MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok



Hasonló dokumentumok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

Érettségi feladatok: Halmazok, logika

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

Érettségi feladatok: Halmazok, logika

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok

Halmazok. d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták?

Halmazelméleti feladatok (középszint)

Halmazműveletek feladatok

Érettségi feladatok: Halmazok, logika 1/5

Halmazok Megoldások. c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést

Halmazelmélet. 1 Halmazelmélet

Halmazelméleti feladatok (középszint)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

Logika, gráfok. megtalált.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

Logika, gráfok Megoldások

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.

9, Adott az A és B halmaz: A = {a; b; c; d}, B = {a; b; d; e; f}. Adja meg elemeik felsorolásával az A B, A B, A\B és B\A halmazokat!

Gyakorló feladatsor 9. osztály

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

Év végi ismétlés 9. - Érettségi feladatok

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

3.Példa. Megoldás 4. Példa: Megoldás

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

HALMAZOK TULAJDONSÁGAI,

Matematika kisérettségi

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

Érettségi feladatok: Szöveges feladatok

MATEMATIKA ÉRETTSÉGI május 28. KÖZÉPSZINT I.

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Logika-Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

Kisérettségi feladatgyűjtemény

Készítette: Ernyei Kitti. Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Kombinatorika és Valószínűségszámítás

Matematika kisérettségi I. rész 45 perc NÉV:...

MATEMATIKA ÉRETTSÉGI május 4. KÖZÉPSZINT I.

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

Középszintű matematika érettségi feladatok adatbázisa témakörök szerint 2005.május 2018.május MEGOLDÁSOKKAL

b) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe?

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY

Érettségi feladatok: Szöveges feladatok 1/7

2017/2018. Matematika 9.K

ÉRETTSÉGI FELADATOK SZÁZALÉKSZÁMÍTÁS SZÖVEGES FELADATOK. 1. Számítsa ki 25 és 121 számtani és mértani közepét! (2 pont)

5. Egy vállalkozás reklám-ajándéka szabályos hatszög alapú egyenes gúla, amit fából készítenek el. A gúla alapélei 4,2 cm hosszúak, magassága 25 mm.

Számelmélet Megoldások

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

HALMAZOK. Készítette: Fazekas Anna matematika tanár

Gráfelmélet Megoldások

PRÓBAÉRETTSÉGI VIZSGA január 18.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok

2017/2018. Matematika 9.K

Azonosító jel: ÉRETTSÉGI VIZSGA május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

MATEMATIKA ÉRETTSÉGI október 25. KÖZÉPSZINT I.

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

b) Fogalmazza meg a következő állítás tagadását! A focira jelentkezett tanulók közül mindenkinek van testvére.

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

1.1. Halmazok 1. Minta - 5. feladat (2 pont) Adjon meg két olyan halmazt, amelynek metszete {1; 2}, uniója {0; 1; 2; 5; 8}!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

Az egyszerűsítés utáni alak:

1-A 1-B. francia. francia - 3 -

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. A: József Attila hosszú versei D: az osztály legokosabb tanulója

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Halmazok Megoldások. Az osztály tanulóinak átlagmagassága 168,0 cm

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Középszintű matematika érettségi feladatok adatbázisa témakörök szerint 2005.május 2018.május

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Valószínűségszámítás

I. Hasonlítsuk össze!

Érettségi feladatok: Statisztika

Feladatok MATEMATIKÁBÓL

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika

Valószínűségszámítás Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

Színes érettségi feladatsorok matematikából középszint írásbeli

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk?

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

Átírás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? Közben Enikő is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mind a hárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést megtalálták. b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! (7 pont) c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést megtalált. d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták? 2) Egy középiskolába 700 tanuló jár. Közülük 10% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétika szakosztályban 36 tanuló sportol rendszeresen, és pontosan 22 olyan diák van, aki az atlétika és a kosárlabda szakosztály munkájában is részt vesz. a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! b) Hányan sportolnak a kosárlabda szakosztályban? c) Egy másik iskola sportegyesületében 50 kosaras sportol, közülük 17 atletizál is. Ebben az iskolában véletlenszerűen kiválasztunk egy kosarast. Mennyi a valószínűsége, hogy a kiválasztott tanuló atletizál is? 3) Az A és a B halmazokról a következőket tudjuk: A B 1;2 AB 1;2;3;4;5;6;7, A\ B 5;7. Adja meg az A és a B halmaz elemeit!, 4) Egy 10 tagú csoportban mindenki beszéli az angol és a német nyelv valamelyikét. Hatan beszélnek közülük németül, nyolcan angolul. Hányan beszélik mindkét nyelvet? Válaszát indokolja számítással, vagy szemléltesse Venn-diagrammal! 5) Sorolja fel a H halmaz elemeit, ha H kétjegyű négyzetszámok 6) Egy iskola teljes tanulói létszáma 518 fő. Ők alkotják az A halmazt. Az iskola 12. C osztályának 27 tanulója alkotja a B halmazt. Mennyi az A B halmaz számossága? 7) Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az A B halmaz elemeit!

8) Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik mindkét nyelven? Válaszát indokolja! 9) Sorolja fel az A 1;10;100 halmaz összes kételemű részhalmazát! 10) Az A és a B halmazok a számegyenes intervallumai: A 1,5;12, 3;20 B. Adja meg az A B és a B A halmazokat! 11) Legyen az A halmaz a 10-nél kisebb pozitív prímszámok halmaza, B pedig a hattal osztható, harmincnál nem nagyobb pozitív egészek halmaza. Sorolja fel az A, a B és az A B halmazok elemeit! 12) Egy középiskolába 620 tanuló jár. Az iskola diákbizottsága az iskolanapra három kiadványt jelentetett meg: I. Diákok Hangja II. Iskolaélet III. Miénk a suli! Később felmérték, hogy ezeknek a kiadványoknak milyen volt az olvasottsága az iskola tanulóinak körében. III. A Diákok Hangját a tanulók 25%-a, az Iskolaéletet 40%-a, a Miénk a suli! c. kiadványt pedig 45%-a olvasta. Az első két kiadványt a tanulók 10%-a, az első és harmadik kiadványt 20%-a, a másodikat és harmadikat 25%-a, mindhármat pedig 5%-a olvasta. a) Hányan olvasták mindhárom kiadványt? b) A halmazábra az egyes kiadványokat elolvasott tanulók létszámát szemlélteti. Írja be a halmazábra mindegyik tartományába az oda tartozó tanulók számát! (6 pont) c) Az iskola tanulóinak hány százaléka olvasta legalább az egyik kiadványt? Az iskola 12. évfolyamára 126 tanuló jár, közöttük kétszer annyi látogatta az iskolanap rendezvényeit, mint aki nem látogatta. Az Iskolaélet című kiadványt a rendezvényeket látogatók harmada, a nem látogatóknak pedig a fele olvasta. Egy újságíró megkérdez két, találomra kiválasztott diákot az évfolyamról, hogy olvasták-e az Iskolaéletet. d) Mekkora annak a valószínűsége, hogy a két megkérdezett diák közül az egyik látogatta az iskolanap rendezvényeit, a másik nem, viszont mindketten olvasták az Iskolaéletet? (7 pont) 13) Adott az A és B halmaz: Aa; b; c; d, B a; b; d; e; f felsorolásával az A I. II.. Adja meg elemeik B és A B halmazokat!

14) Az A halmaz az 5-re végződő kétjegyű pozitív egészek halmaza, a B halmaz pedig a kilenccel osztható kétjegyű pozitív egészek halmaza. Adja meg elemeik felsorolásával az alábbi halmazokat: A; B; A B; A\ B; 15) Jelölje a természetes számok halmazát, az egész számok halmazát és az üres halmazt! Adja meg az alábbi halmazműveletek eredményét! a) b) c) \ 16) Tekintsük a következő halmazokat: A a 100-nál nem nagyobb pozitív egész számok B A a 300-nál nem nagyobb, 3-al osztható pozitív egész számok a 400-nál nem nagyobb, 4-el osztható pozitív egész számok a) Töltse ki a táblázatot a minta alapján, majd a táblázat alapján írja be az 52, 78, 124, 216 számokat a halmazábra megfelelő tartományába! (8 pont) A halmaz B halmaz C halmaz 114 nem eleme eleme nem eleme 52 78 124 216 b) Határozza meg az A B C halmaz elemszámát! A B 114 C c) Számítsa ki annak valószínűségét, hogy az A halmazból egy elemet véletlenszerűen kiválasztva a kiválasztott szám nem eleme sem a B, sem a C halmaznak! (6 pont) Összesen: 17 pont

17) Az A és B halmazokról tudjuk, hogy 1;2;3;4;5;6;7; 8;9 B\ A 1;2;4;7. Elemeinek felsorolásával adja meg az A halmazt! A B és 18) Az A és B halmazokról tudjuk, hogy AB 1;2;3;4;5;6, \ 1;4 A B 2;5 A B és. Sorolja fel az A és a B halmaz elemeit! 19) Egy osztályban a következő háromféle sportkört hirdették meg: kosárlabda, foci és röplabda. Az osztály 30 tanulója közül kosárlabdára 14, focira 19, röplabdára 14 tanuló jelentkezett. Ketten egyik sportra sem jelentkeztek. Három gyerek kosárlabdázik és focizik, de nem röplabdázik, hatan fociznak és röplabdáznak, de nem kosaraznak, ketten pedig kosárlabdáznak és röplabdáznak, de nem fociznak. Négyen mind a háromféle sportot űzik. a) Írja be a megadott halmazábrába (1. ábra) a szövegnek megfelelő számokat! b) Fogalmazza meg a következő állítás tagadását! A focira jelentkezett tanulók közül mindenkinek van testvére. c) A focira jelentkezett 19 tanulóból öten vehetnek részt egy edzőtáborban. Igazolja, hogy több, mint 10 000-féleképpen lehet kiválasztani az öt tanulót! d) Az iskolák közötti labdarúgóbajnokságra jelentkezett 6 csapat között lejátszott mérkőzéseket szemlélteti a 2. ábra. Hány mérkőzés van még hátra, ha minden csapat minden csapattal egy mérkőzést játszik a bajnokságban? (Válaszát indokolja!)

20) Egy zeneiskola minden tanulója szerepelt a tanév során szervezett három hangverseny, az őszi, a téli, a tavaszi koncert valamelyikén. 20-an voltak, akik az őszi és a téli koncerten is, 23-an, akik a télin és a tavaszin is, és 18-an, akik az őszi és a tavaszi hangversenyen is szerepeltek. 10 olyan növendék volt, aki mindhárom hangversenyen fellépett. a) Írja be a halmazábrába a szövegben szereplő adatokat a megfelelő helyre! A zeneiskolába 188 tanuló jár. Azok közül, akik csak egy hangversenyen léptek fel, kétszer annyian szerepeltek tavasszal, mint télen, de csak negyedannyian ősszel, mint tavasszal. b) Számítsa ki, hogy hány olyan tanuló volt, aki csak télen szerepelt! (8 pont) c) 32 tanuló jár az A osztályba, 28 pedig a B-be. Egy ünnepélyen a két osztályból véletlenszerűen kiválasztott 10 tanulóból álló csoport képviseli az iskolát. Mennyi annak a valószínűsége, hogy mind a két osztályból pontosan 5-5 tanuló kerül a kiválasztott csoportba? (5 pont)