Gingl Zoltán, Szeged, :25 Műszerelektronika - Műveleti erősítők 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gingl Zoltán, Szeged, :25 Műszerelektronika - Műveleti erősítők 1"

Átírás

1 Gingl Zoltán, Szeged, :5 Műszerelektronika - Műveleti erősítők

2 :5 Műszerelektronika - Műveleti erősítők

3 - + =( ) Van tápeszültsége is: + t, - t Pozitív és negatív jelek is Tranzisztor:, ME: Jó: nagy, nagy ME: igen nagy, 0 5 vagy akár több! Ideális: végtelen + t - t :5 Műszerelektronika - Műveleti erősítők 3

4 menetet visszakötjük a bemenetre ha a bemenetet változtatjuk, a menet követi minél nagyobb, annál pontosabban! a meneti érték szabályozása ez (P-szabályzó) Szabályozás mérjük az eltérést a kívánttól beavatkozunk, hogy az eltérés csi legyen vezérlés: nem mérjük az eltérést, csak ismerjük az összekötő képletet például öldelt emitteres erősítő :5 Műszerelektronika - Műveleti erősítők 4

5 bemenetekbe áram nem olyik menet ideális eszültséggenerátor z erősítés végtelen nagy :5 Műszerelektronika - Műveleti erősítők 5

6 Ideális erősítőből egyéle elég lenne Valódi erősítők Különéle eltérések Osztályozás, sokéle erősítő Gyenge, átlagos, jó értékek lkalmazás szempontjából optimális erősítő választása :5 Műszerelektronika - Műveleti erősítők 6

7 :5 Műszerelektronika - Műveleti erősítők 7

8 :5 Műszerelektronika - Műveleti erősítők 8

9 Open-loop gain Large signal voltage gain Ideális esetben végtelen Frekvenciaüggő :5 Műszerelektronika - Műveleti erősítők 9

10 [db] ( ) V i p ( ) V ( ) V i p p GBWP :5 Műszerelektronika - Műveleti erősítők 0

11 :5 Műszerelektronika - Műveleti erősítők V GBWP p GBWP p V GBWP ) ( V GBWP V p V i i ) ( ) (

12 ( ) V p ( ) GBWP p GBWP V ( ) GBWP :5 Műszerelektronika - Műveleti erősítők

13 Visszacsatolt erősítő: szabályozás Korlátozott pontosságú szabályozás Erősítéshiba kapcsolások? Frekvenciaüggés? :5 Műszerelektronika - Műveleti erősítők 3

14 :5 Műszerelektronika - Műveleti erősítők 4 be ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( be be be be

15 :5 Műszerelektronika - Műveleti erősítők 5 GBWP GBWP V V V GBWP V GBWP V i i i G i G ) ( ) ( ) (

16 ( ) be( ) i be GBWP :5 Műszerelektronika - Műveleti erősítők 6

17 :5 Műszerelektronika - Műveleti erősítők 7 GBWP GBWP GBWP GBWP GBWP be i i, ) ( ) ( GBWP

18 :5 Műszerelektronika - Műveleti erősítők 8 be ) ( ) ( ) ( be ) ( ) ( ) ( be β: visszacsatolási tényező /β: erősítés

19 :5 Műszerelektronika - Műveleti erősítők 9 GBWP GBWP V V V GBWP V GBWP V i i i G i G ) ( ) ( ) (

20 be be ( ( ) ) i GBWP GBWP GBWP :6 Műszerelektronika - Műveleti erősítők 0

21 :5 Műszerelektronika - Műveleti erősítők GBWP GBWP GBWP GBWP GBWP be i i, ) ( ) ( GBWP

22 be műveleti erősítő számára ez ugyanaz a kapcsolás! (szuperpozíció tétele) Bár be erősítése /, a műveleti erősítő most is ugyanolyan visszacsatolási aránnyal dolgozik :5 Műszerelektronika - Műveleti erősítők

23 műveleti erősítése mindig a visszacsatolási tényező reciproka (/β) sávszélesség mindig β GBWP jelerősítés ettől különböző lehet Több bemenő jel is lehet különböző erősítéssel összeadó vonó :5 Műszerelektronika - Műveleti erősítők 3

24 be be Erősítés? Jelek erősítése? Sávszélesség? Erősítés hibája? be :5 Műszerelektronika - Műveleti erősítők 4

25 4 5 be be be3 3 Erősítés? Jelek erősítése? Sávszélesség? Erősítés hibája? :5 Műszerelektronika - Műveleti erősítők 5

26 Erősítés? Jelek erősítése? Sávszélesség? Erősítés hibája? :5 Műszerelektronika - Műveleti erősítők 6

27 3 4 Erősítés? Jelek erősítése? Sávszélesség? Erősítés hibája? :5 Műszerelektronika - Műveleti erősítők 7

28 g 0 B :5 Műszerelektronika - Műveleti erősítők 8

29 :5 Műszerelektronika - Műveleti erősítők 9

30 Input voltage range bemeneti eszültségek tartománya korlátos Általában a tápeszültségek közötti: - t < < + t t aszimmetrikus pár mv-tól - Voltig terjedhet típustól ügg t :5 Műszerelektronika - Műveleti erősítők 30

31 kár pár mv, sőt, csit meg kívül is eshet a tápon Single supply Single supply ail-to-rail t t t t t t :5 Műszerelektronika - Műveleti erősítők 3

32 + és - eleve korlátos, így a különbségük is Gyakran diódák vannak köztük: zaz nyitóeszültségnyi lehet csak a különbség Nem gond, ha negatív visszacsatolás van Nem használható komparátorként :5 Műszerelektronika - Műveleti erősítők 3

33 :5 Műszerelektronika - Műveleti erősítők 33

34 ngolul: input oset voltage Nem nulla bemenet esetén nulla a menet Ok: csit aszimmetrikus bemenetek reális ideális os os :5 Műszerelektronika - Műveleti erősítők 34

35 be os os be be os :5 Műszerelektronika - Műveleti erősítők 35

36 be os os be be os, os os :5 Műszerelektronika - Műveleti erősítők 36

37 Invertáló, összegző, különbségképző, z oszeteszültség erősítése minden kapcsolás esetén /β! :5 Műszerelektronika - Műveleti erősítők 37

38 :5 Műszerelektronika - Műveleti erősítők 38

39 ngolul: input bias current Beelé vagy elé olyó áramok z irány a két bemenetre azonos Értékük nem teljesen azonos (kb. 0-30%) különbségüket oszetáramnak hívjuk I b- I b- I b+ I b :5 Műszerelektronika - Műveleti erősítők 39

40 reális ideális I b- V- I b+ V- szuperpozíció tételével külön számítható a két áram hatása :5 Műszerelektronika - Műveleti erősítők 40

41 I b-, I b I b negatív bemenet virtuális öldpont: 0V Tehát -en nem olyhat áram Így a teljes áram -n olyik :5 Műszerelektronika - Műveleti erősítők 4

42 3 I b+ pozitív bemeneten eszültség lép el, I b I 3 Ezt erősíti el a neminvertáló erősítő Beelé olyó áramnál negatív a eszültség Ellentétes hatású, mint a negatív bemenetbe olyó áram 3 I b b :5 Műszerelektronika - Műveleti erősítők 4

43 , I b vi b p I b I b- : csak visszacsatoló körben levő ellenállás számít I b+ : a pozitív bemeneten levő eredő ellenállás és az erősítési tényező számít Ellentétes hatásúak: megelelő választással csökkenthető a hatásuk :5 Műszerelektronika - Műveleti erősítők 43

44 :5 Műszerelektronika - Műveleti erősítők 44

45 Elektronikus zaj, jelek véletlenszerű ingadozása eszültség és áram is zajos Ok: véletlenszerű mikroolyamatok, hőmérséklet Véletlenszerű? ehér zaj / zaj / zaj :5 Műszerelektronika - Műveleti erősítők 45

46 Erősíthetik, csökkenthetik egymást Statisztikus kezelés Szórás (eektív érték) Átlaguk nulla! zajok teljesítménye összegződik, nem az amplitúdójuk zajorrások elerősítve jelentkeznek a meneten Ezek teljesítménye (négyzetes átlaga) összegzendő! :5 Műszerelektronika - Műveleti erősítők 46

47 bemeneteken eszültségzaj jelenik meg Hasonlóan kezelhető, mint az oszeteszültség menetre jutása: /β szorzással :5 Műszerelektronika - Műveleti erősítők 47

48 bemeneteken zajáram jelenik meg Hasonlóan kezelhető, mint a bemeneti áram menetre jutása: negatív bemeneti zajáram a visszacsatoló körben levő ellenállással szorzódik pozitív bemeneti zajáram a bemeneten levő eredő ellenállással és /β-val szorzódik :5 Műszerelektronika - Műveleti erősítők 48

49 :5 Műszerelektronika - Műveleti erősítők 49

50 :5 Műszerelektronika - Műveleti erősítők 50

51 Két jelnek a közös része: Átlagértékük CM common mode rejection ratio Különbség erősítése osztva a közös rész erősítésével db-ben szokás megadni műveleti erősítő önmagában is ilyen! :5 Műszerelektronika - Műveleti erősítők 5

52 - + V CM CM V CM :5 Műszerelektronika - Műveleti erősítők 5

53 Invertáló erősítő pozitív és negatív bemenet is 0V Közös módusú jel: 0V! Nem lép el hiba! Csak olyan kapcsolásnál lép el, ahol a műveleti erősítő bemenetein a eszültség változik Neminvertáló, különbségképző, követő, :5 Műszerelektronika - Műveleti erősítők 53

54 be V V V be be CM CM CM CM be V be CM CM :5 Műszerelektronika - Műveleti erősítők 54

55 be CM V be be V CM CM V be CM :5 Műszerelektronika - Műveleti erősítők 55

56 be V V V be be CM CM CM CM be V be CM CM :5 Műszerelektronika - Műveleti erősítők 56

57 CM be be be V CM be CM CM CM V :5 Műszerelektronika - Műveleti erősítők 57

58 :5 Műszerelektronika - Műveleti erősítők 58 CM CM CM V CM CM V CM V

59 :5 Műszerelektronika - Műveleti erősítők 59 CM CM 0 0 0

60 CM 0 CM 0 CM Tehát a műveleti erősítő CM egyúttal a dierenciálerősítő CM is. De csak Ideális ellenállások esetén! Leggyakrabban az ellenállások pontossága a döntő :5 Műszerelektronika - Műveleti erősítők 60

61 és erősítése csit más: G és G+ΔG G G G 0 G G G G G 0 0 G G G G G 0 0 G G G 0 0 G :5 Műszerelektronika - Műveleti erősítők 6

62 Egy s erősítéshiba is ellép CM: CM G G :5 Műszerelektronika - Műveleti erősítők 6

63 g 0 B :5 Műszerelektronika - Műveleti erősítők 63

64 második okozat egy egyszeres különbségképző Ennek CM-je az ellenállások egyormaságán múlik Általában az ellenállások 0,0% mértékben térnek csak el (integrált erősítőknél) Ezzel 80dB-90dB CM érhető el z első okozat ezen változtat? :5 Műszerelektronika - Műveleti erősítők 64

65 :5 Műszerelektronika - Műveleti erősítők 65 g g g g B

66 közös módusú jel: 0 z első okozat csak egyszeresen erősíti és nem számít és különbözősége! Különbségjelet az első okozat sokszorosra erősítheti : g :5 Műszerelektronika - Műveleti erősítők 66

67 g CM Tehát a második okozat CM-t növeli erősítésszeresre Példa: D63 garantált értékei (a tipikus +0dB) CM (G=): 80dB CM (G=0): 00dB CM (G=00): 0dB :5 Műszerelektronika - Műveleti erősítők 67

68 További előnyök a dierenciálerősítőhöz képest bemenetek nagy impedanciásak igen csi a bemeneti áram bemenetek szimmetrikusak, egyorma terhelést jelentenek a jelorrásra z erősítés egyetlen ellenállással állítható Kiválóan alkalmas mérőhidak erősítésére :5 Műszerelektronika - Műveleti erősítők 68

69 :5 Műszerelektronika - Műveleti erősítők 69

70 Ouput voltage range (output voltage swing) meneti eszültségek tartománya korlátos tápeszültségek közötti: - t < < + t t t aszimmetrikus pár mv-tól - Voltig terjedhet típustól ügg terheléstől (áramtól) ügg :5 Műszerelektronika - Műveleti erősítők 70

71 kár pár mv Egytápeszültségű áramköröknél ontos Single supply Single supply ail-to-rail t t t t t t :5 Műszerelektronika - Műveleti erősítők 7

72 Tipikusan 0m-0m Léteznek nagyobb meneti áramúak: 50m 00m kár..0 Laser driver, Peltier driver, coil driver, motor driver s áramúak lehetnek rövidzárvédettek nagy áramúak lehetnek túlterhelés, túlmelegedés ellen védettek Ezeket nem vehetjük biztosra! :5 Műszerelektronika - Műveleti erősítők 7

73 :5 Műszerelektronika - Műveleti erősítők 73

74 ngolul: slew rate menet nem változhat akármilyen gyorsan Pozitív és negatív irányban csit különböző lehet a maximális sebesség Minél nagyobb rekvenciájú és amplitúdójú a jel, annál inkább lehet hatása Jeltorzulást okozhat, a jel gyors szakaszait korlátozhatja Egységugrás esetén lineáris emelkedés Szinusz gyors szakaszain egyenes rész jelenik meg :5 Műszerelektronika - Műveleti erősítők 74

75 Tehát hiába nagy a sávszélesség, ez korlátozhat. Szokás ezt néha Torzításmentes sávszlességnek hívni distortion ree bandwidth nagy jelű sávszélességnek hívni large signal bandwidth Ha igen csi az amplitúdó, akkor csak az sávszélesség számít. Ezért gyakran ezt sjelű sávszélességnek hívják small signal bandwidth :5 Műszerelektronika - Műveleti erősítők 75

76 S t t Forrás: OP7 adatlap, :5 Műszerelektronika - Műveleti erősítők 76

77 Szinuszos jelet tentünk jel maximális sebessége a nullátmenetnél van Értéke ügg a rekvenciától és amplitúdótól is x( t) dx dt max sin dx dt cos t t :5 Műszerelektronika - Műveleti erősítők 77

78 torzításmentesség elétele különböző esetekben dott és esetén S legalább mekkora legyen? dott S és esetén legeljebb mekkora lehet? dott S és esetén legeljebb mekkora lehet? :5 Műszerelektronika - Műveleti erősítők 78 S S S

79 :5 Műszerelektronika - Műveleti erősítők 79

80 Elvileg elég egy értéket megadni: csak két tápeszültségvezetés van Szokás mégis ± megadása utalás arra, hogy a GND ezek közt van tehát a GND nem azonos a negatív tápeszültséggel Példák: ±5V 5V :5 Műszerelektronika - Műveleti erősítők 80

81 Sokéle típus kapható Gyakori: ±5V Manapság gyakori: 5V kár,8v (elemes táplálás) kár 50-60V Több paraméter is ügghet a tápeszültség értékétől (pl. nyílthurkú erősítés) :5 Műszerelektronika - Műveleti erősítők 8

82 Nyugalmi: nulla meneti áramnál Tipikus érték: -3m Kis ogyasztású, elemes áramkörök: 30u..00u Nagy teljesítményű áramköröknél akár pár 0 m :5 Műszerelektronika - Műveleti erősítők 8

83 Power supply rejection ratio tápeszültség csit változhat Terhelés változások Elem lemerülése Stabilizálási hiányosságok Ez hatással van a meneti eszültségre PS V V out s :5 Műszerelektronika - Műveleti erősítők 83

84 Minél jobb tápeszültséget használjunk Szokás a többszörös stabilizálás (sorba kötött stabilizátorok) Csatolásmentesítő kondenzátorok PS növekvő rekvencián csökken Tipikus értéke 70-90dB :5 Műszerelektronika - Műveleti erősítők 84

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek

Részletesebben

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői Elektronika 2 1. Előadás Műveleti erősítők felépítése, ideális és valós jellemzői Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel.

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel. Elektronika 1 8. Előadás Műveleti erősítők. Alapkapcsolások műveleti erősítővel. Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ 101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az

Részletesebben

Elektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások

Elektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások Elektronika 2 2. Előadás Műveleti erősítők táplálása, alkalmazása, alapkapcsolások Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

Áramkörszámítás. Nyílhurkú erősítés hatása

Áramkörszámítás. Nyílhurkú erősítés hatása Áramkörszámítás 1. Thevenin tétel alkalmazása sorba kötött ellenállásosztókra a. két felező osztó sorbakötése, azonos ellenállásokkal b. az első osztó 10k, a következő fokozat 100k ellenállásokból áll

Részletesebben

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek

Részletesebben

Ideális műveleti erősítő

Ideális műveleti erősítő Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

Mûveleti erõsítõk I.

Mûveleti erõsítõk I. Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú

Részletesebben

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás 1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! gerjedés Bode hurokerősítés nem-invertáló db pozitív visszacsatolás követő egységnyi Kösse össze a két oszlop egy-egy összetartozó fogalmát!

Részletesebben

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

Elektronika 1. (BMEVIHIA205)

Elektronika 1. (BMEVIHIA205) Elektronika. (BMEVHA05) 5. Előadás (06..8.) Differenciál erősítő, műveleti erősítő Dr. Gaál József BME Hálózati endszerek és SzolgáltatásokTanszék gaal@hit.bme.h Differenciál erősítő, nagyjelű analízis

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 1. rész

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 1. rész Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 1. rész Hobbielektronika csoport 2016/2017 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások

Részletesebben

Műveleti erősítők - Bevezetés

Műveleti erősítők - Bevezetés Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.

Részletesebben

Gingl Zoltán, Szeged, dec. 1

Gingl Zoltán, Szeged, dec. 1 Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 4. VILLAMOS ELVŰ MÉRÉSEK ALAPELVEK, ALAPÁRAMKÖRŐK

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 4. VILLAMOS ELVŰ MÉRÉSEK ALAPELVEK, ALAPÁRAMKÖRŐK ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 4. VILLAMOS ELVŰ MÉRÉSEK ALAPELVEK, ALAPÁRAMKÖRŐK Dr. Soumelidis Alexandros 2018.10.11. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

1. Fejezet. Visszacsatolt erősítők. Elektronika 2 (BMEVIMIA027)

1. Fejezet. Visszacsatolt erősítők. Elektronika 2 (BMEVIMIA027) Elektronika (MEVIMI07) Fejezet Visszacsatolt erősítők visszacsatolás célja: az erősítő paramétereinek igények szerinti megváltoztatása visszacsatolás elve (a J jel : vagy feszültség, vagy áram): J ki =

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Műveleti erősítők alapkapcsolásai A Miller-effektus

Műveleti erősítők alapkapcsolásai A Miller-effektus Műveleti erősítők alapkapcsolásai A Miller-effektus Berta Miklós 1. Elméleti összefoglaló A műveleti erősítő (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére

Részletesebben

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Különleges analóg kapcsolások. Elmélet Közönséges és precíz egyenirányítók-, mûszer-erõsítõk-, audio erõsítõk, analóg szorzók-, modulátorok és demodulátorok-,

Részletesebben

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László 7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson

Részletesebben

Elektronika II. 5. mérés

Elektronika II. 5. mérés Elektronika II. 5. mérés Műveleti erősítők alkalmazásai Mérés célja: Műveleti erősítővel megvalósított áramgenerátorok, feszültségreferenciák és feszültségstabilizátorok vizsgálata. A leírásban a kapcsolások

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök

Részletesebben

Erősítő tanfolyam Keverők és előerősítők

Erősítő tanfolyam Keverők és előerősítők Erősítő tanfolyam Keverők és előerősítők Hol tartunk? Mikrofon Gitár Dob Keverő Végfok Mi az a keverő? Elektronikus eszköz Audio jelek átalakítása, majd keverése Csatornák erősítése (Hangszínszabályozás)

Részletesebben

Teljesítményerősítők ELEKTRONIKA_2

Teljesítményerősítők ELEKTRONIKA_2 Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők

Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők Elektronika 2 8. Előadás Analóg és kapcsolt kapacitású szűrők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - Ron Mancini (szerk): Op Amps for Everyone, Texas Instruments, 2002 16.

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

A/D és D/A átalakítók gyakorlat

A/D és D/A átalakítók gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)

Részletesebben

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások 10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások "Elektrós"-Zoli 2013. november 3. 1 Tartalomjegyzék 1. Erősítő fokozatok összekapcsolása

Részletesebben

BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET ELEKTRONIKA MINTAPÉLDÁK

BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET ELEKTRONIKA MINTAPÉLDÁK BDAPST MŰSZAK FŐSKOLA KANDÓ KÁLMÁN VLLAMOSMÉNÖK FŐSKOLA KA ATOMATKA NTÉZT LKTONKA MNTAPÉLDÁK Összeállította: Dr. váncsyné Csepesz rzsébet Bapest,. ) gy valóságos rétegióa mnkaponti aatait méréssel határoztk

Részletesebben

1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:

1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak: Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;

Részletesebben

Teljesítmény-erősítők. Elektronika 2.

Teljesítmény-erősítők. Elektronika 2. Teljesítmény-erősítők Elektronika 2. Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény:

Részletesebben

Komparátorok alkalmazása

Komparátorok alkalmazása Komparátorok alkalmazása Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés A komparátorok definíciója és rajzjele Komparátorok és műveleti erősítők A komparátorok tulajdonságai A nem-ideális

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK

Részletesebben

5. Műveleti erősítők alkalmazása a méréstechnikában

5. Műveleti erősítők alkalmazása a méréstechnikában 5. Műveleti erősítők alkalmazása a méréstechnikában A műveleti erősítőket emelkedő tlajdonságaik miatt az elektroniks mérőműszerek alapvető alkatrészei közé tartoznak. Felhasználásk nagyon gyakori a különböző

Részletesebben

Áramkörök számítása, szimulációja és mérése próbapaneleken

Áramkörök számítása, szimulációja és mérése próbapaneleken Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE

DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE M I S K O L C I E G Y E T E M GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ÉS ELEKTRONIKAI INTÉZET DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MECHATRONIKAI MÉRNÖKI BSc alapszak hallgatóinak MÉRÉSI

Részletesebben

Elektronika II. 4. mérés. Szimmetrikus differencia erősítő mérése

Elektronika II. 4. mérés. Szimmetrikus differencia erősítő mérése Elektronika II. 4. mérés Szimmetrikus differencia erősítő mérése 07.0.30. Mérés célja: Bipoláris tranzisztoros szimmetrikus erősítő működésének tanulmányozása, paramétereinek mérése. A mérésre való felkészülés

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

A 2009-es vizsgákon szereplő elméleti kérdések

A 2009-es vizsgákon szereplő elméleti kérdések Kivezérelhetőség és teljesítményfokozatok: A 2009-es vizsgákon szereplő elméleti kérdések 1. Ismertesse a B osztályú teljesítményfokozat tulajdonságait (P fmax, P Tmax, P Dmax(1 tr), η Tmax )! (szinuszos

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg

Részletesebben

Műveleti erősítők alapkapcsolásai A Miller-effektus

Műveleti erősítők alapkapcsolásai A Miller-effektus Műveleti erősítők alapkapcsolásai A Millereffektus 1. Bevezetés A műveleti erősítő pl. a gyári standard µa741 (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS

Részletesebben

TORKEL 840 / 860 Akkumulátor terhelőegységek

TORKEL 840 / 860 Akkumulátor terhelőegységek TORKEL 840 / 860 Akkumulátor terhelőegységek Az erőművekben és transzformátor alállomásokon lévő akkumulátortelepeknek hálózat kiesés esetén készenléti energiát kell szolgáltatniuk. Sajnálatos módon az

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elektronika ismeretek középszint 1811 ÉETTSÉGI VIZSGA 018. október 19. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ EMBEI EŐFOÁSOK MINISZTÉIUMA

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Elektronika II. laboratórium

Elektronika II. laboratórium 2. Elméleti áttekintés: Elektronika II. laboratórium 2. mérés: Hangolt körös analóg áramkörök Összeállította: Mészáros András 207.09.9. Az integrált műveleti erősítő kedvezően használható el aktív RC áramkörök

Részletesebben

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek Elektronika 2 7. Előadás Analóg és kapcsoló-üzemű tápegységek Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - B. Carter, T.R. Brown: Handbook of Operational Amplifier Applications,

Részletesebben

Zh1 - tételsor ELEKTRONIKA_2

Zh1 - tételsor ELEKTRONIKA_2 Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően

Részletesebben

Az ideális feszültségerősítő ELEKTRONIKA_2

Az ideális feszültségerősítő ELEKTRONIKA_2 Az ideális feszültségerősítő ELEKTRONIKA_2 Elektronika 2 (Kód:INBK812) Kredit: 2 Óraszám: 2/hét Vizsgáztatás: ZH_1(a hetedik előadás helyet) ZH_2(a 14-edik előadás helyet) szóbeli a vizsgaidőszakban Értékelés:

Részletesebben

07. mérés Erősítő kapcsolások vizsgálata.

07. mérés Erősítő kapcsolások vizsgálata. 07. mérés Erősítő kapcsolások vizsgálata. A leggyakrabban használt üzemi paraméterek a következők: - a feszültségerősítés Au - az áramerősítés Ai - a teljesítményerősítés Ap - a bemeneti impedancia Rbe

Részletesebben

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség

Részletesebben

Történeti Áttekintés

Történeti Áttekintés Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,

Részletesebben

Áramtükrök. A legegyszerűbb két tranzisztoros áramtükör:

Áramtükrök. A legegyszerűbb két tranzisztoros áramtükör: Áramtükrök Az áramtükör egy olyan alapvető építő elem az analóg elektronikában, amelynek ismerete elengedhetetlen. Az áramtükrök olyan áramkörök, amik az áramok irányát változtatják meg, de a be- ill.

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

9. Az 1. ábrán látható feszültségosztó esetén AU = 0,08 és R1 = 4 kω. Számoljuk ki R2 értékét.

9. Az 1. ábrán látható feszültségosztó esetén AU = 0,08 és R1 = 4 kω. Számoljuk ki R2 értékét. Erősítő 1. Egy feszültségosztót R1 kω és R kω ellenállásokból állítunk össze. a) Mekkora az R1 ellenállásról elvezetett menő feszültség, ha a jövő feszültség 30 V? b) Mekkora a feszültségerősítés? c) Mekkora

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

ANALÓG ÉS DIGITÁLIS TECHNIKA I

ANALÓG ÉS DIGITÁLIS TECHNIKA I ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A

Részletesebben

Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél

Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél A nagy áram meghajtó képességű IC-nél nagymértékben előjöhetnek a földvezetéken fellépő hirtelen áramváltozásból adódó problémák. Jelentőségükre

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben