Digitális képalkotás fizikája, képek tárolása
|
|
- Márk Mezei
- 6 évvel ezelőtt
- Látták:
Átírás
1 Digitális képalkotás fizikája, képek tárolása
2 Előadás tartalma Képalkotó rendszerek általános modellje Elektromágneses sugárzás Félvezetők / fotodiódák / CCD-k felépítése működése Ezen eszközök működése miatt kialakuló zajok/hibák Digitális képek tárolásának szabványai BMP / TIFF GIF LZW kódolás PNG (és tömörítése) JPEG (és tömörítése, artifaktumai) DCM
3 Jelforrások Fény Elektromágneses sugárzás Egyszerre hullám és részecsketulajdonságokkal is bír Főleg a részecsketulajdonságaival foglalkozunk a tárgy során Pl.: Látható, Röntgen (CT, Röntgen, Tomo), Gamma (PET), MRI Hang Rugalmas közeg mechanikai rezgése, mely hullámként terjed Pl.: Ultrahang
4 Az elektromágneses sugárzás Foton mozgása miatt egyszerre változik a mágneses és az elektromos tér, vektoraik egymásra és a terjedési irányra merőleges hullámmozgást végeznek : A fotonok főbb tulajdonságai: Nyugalmi tömege nulla Sebessége állandó Frekvenciájával arányos energiája: E h c Ez határozza meg, hogy viselkedik más anyagokkal találkozva A fény / energia kvantuma Polarizáció
5 Fotoelektromos kölcsönhatás Foton rugalmatlanul ütközik egy elektronnal: E E E E f he ke E f : foton energiája, he : elektron kötési energiája : fotoelektron kinetikus energiája E ke
6 Fotoelektromos kölcsönhatás Annál valószínűbb, minél kisebb : Értelemszerűen nem lehet negatív E ke Minél nagyobb rendszámú (Z) elemet vizsgálunk, annál nagyobbak a kötési energiák Minél távolabb van az atommagtól az elektron annál kisebb a kötési energiája Röntgen foton tipikusan K héjú elektronokkal tud kölcsönhatásba kerülni ~10 kev (alacsonyabb Z esetén) Gamma fotonoknál ritkább a kölcsönhatás Ökölszabály: kölcsönhatás gyakorisága 3 Z E f
7 Fotonok energiája Determinálja, hogy különböző atomokkal hogyan lép kölcsönhatásba (foto-elektromos, Compton, stb., lsd. majd a röntgenes előadást)
8 Fényérzékelés folyamata Fény Fotodióda (fotonból áram) Kondenzátor (gyűjti a töltést) Analóg erősítő A/D átalakító Digitális feldolgozás Ez egy fizikai eszköz is lehet (pl. MOS kapacitás)
9 Félvezetők működési elve Kristályszerkezetek elektronjai: N típusú Félvezető : Lehetséges energiájuk diszkrét halmazt alkot (az elektronok úgynevezett sávokban helyezkednek el): Legfelső a vezetési sáv (e- többlet) Alatta az ú.n. vegyértéksáv (lyuk többlet) Félvezetők esetén termikus mozgás a két sáv között P típusú Félvezető :
10 Diódák működési elve Dióda: egymás mellett egy P és egy N félvezető: Anódtól a katód felé folyik az áram, ha Up>Un Ellenkező esetben is folyik áram, de az feszültség független és jóval kisebb (ez lesz a sötétáram)
11 Félvezető fotodiódák Átmeneti tartományba eső foton hatására keletkező töltéshordozók okozta áram mérésén alapulnak: Félvezető sávszerkezete határozza meg, hogy milyen energiájú fotonokra érzékeny a dióda Az impulzusok megszámlálhatóak foton számláló detektor Hátterében a fényelektromos hatás áll Dióda záró irányban előfeszítve az átmeneti tartományba becsapódó fotonok által keltett fotoelektronok áramot generálnak
12 Charge-coupled Device (CCD) CCD-k fényérzékeny MOS kondenzátorokból állnak: Felépítését tekintve egy fém elektróda szigetelő P félvezető N félvezető szendvics, fémre pozitív töltést N félvezetőre negatív töltést csatolunk. P adalékolt Si-ban foto elektromos kölcsönhatás során egy vezetési elektron és egy lyuk keletkezik Ha elegendően nagy az N félvezető és a fémlap közötti feszültség, akkor a lyuk az N félvezető felé indul, míg az elektron a dielektrikum elektródával szembeni oldalára kerül.
13 Charge-coupled Device (CCD) Ilyen kondenzátorok helyezkednek el egymás mellett: 3 db szükséges 1 pixelhez Ezek a kondenzátor hármasok gridben helyezkednek el Az elektródákra kapcsolt feszültséggel a töltéseket shiftelni lehet, innen ered a töltéscsatolt elnevezés. Expozíció alatti vezérlés: V V V, V 2 kusz 1 3 Ez 1 db (szub) pixel!
14 Charge-coupled Device (CCD) Kiolvasás során alkalmazott vezérlés: V V V V 3 2 kusz 1 V V V, V 3 kusz 2 1
15 CCD működésének szemléltetése
16 Szcintilláció Nagyobb energiájú fotonokra érzéketlenek: Pl. Röntgen, gamma, stb. Szcintilláció: Cél látható / detektor által érzékelhető fotont generálni Újfent a foto-elektromos kölcsönhatáshoz nyúlunk Olyan anyagot választunk, melyre igazak az alábbiak: Z eléggé nagy gyakori a kölcsönhatás Van olyan elektronja, melyre E mögé helyezve hagyományos detektort érzékelhetővé válnak a nagyobb energiájú fotonok is Pl.: CsI kristályok röntgennél E he E f
17 Milyen zaj terheli a képeket Fotonok inherens zaja Fotonok modellezése ergodikus Poisson folyamattal E X Qesetén var X Q. Fényérzékeny MOS kondenzátor Sötét áram: P-N záró állásában is folyik áram, valamint a háttérsugárzás is generál áramot. Kalibrációval kompenzálható Előző felvétel beégése: Csak ha túl kevés idő telik el két felvétel között Analóg erősítőből származó zaj A/D kvantálási zaja: egyenletes eloszlású (lsd ML3) Szcintilláció zaja (ha szükséges)
18 Dinamika tartomány Full Well Capacity (FWC [e - ]): A P-SI réteg csak véges számú elektront képes tárolni Hozzávetőlegesen 5E4 elektron egy mai érzékelőnél Orvosi berendezéseknél E5 nagyságrendű Kiolvasási zaj (RN [e - ]): Kalibrált MOS kondenzátorok zaja (+ a beégés, ha van) Ha jó a kalibráció, akkor E-1 nagyságrendű Analóg digitális konverzió zaja (ADCN [e - ]): Lsd. ML 3, 1E-5 nél általában kisebb Dinamikatartomány bitekben: P: analóg erősítő erősítése FWC P D log 2 P RN ADCN
19 Dinamika tartomány P általában állítható: ADC-t tipikusan úgy tervezik, hogy P=1 esetén az FWC adja a maximális kimenetet Orvosi eszközök esetében csak kis tartományban állítható P<1 állításnak az eddigiek értelmében nincs túl sok értelme P>1 esetén romlik a dinamika, de kevesebb foton esetén is kihasználhatjuk az A/D átalakító teljes tartományát Fényképezőgépeknél az erősítést ISO P*100 alakban állítjuk Az ISO a szabványosítási szervezetre, illetve a régi kisfilmes (ISO/ASA 50/100/200/400/800/1600) gépek elnevezéséből maradt ránk
20 Képrögzítés egyéb fizikai hibái MOS kapacitás hibája Halott pixel: függetlenül a megvilágítástól mindig sötétáramnyi töltés generálódik benne Forró pixel: megvilágítástól függetlenül mindig telített Ezek a hibák a szomszédos érzékelők által mért intenzitásokból kiinterpolálhatóak Szisztematikus zaj Orvosi képalkotás során használt flat detektorok tipikusan több blokkból állnak össze: Blokkonként eltérő hibájú A/D, illetve analóg erősítő Kompenzálni kell a hatást, különben zavaró lehet (főleg a rekonstruált képeken)
21 Képformátumok Veszteségmentes Pontosan visszaállítható az eredeti kép BMP, PNG, (TIFF), JPEG2000 megfelelően beállítva Veszteséges Nem állítható vissza a teljes információ JPEG, JPEG2000, Fraktál tömörítés Tárolók amik sokmindent tartalmazhatnak TIFF, DiCom
22 BMP, TIFF Bitmap Image (.bmp) Az összes képpont intenzitásának szerializációját tárolja Esetleg az adatokat LZW tömöríti Tag Image File Format (.tif) Különböző színábrázolási és tömörítési módokat támogat Több réteget, rétegek átlátszóságát is kezeli LZW / (Huffman) Futáshossz / JPEG kódolás Professzionális használatban (tördelő, grafikus szoftverekben) elterjedt, hétköznapiban nem annyira
23 Graphics Interchange Format (.gif) Jellemzői: Legfeljebb 8 bites képeket kezel (színes esetben is) +RGB paletta: csökkenhető a kvantálásból eredő hiba LZW veszteségmentes tömörítést alkalmaz GIF 89-től animált képek Története: 83-ban az Unisys szabadalmat jegyzett az LZW-re 94-től üzleti felhasználóktól használati díjat követelt 99-ben jogi eljárás azokkal szemben, akik nem licence-elt szoftverrel készült GIF képeket használtak weboldalukon
24 Lempel-Ziv-Welch kódolás Változó bithosszú kódolás Lépései: 1. Szótárat inicializálunk minden lehetséges pixel intenzitással 2. Kikeressük a kódolni kívánt sorozat azon leghosszabb eddig még nem kódolt prefixét (W), mely már szerepel a szótárba (k kóddal) 3. Hozzátoldjuk a tömörített kép végéhez k-t, majd bővítjük a szótárat [W a]-val, ahol a a tömörítendő bitfolyam W utáni első eleme. 4. GO TO 2 A 3. lépésbeli k-t mindig annyi biten írjuk ki, amennyin ábrázolható a szótár összes kódja (ez a változó kódhossz oka)
25 Lempel-Ziv-Welch kódolás példa Például kódoljuk az alábbi intenzitásképet: A bitsorozathoz sorosítani kell a képet, pl. oszloponkénti szerializálással: [1,2,1,2,3,2,1,2,1] Átlagos teljesítménye: Angol szövegeknél átlagosan felezi a file méretét Képek esetén a ¾-edes arány tekinthető átlagosnak
26 Portable Network Graphics (.png) Motivációja: GIF lecserélése (LZW kihagyása) Jóval fejlettebb a GIF-nél: α csatornák, γ korrekció Palettás / 16 bites szürkeskálás / 48 bites színábrázolás Fokozatos megjelenítés De nem támogat animációt, arra az MNG / APNG szolgál Veszteségmentes, két fázisú tömörítés: 1. fázis: egyszerű lineáris szűrés alapú predikció 2. fázis: Deflate (LZ77) tömörítés (nincs szabadalmazva)
27 PNG tömörítése szűrés Motiváció: predikció szűréssel, csak a predikciós hibát kelljen tömöríteni (nincs nagy, nagyságrendbeli változás) Alkalmazható szűrők: Különböző szűrők a bitfolyam előző pixeleinek intenzitásai alapján számított predikció és az aktuális pixel intenzitásának különbségét állítják elő, pl.: Soronként eltérő szűrés megengedett, megválasztásuk heurisztikus eljárással történik A szűrt kép minden pixele egész értékű kell, hogy legyen! Cél a szűrt kép értékkészletének minimalizálása -1 4
28 PNG tömörítése DEFLATE Duplikált sorozatok keresése: LZ77-el tömörít véges hosszú pufferben keresi a tömöríteni kívánt bitsorozat leghosszabb prefixét Pointer a minta előző előfordulására, és hosszára, és az azt követő első intenzitás értékét tároljuk Huffman kódolással tömörítés: Lsd. Digitális technika Gyakoriság alapján optimális kódhosszú tömörítés Különböző intenzitások különböző hosszúságú kód Fokozatos megjelenítés: Több menetben, több felbontásban tömöríti a képet De minden pixelt csak egyszer tartalmaz a file
29 Joint Photographic Experts Group Jellemzői: (.jpeg /.jpg) Több réteg, rétegenként különböző átlátszóság 16 bit / csatornás értékkészlet Veszteséges és veszteségmentes tömörítést is támogat Alkalmazási területe: Webes képek Hobbi fényképezőgépek Orvosi területen tipikusan nem (a veszteséges tömörítés miatt)
30 Veszteséges JPEG tömörítés 1. Színtér transzformáció: RGB-ből Y CrCb térbe írjuk át a színeket Y : gamma korrekció utáni fényerő Cr, Cb: vörös és kék árnyalat intenzitása Ezt a lépés néha kihagyják, és csatornánként tömörítenek, de ez nem teljesen szabványos 2. Színcsatornák alul-mintavételezése: Cb, Cr komponensek alulmintavételezése Az Y -ra sokkal érzékenyebb a szemünk (több pálcika, mint csap) Innentől a három csatornát külön kezelik
31 Veszteséges JPEG tömörítés 3. Lépés: 8 8 méretű blokkok kialakítása Minden csatornát ilyen diszjunkt blokkokra osszuk fel Ha ilyenekből nem fedhető a csatorna, akkor extrapolál 4. Lépés: Diszkrét Koszinusz Transzformáció (DCT) Minden 8 8-as blokkra egyenként transzformál Ortonormált, 2D koszinusz függvény által leírt bázisokra vetít: 2x 1 u 2y 1 v f u, v u, v cos cos Transzformáció előtt 0 középpontúvá skálázza az intenzitásokat Miért nem Fourier transzformáció? Szelektált DCT bázisok feletti reprezentáció pontosabb
32 Veszteséges JPEG tömörítés 5. Kvantálás: Emberi látás érzékenyebb az alacsonyfrekvenciára Képek esetén a jelenergia is nagyrészt alacsony frekvencián tárolódik, de persze a fázisérzékenység sem elhanyagolható Eddig az opcionális csatornánkénti alul-mintavétel mellett ez az egyetlen nem invertálható lépés, tömörítés hatásfokát Q elemeinek amplitúdója határozza meg (ez állítható). 6. Kódolás: round i, j i, j B DCT I Q Együtthatókat cikk-cakk trajektória mentén sorosítja Ezen futáshossz + Huffman kódolást alkalmaz
33 Veszteséges JPEG tömörítés 5. Kvantálás: Emberi látás érzékenyebb az alacsonyfrekvenciára Képek esetén a jelenergia is nagyrészt alacsony frekvencián tárolódik, de persze a fázisérzékenység Elemenkénti osztás sem elhanyagolható Kvantálás utáni együtthatók 6. Kódolás: round i, j i, j B DCT I Q (i,j)-edik blokkja az input képnek Együtthatókat cikk-cakk trajektória mentén sorosítja Ezen futáshossz + Huffman kódolást alkalmaz Szabványban meghatározott kvantálási mátrix skalárszorosa. Ez is egy előre bedrótozott mtx nincs adaptivitás
34 Veszteséges JPEG artifaktumai Ringing effektus: meredek átmenetű alul-áteresztés (lsd. Gibbs artifakt)
35 JPEG artifaktumok Blokkosodás: Minél nagyobb a tömörítés rátája ( Q amplitúdója), annál látványosabb Oka a blokkonkénti tömörítés Tömörítés mértéke
36 JPEG artifaktumok Elszíneződés: Cr, Cb csatornák durvább alulmintavételezése miatt Elmosás: Mértéke függ a tömörítés fokától
37 Digital Imaging and Communications in Medicine (.dcm) Lényegében egy szabvány, melynek része egy file formátum DCM, mint konténer formátum: Tag-ekből épül fel (pl. mint egy XML) A kép is egy ilyen tag, melyhez egy másik tag-ben megadható a formátuma (png, tiff, jpeg) Egyéb meta adatok is tárolhatóak benne: Melyik intézmény, melyik osztályán Kiről, milyen felvételi elrendezésben Leletek bizonyos elemei (pl. kerekárnyék szegmentációk)
38 Digital Imaging and Communications in Medicine A szabvány leírja a fájlok archiválásának módját A képek megjelenítésében és tárolásában résztvevő szerverek hálózatának felépítését A hálózat kommunikációs protokollját PACS (Picture Archiving and Communication System) rendszerek ehhez igazodnak A szigorú szabályozás több célt is szolgál Legfontosabb, hogy a felvételek ne vesszenek el A különböző időpontban készült felvételek összehasonlíthatóak legyenek (lsd. később képregisztráció)
Digitális képek alkotása és tárolása
Digitális képek alkotása és tárolása Előadás tartalma Képalkotó rendszerek általános modellje Elektromágneses sugárzás Félvezetők / fotodiódák / CCD-k felépítése működése Ezen eszközök működése miatt kialakuló
Digitális képek. Zaj és tömörítés
Digitális képek Zaj és tömörítés Jelforrások Fény (elektromágneses sugárzás) Látható Röntgen (CT, Röntgen, Tomo) Gamma (PET) Mágneses tér + Rádió hullám (MRI) Hang Ultrahang Továbbiakban a fénnyel foglalkozunk
12. Képtömörítés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
12. Képtömörítés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Miért van szükség tömörítésre? A rendelkezésre álló adattárolási és továbbítási
Tömörítés, csomagolás, kicsomagolás. Letöltve: lenartpeter.uw.hu
Tömörítés, csomagolás, kicsomagolás Letöltve: lenartpeter.uw.hu Tömörítők Tömörítők kialakulásának főbb okai: - kis tárkapacitás - hálózaton továbbítandó adatok mérete nagy Tömörítés: olyan folyamat, mely
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Informatikai eszközök fizikai alapjai. Romanenko Alekszej
Informatikai eszközök fizikai alapjai Romanenko Alekszej 1 Tömörítés Fájlból kisebb méretű, de azonos információt tartalmazó fájl jön létre. Adattárolás Átvitel sebessége 2 Információ elmélet alapjai Redundanica
Képszerkesztés elméleti kérdések
Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?
Képszerkesztés elméleti feladatainak kérdései és válaszai
Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Tömörítés, kép ábrázolás A tömörítés célja: hogy információt kisebb helyen lehessen tárolni (ill. gyorsabban lehessen kommunikációs csatornán átvinni
Tömörítés, kép ábrázolás A tömörítés célja: hogy információt kisebb helyen lehessen tárolni (ill. gyorsabban lehessen kommunikációs csatornán átvinni A tömörítés lehet: veszteségmentes nincs információ
Képformátumok: GIF. Írta: TFeri.hu. GIF fájlformátum:
GIF fájlformátum: GIF= Graphics Interchange Format. Magát a formátumot a CompuServe cég hozta létre 1987ben. Alapvetően bittérképes, tömörítetlen formátum. Elterjedését az internet forgalmának hihetetlen
Elemek a kiadványban. Tervez grafika számítógépen. A képek feldolgozásának fejl dése ICC. Kép. Szöveg. Grafika
Elemek a kiadványban Kép Tervez grafika számítógépen Szöveg Grafika A képek feldolgozásának fejl dése Fekete fehér fotók autotípiai rács Színes képek megjelenése nyomtatásban: CMYK színkivonatok készítése
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának
Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.
1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
A fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata
ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő
-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
JELÁTALAKÍTÁS ÉS KÓDOLÁS I.
JELÁTALAKÍTÁS ÉS KÓDOLÁS I. Jel Kódolt formában információt hordoz. Fajtái informatikai szempontból: Analóg jel Digitális jel Analóg jel Az analóg jel két érték között bármilyen tetszőleges értéket felvehet,
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
Audio-video tartalom-előállítás 2. kis ZH tananyag (részlet) 2015/16 ősz
Audio-video tartalom-előállítás 2. kis ZH tananyag (részlet) 2015/16 ősz Disclaimer Feldolgozott témák: állóképek, vektorgrafikus képek/fontok, DVD Nagyon vázlatos, érdemes a leírt dolgoknak utánajárni!
Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12.
Számítógépes grafika Készítette: Farkas Ildikó 2006.Január 12. Az emberi látás Jellegzetességei: az emberi látás térlátás A multimédia alkalmazások az emberi érzékszervek összetett használatára építenek.
MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek
MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak
PET gyakorlati problémák. PET rekonstrukció
CT Computed Tomography 3D képalkotó eljárások Csébfalvi Balázs E-mail: cseb@iit.bme.hu Irányítástechnika és Informatika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2 / 26 CT Történeti áttekintés
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
Fraktál alapú képtömörítés p. 1/26
Fraktál alapú képtömörítés Bodó Zalán zbodo@cs.ubbcluj.ro BBTE Fraktál alapú képtömörítés p. 1/26 Bevezetés tömörítések veszteségmentes (lossless) - RLE, Huffman, LZW veszteséges (lossy) - kvantálás, fraktál
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Analóg digitális átalakítók ELEKTRONIKA_2
Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs
2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,
Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
Elektronika Alapismeretek
Alapfogalmak lektronika Alapismeretek Az elektromos áram a töltéssel rendelkező részecskék rendezett áramlása. Az ika az elektromos áram létrehozásával, átalakításával, befolyásolásával, irányításával
Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók
Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki
Fényerő mérés. Készítette: Lenkei Zoltán
Fényerő mérés Készítette: Lenkei Zoltán Mértékegységek Kandela SI alapegység, a gyertya szóból származik. Egy pontszerű fényforrás által kibocsátott fény egy kitüntetett irányba. A kandela az olyan fényforrás
Digitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Tömörítés, kép ábrázolás
Informatika alapjai-4 Tömörítés 1/12 Tömörítés, kép ábrázolás [Forrás elsősorban WIKIPEDIA] A tömörítés alapcélja, hogy információt a számítástechnikában egy vagy több file-t - kisebb helyen lehessen tárolni,
Pulzáló változócsillagok és megfigyelésük I.
Pulzáló változócsillagok és megfigyelésük I. 7. Cephei és SPB csillagok, megfigyelés Sódor Ádám ELTE MTA CSFK CSI 2015.11.10. 2 Sódor Ádám Pulzáló váltcsill. és megfigy. I. 6. Cep, SPB, megfigyelés 2 /
Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás
Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Mintavételezés és AD átalakítók
HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31
Képszerkesztés. Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2. A modul célja
Képszerkesztés Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2 A modul célja Az ECDL Képszerkesztés alapfokú követelményrendszerben (Syllabus 1.0) a vizsgázónak értenie kell a digitális
Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők
Elektronika 2 8. Előadás Analóg és kapcsolt kapacitású szűrők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - Ron Mancini (szerk): Op Amps for Everyone, Texas Instruments, 2002 16.
A számítógépes grafika alapjai
A számítógépes grafika alapjai ELTE IK Helfenbein Henrik hehe@elte.hu Grafika kép keletkezése A számítógépes grafikák, képek létrehozása: egy perifériával egy képet digitalizálunk lapolvasó (scanner),
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Jel, adat, információ
Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Multimédiás alkalmazások
Multimédiás alkalmazások A multimédia olyan általános célú alkalmazások összessége, amelyek az információ valamennyi megjelenési formáját integrált módon kezelik. Tágabb értelemben ide soroljuk a hangés
Súlyozott automaták alkalmazása
Súlyozott automaták alkalmazása képek reprezentációjára Gazdag Zsolt Szegedi Tudományegyetem Számítástudomány Alapjai Tanszék Tartalom Motiváció Fraktáltömörítés Súlyozott véges automaták Képek reprezentációja
Részecske azonosítás kísérleti módszerei
Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága
Orvosi Fizika és Statisztika
Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
Digitális kamera. Szükséges feltételek Fényképezőgép Adathordozó Áramforrás Szoftver a számítógépes kapcsolathoz. Felbontás
Digitális kamera Milyet vegyek? Milyen fotókat készítünk a leggyakrabban? Mekkora nagyításokat készíttetünk általában? Elférjen a zsebünkben, vagy meglévő bővítése? Típusai kompakt gépek (fix, vagy zoom
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Készítette: Szűcs Tamás
2016 Készítette: Szűcs Tamás A számítógép képpontok (pixelek) formájában tárolja a képeket. Rengeteg - megfelelően kicsi - képpontot a szemünk egy összefüggő formának lát. Minden képpont másmilyen színű
GRAFIKA. elméleti tudnivalók
GRAFIKA elméleti tudnivalók 1. A digitális képalkotás - bevezető A "digitális" szó egyik jelentése: számjegyet használó. A digitális adatrögzítés mindent számmal próbál meg leírni. Mivel a természet végtelen,
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Beszédinformációs rendszerek 5. gyakorlat Mintavételezés, kvantálás, beszédkódolás. Csapó Tamás Gábor
Beszédinformációs rendszerek 5. gyakorlat Mintavételezés, kvantálás, beszédkódolás Csapó Tamás Gábor 2016/2017 ősz MINTAVÉTELEZÉS 2 1. Egy 6 khz-es szinusz jelet szűrés nélkül mintavételezünk
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x
19. A fényelektromos jelenségek vizsgálata
19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
Energia- & teljesítmény mérők
Energia- & teljesítmény mérők 1194 Budapest, Mészáros Lőrinc u. 130/b Tel.: 06 (1) 288 0500 Fax: 06 (1) 288 0501 www.lsa.hu ELNet GR/PQ Villamos fogyasztásmérő és hálózat analizátor - pontosság: 0,2% (speciális
Sugárzás mérés. PTE Pollack Mihály Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN
PTE Pollack Mihály Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Sugárzás mérés Forrás és irodalom: Lambert Miklós: Szenzorok elmélet (ISBN 978-963-874001-1-3) Bp. 2009 1 2015.04.14.. Sugárzás érzékelők
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
ELEKTRONIKAI ALKATRÉSZEK
ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció