhanced Strong-Field Photoemission, Phys. Rev. Lett. 105, (2010). [11] J. Vogelsang, J. Robin, B. J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Gross, C. Lienau, Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons, Nano Lett. 15, (2015). [12] F. Krausz, M. I. Stockman, Attosecond metrology: from electron capture to future signal processing, Nature Phot. 8, (2014). Budapest, május 10. Dombi Péter

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. házi védés Rácz Péter Témavezető: Dombi Péter Felületi plazmonok Propagáló felületi plazmon Lokalizált felületi plazmon

Részletesebben

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata. Ph. D. tézisfüzet. Rácz Péter

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata. Ph. D. tézisfüzet. Rácz Péter Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. tézisfüzet Rácz Péter Témavezető: Dr. Dombi Péter Konzulens: Dr. Papp Zsolt MTA Wigner Fizikai Kutatóközpont Budapest

Részletesebben

Válasz Dr. Richter Péter bírálatára

Válasz Dr. Richter Péter bírálatára Válasz Dr. Richter Péter bírálatára Szeretném megköszönni Dr. Richter Péter professzor úrnak a dolgozatom gondos átolvasására szánt időt, támogató és elismerő bírálói véleményét és elgondolkodtató kérdéseit.

Részletesebben

Nagyintenzitású lézerfény - anyag kölcsönhatás. Lézer- és gázkisülésfizika

Nagyintenzitású lézerfény - anyag kölcsönhatás. Lézer- és gázkisülésfizika Hartmann Péter Derzsi Aranka Horváth Zoltán György Korolov Ihor Kovács Anikó-Zsuzsa Kutasi Kinga Mezei Pál Rózsa Károly Schulze Julian Thomanné Forgács Judit Tóth József Császár György Sárközi Elek Lézer-

Részletesebben

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Kutatóegyetemi 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Lézer = speciális fény koherens (fázisban) kicsi a divergenciája (irányított)

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben

Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben MTA DOKTORI ÉRTEKEZÉS TÉZISEI Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben Dombi Péter MTA Wigner Fizikai Kutatóközpont Budapest 2016 0 A kutatások előzménye A fotoemisszió

Részletesebben

Atomok és fény kölcsönhatása a femto- és attoszekundumos időskálán

Atomok és fény kölcsönhatása a femto- és attoszekundumos időskálán Atomok és fény kölcsönhatása a femto- és attoszekundumos időskálán * LIMIT: Light-Matter Interaction Theory Group Szegedi Tudományegyetem Elméleti Fizikai Tanszék Benedict Mihály Czirják Attila Földi Péter

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig. Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február

Részletesebben

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

ELEKTRONIKAI ALKATRÉSZEK

ELEKTRONIKAI ALKATRÉSZEK ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben

Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben MTA DOKTORI ÉRTEKEZÉS Ultragyors fotoemissziós folyamatok nanolokalizált elektromágneses terekben Dombi Péter MTA Wigner Fizikai Kutatóközpont Budapest 2016 0 Tartalomjegyzék Rövidítések és szakkifejezések

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

Fotoindukált változások vizsgálata amorf félvezető kalkogenid arany nanorészecskéket tartalmazó rendszerekben

Fotoindukált változások vizsgálata amorf félvezető kalkogenid arany nanorészecskéket tartalmazó rendszerekben Az Eötvös Loránd Fizikai Társulat Anyagtudományi és Diffrakciós Szakcsoportjának Őszi Iskolája 2011.10.05 Visegrád Fotoindukált változások vizsgálata amorf félvezető kalkogenid arany nanorészecskéket tartalmazó

Részletesebben

ATTOSZEKUNDUMOS IMPULZUSOK

ATTOSZEKUNDUMOS IMPULZUSOK ATTOSZEKUNDUMOS IMPULZUSOK Varjú Katalin Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék Generating high-order harmonics is experimentally simple. Anne L Huillier 1 Mivel a Fizikai Szemlében

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István

Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István Új irányok és eredményak A mikro- és nanotechnológiák területén 2013.05.15. Budapest Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában Csarnovics István Debreceni Egyetem, Fizika

Részletesebben

Válasz Dr. Dzsotjan Gagik bírálatára

Válasz Dr. Dzsotjan Gagik bírálatára Válasz Dr. Dzsotjan Gagik bírálatára Szeretném megköszönni Dr. Dzsotjan Gagik professzor úrnak a dolgozatom gondos átolvasását, támogató és elismerő bírálói véleményét és elgondolkodtató kérdéseit. A feltett

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Attoszekundumos impulzusok keltése és alkalmazásai

Attoszekundumos impulzusok keltése és alkalmazásai ELI-vel kapcsolatos tudományterületek Attoszekundumos impulzusok keltése és alkalmazásai Varjú Katalin /53 SZEGED 2/53 attoszekundum ( -8 s) miért? hogyan? mire? 3/53 Mire jó egy ultrarövid (fs, as) impulzus?

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

X-FROG, GRENOUILLE. 11. előadás. Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra"

X-FROG, GRENOUILLE. 11. előadás. Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra Ágazati Á felkészítés a hazai ELI tel összefüggő ő képzési é és K+F feladatokra" " 11. előadás X-FROG, GRENOUILLE 1 X-FROG, GRENOUILLE Az előző ő óá órán megismert tfrogt FROG-technikán alapuló ló eljárásokkal

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék Koherencia és kvantum-klasszikus megfeleltetés ultragyors lézer-atom kölcsönhatásban Ayadi Viktor MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont Szeminárium: SZTE Elmélteti

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)

Részletesebben

Nagyenergiájú terahertzes impulzusok előállítása és alkalmazása (az ELI-ALPS-ban) Lehetőségek és kihívások

Nagyenergiájú terahertzes impulzusok előállítása és alkalmazása (az ELI-ALPS-ban) Lehetőségek és kihívások Nagyenergiájú terahertzes impulzusok előállítása és alkalmazása (az ELI-ALPS-ban) Lehetőségek és kihívások Almási Gábor, Fülöp József, Hebling János, Mechler Mátyás, Ollmann Zoltán, Pálfalvi László, Tőke

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Anyagi tulajdonságok meghatározása spektrálisan

Anyagi tulajdonságok meghatározása spektrálisan Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Fókuszált ionsugaras megmunkálás

Fókuszált ionsugaras megmunkálás FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok detektor CDEM (SE, SI) 2 Dual-Beam

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Fókuszált ionsugaras megmunkálás

Fókuszált ionsugaras megmunkálás 1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű Nagytisztaságú 4 He-es izotóphígítás alkalmazása vízminták tríciumkoncentrációjának meghatározására a 3 He leányelem tömegspektrométeres mérésén alapuló módszerhez Az édesvízkészletek felmérésében, a rétegvizek

Részletesebben

BÍRÁLAT. Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről.

BÍRÁLAT. Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről. BÍRÁLAT Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről. Kállay Mihály Automatizált módszerek a kvantumkémiában című az MTA doktora cím elnyerésére benyújtott 132

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

A femtoszekundumos lézerektől az attoszekundumos fizikáig

A femtoszekundumos lézerektől az attoszekundumos fizikáig A femtoszekundumos lézerektől az attoszekundumos fizikáig Varjú Katalin, Dombi Péter Kapcsolódási pont: ultrarövid impulzusok: karakterizálás, alkalmazások egy attoszekundumos impulzus előállításához kell

Részletesebben

Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése

Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése Tudományos diákköri dolgozat Írta: DOMBI PÉTER Témavezetô: DR. OSVAY KÁROLY JATE Optikai és Kvantumelektronikai Tanszék Szeged 1998.

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Ultrarövid lézerimpulzusok által keltett plazmonikus fotoemisszió és elektrongyorsítás vizsgálata.

PÉCSI TUDOMÁNYEGYETEM. Ultrarövid lézerimpulzusok által keltett plazmonikus fotoemisszió és elektrongyorsítás vizsgálata. PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Ultrarövid lézerimpulzusok által keltett plazmonikus fotoemisszió és elektrongyorsítás vizsgálata PhD értekezés

Részletesebben

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint Lézerek Extreme Light Infrastructure Készítette : Éles Bálint Elmélet A lézer olyan fényforrás, amely indukált emissziót használ egybefüggő fénysugár létrehozására Egybefüggőség definíciója: Koherens hullámok

Részletesebben

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium

Mérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium Mérési jegyzőkönyv 1. mérés: Abszorpciós spektrum meghatározása A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2012.02.08. A mérést végezte:

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1 Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá

Részletesebben

Az ELI projekt ( szuperlézer ) Dombi Péter

Az ELI projekt ( szuperlézer ) Dombi Péter Az ELI projekt ( szuperlézer ) Dombi Péter MTA Szilárdtestfizikai és Optikai Kutatóintézet Budapest Idő (másodperc) 10 18 ősrobbanás Időskálák a természetben Idő (másodperc) Szívverés 1 10 15 harmadkor/oligocén

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Röntgen-gamma spektrometria

Röntgen-gamma spektrometria Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata PhD értekezés Unferdorben Márta Témavezető: Dr. Pálfalvi

Részletesebben

Mikroszerkezeti vizsgálatok

Mikroszerkezeti vizsgálatok Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben