A bontásból származó beton felhasználása új beton adalékanyagaként

Hasonló dokumentumok
Őrölt üveghulladék újrahasznosítása habarcsok töltőanyagaként

Betontervezés Tervezés a Palotás-Bolomey módszer használatával

Textilipari szennyvíziszap felhasználása építőanyagok gyártásában

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

NSZ/NT betonok alkalmazása az M7 ap. S65 jelű aluljáró felszerkezetének építésénél

NSZ/NT beton és hídépítési alkalmazása

Előkészítő munkák (bontás és irtás) Tereprendezés és földmunkák

Anyagtan II. Építőanyagok (2014) kiemelt vizsgakérdések (ismeretük nélkül, elégtelen az érdemjegy)

Pattex CF 850. Műszaki tájékoztató

A betonhulladék kezelése Szakszerű újrahasznosítás az MSZ 4798:2016 szabvány alapján

MAPECRETE A repedésmentes betonok technológiája. Szautner Csaba Hídmérnöki Konferencia Eger


MŰANYAGOK ALKALMAZÁSA

VÍZZÁRÓSÁG, VÍZZÁRÓSÁG VIZSGÁLAT

a NAT /2008 számú akkreditálási ügyirathoz

Polimerbetonok mechanikai tartósságának vizsgálata Vickers keménységmérő felhasználásával

Dr. Farkas György, egyetemi tanár Németh Orsolya Ilona, doktorandusz

A BETON ÖSSZETÉTELE. Elsősorban cement, de alkalmazható őrölt égetett mész vagy egyéb hidraulikus kötőanyag is Adalékanyagai:

BETON VISELKEDÉSE ÉS TERVEZÉSE TŰZRE

Kötőanyagok. Kötőanyagok osztályozása. Dr. Józsa Zsuzsanna. Építési mész. Természetes kövektől a mesterségesekig. Építési mész. Hagyományos mészégetés

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (3) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Falazatok anyagai. A tégla története. A tégla története. Vályog. Természetes kövektől a mesterségesekig. Természetes kövektől a mesterségesekig

Kötőanyagok habarcsok. a mikroszkóp rt?

a NAT /2007 számú akkreditált státuszhoz

Az ÉTI évben végzett cementvizsgálatainak kiértékelése POPOVICS SÁNDOR és UJHELYI JÁNOS

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

TÖRTÉNETI VASBETON SZERKEZETEK DIAGNOSZTIKAI VIZSGÁLATAI

Betonok. Betonkeverés hagyományos. és korszerő felfogásban ??? Új betonkeverési elvek, eljárások

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

RÉSZLETEZŐ OKIRAT (2) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

ÖNTÖMÖRÖDŐ BETONOK TERVEZÉSE

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

A BETON KONZISZTENCIÁJA

Különböző módon formázott bioaktív üvegkerámiák tulajdonságainak vizsgálata KÉSZÍTETTE: KISGYÖRGY ANDRÁS TÉMAVEZETŐ: DR. ENISZNÉ DR.

IPARI SZIMBIÓZIS WORKSHOP

MŰANYAGOK FELDOLGOZÁSA

gyors egyszerű egyedülálló

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék)

a NAT /2007 nyilvántartási számú akkreditált státuszhoz

A vasbetonszerkezet tervezésének jelene és jövője A tűzhatás figyelembe vétele.

előadás Falszerkezetek

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (2) a NAT /2010 nyilvántartási számú akkreditált státuszhoz

A technológiai paraméterek hatása az Al 2 O 3 kerámiák mikrostruktúrájára és hajlítószilárdságára

Energetikai és épít ipari hulladékok együttes hasznosítása

A beton korai szilárdságának meghatározása kötéshő mérésével Vigh Botond A-HÍD Zrt.

Beton - Concrete. Sika ViscoCrete technológia napjaink hídépítési munkáiban

KIVIRÁGZÁSMENTES SZÁRAZHABARCS Bmstr.Dipl.HTL.Ing. Eduard LEICHTFRIED Wopfinger Baustoffindustrie GmbH Budapest, 2010 marc. 23.

Nedves, sóterhelt falak és vakolatok. Dr. Jelinkó Róbert TÖRTÉNELMI ÉPÜLETEK REHABILITÁCIÓJA, VÁROSMEGÚJÍTÁS ORSZÁGOS KONFERENCIASOROZAT.

Betonadalékszerek deszközeizei

Tárgyszavak: üvegösszetétel; települési hulladék; újrahasznosítás; minőségi követelmények.

A beton nyomószilárdságának vizsgálata az MSZ 4798:2004 szerint

Környezetbarát, energiahatékony külső falszerkezetek. YTONG és YTONG MULTIPOR

Kötőanyagok. Horák György

KT 13. Kőszerű építőanyagok és építőelemek kiegészítő követelményei pórusbeton termékekhez. Érvényes: december 31-ig

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

TERMÉKISMERTETŐ. ÖSSZEÁLLÍTOTTA: VARGA ISTVÁN vezérigazgató tel:

Kémiai összetétel (%) SiO 2 6,0 Al 2 O Fe 2 O 3 3,0 CaO 40,0 MgO 1,5 SO 3 0,4

El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő

Öntödei homokhulladék felhasználása aszfalt beton keverékekben

TELJESÍTMÉNYNYILATKOZAT

Jellemző alkalmazások Homlokzatok, erkélyek, teraszok és úszómedencék fugázása.

Fehér Szerkezetek Xella Magyarország Kft. 1

ALKALMAZÁSI TERÜLET Nagyszilárdságú, zsugorodáskompenzált, konszolidáló injektálóhabarcsok, habarcsok és szivattyúzható beton készítése.

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

LABORVIZSGÁLATOK NETTÓ LISTAÁRAI március 1.-től (javasolt listaárak, mennyiségtől függően változhat, ÁFA nélkül értendő)

Víztartalom, vízfelvétel, látszólagos porozitás

Különleges tulajdonságú betonok

Kötőanyagpépek kötési idejének vizsgálata. Vizsgálóeszközök

PCE bázisú adalékszerek

Nemzeti Akkreditáló Testület

A FŐVÁROSI HULLADÉKHASZNOSÍTÓ MŰ KAZÁNJÁBAN KELETKEZETT SZILÁRD ANYAGOK KÖRNYEZET- GEOKÉMIAI VIZSGÁLATA

Az aszfaltburkolat újrafeldolgozása hidegen, habbitumen alkalmazásával

Építőanyag MSC Szerkezet-építőmérnök MSC hallgatók részére

Gipszbeton szerkezetek tervezési módszereinek továbbfejlesztése

SiAlON. , TiC, TiN, B 4 O 3

Korai beton műtárgyak anyagának vizsgálata és környezeti ásványtani értékelése

Légpórusképző adalékszer betonhoz és cementbázisú habarcshoz

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

mikroszerkezet, tulajdonságok

RÉSZLETEZŐ OKIRAT (3) a NAH /2014 nyilvántartási számú 2 akkreditált státuszhoz

A BEDOLGOZOTT FRISS BETON LEVEGŐTARTALMA

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)

Talajmechanika. Aradi László

Látszóbeton. Látszóbeton. Látszóbeton. Látszóbeton. Látszóbeton. zsaluzat: üvegszálas műanyag. Zsalumintás betonfelületek

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Teljesítmény-nyilatkozat az építőipari termékhez StoCrete TF 204

ÉPKO, Csíksomlyó, június 4. A beton nyomószilárdsági osztályának értelmezése és változása 1949-től napjainkig Dr.

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú (1) akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

A vizsgált/mért jellemző, a vizsgálat típusa, mérési tartomány. Megszilárdult beton vizsgálata. vízáteresztés. 1-5 bar, mm

Beton előállítása kőzetszemcsék újrahasznosításával

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

vagy 0,1 tömeg%-nál (feszített vb. esetén) nagyobb;

Átírás:

EGYÉB HULLADÉKOK 6.5 A bontásból származó beton felhasználása új beton adalékanyagaként Tárgyszavak: beton; betontörmelék; építés; építőanyag; hulladék; újrahasznosítás. Bevezetés Világszerte nő az érdeklődés az építési és bontási hulladékból származó, újrafeldolgozott anyagok iránt. A környezetvédelem, a természeti erőforrások megőrzése, a kevés lerakóhely, a lerakás előtti hulladékkezelés növekvő költségei a fő hajtóerői az újrafeldolgozásnak. Hongkongban az építőipar naponta közel 37 100 t ilyen hulladékot termel, ami durván a négyszerese a települési szilárd hulladék mennyiségének. Az újrafeldolgozott építési és bontási hulladék felhasználása beton töltőanyagaként hatékonyan csökkentheti a kihelyezendő anyag mennyiségét. Ilyen töltőanyag használatakor könnyen elérhető a beton 35 50 N/mm 2 -es szilárdsága. A tört betonból nyert, újrafeldolgozott töltőanyagok térfogatuk 65 70%-ában természetes durva és finom töltőanyagot (aggregátumot), 30 35%-ában pedig régi cementpépet tartalmaznak. Az utóbbi porózusabb az előbbinél, következésképpen a visszanyert töltőanyagok inhomogénebbek, kevésbé tömörek és porózusabbak, mint a természetesek. A Hongkongban használt aprított gránit töltőanyagok sűrűsége 2600 2650 kg/m 3, vízfelvétele közel 1%; az újrafeldolgozottak sűrűsége 2200 2400 kg/m 3, vízfelvétele pedig 5 15%. A kis víz/kötőanyag aránynyal és puccolánadalékokkal előállított, nagy szilárdságú betonok tömörebbek, kevésbé porózusak, mint a nagyobb víz/kötőanyag aránnyal készültek. Eddig kevéssé vizsgálták az újrafeldolgozott beton töltőanyag mikroszerkezetét és annak hatását a beton mechanikai tulajdonságaira. Ez a közlemény ilyen vizsgálatok eredményeit ismerteti.

Kísérletek A felhasznált anyagok A kísérletekben a Hongkongban kapható, a BS 12 brit szabványnak megfelelő portlandcementet használták, amelynek sűrűsége 3,16 g/cm 3, fajlagos felülete pedig 3519 cm 2 /g volt. A cement összetétele az 1. táblázatban látható. 1. táblázat A vizsgálatban használt cement vegyi összetétele (%) CaO SiO 2 Al 2 O 3 Fe 2 O 3 MgO SO 3 Izzítási veszteség 63,15 19,61 7,32 3,32 2,54 2,13 2,97 Finom töltőanyagként 2,1 modulusú, természetes folyami homokot használtak, durva töltőanyagként egy természetes és két újra feldolgozott fajtát. A természetes töltőanyag 10 és 20 mm névleges méretű, zúzott gránit volt, az újrafeldolgozott pedig két fajta zúzott helyi betonból származott. Az egyik normál, a másik nagyszilárdságú volt, az utóbbi kovasavfüst és szálló hamu adalékot is tartalmazott. Ezek egymástól könynyen megkülönböztethetők voltak; mivel az utóbbinak sokkal sötétebb volt a színe. Mindkét betonféleség tartalmazott gránitzúzalékot durva töltőanyagként. A próbatestek készítése Állandó, 0,50 víz/cement arányú keverékeket használtak a háromféle durva töltőanyaggal, amelyek arányait a 2. táblázat ismerteti. A keverékeket 30 40 mm-es szétterülésre tervezték. A betonokat acélból készült, 100 mm-es kockaformákba öntötték. Egy nap után a próbatesteket kivették a formákból, és vízben, 27 C-on tárolták 28 napig. Ezeken kívül mesterséges határfelületi próbatesteket is készítettek, hasonló módszerrel vizsgálva a feltárt üvegszál cement határfelületeket (1. ábra). Ezek a próbatestek 0,3 víz/cement arányú cementpépből és a durva töltőanyag egy szeletéből álltak. A szelet 20 mm széles, 50 mm mély és 5-10 mm vastag volt. A szeleteket gyémántfűrésszel vágták ki a háromféle töltőanyagból. A cementpépbe való beágyazás előtt a szeletek felületeit polírozták. A 28 napos vizes kezelés után a próbatesteket eltörték, és a szeleteket kivették a cementből.

A betonkeverék arányai 2. táblázat Durva töltőanyagok Arányok, kg/m 3 Víz Cement Homok Durva töltőanyag Gránitzúzalék 190 379 623 1237 Újrafeldolgozott beton, normál szilárdságú Újrafeldolgozott beton, nagyszilárdságú 190 379 590 1171 190 379 590 1171 cementpép polírozott felületű természetes vagy újrafeldolgozott töltőanyag 1. ábra Mesterséges határfelületi próbatest A természetes és az újrafeldolgozott töltőanyagok vizsgálatai Meghatározták a próbák törőszilárdságát, sűrűségét, vízfelvételét és nedvességtartalmát a BS 812 brit szabvány szerint. Szabványos módszerekkel vizsgálták az újrafeldolgozott normál és nagyszilárdságú betonzúzalék savban oldható anyagtartalmát. Higanybehatolásos porozimetriával állapították meg a töltőanyagok porozitását és pórusainak méreteloszlását. Vizsgálatok az új beton és a pépes töltőanyag határfelületein 3000 kn-os gépen, 7, 28 és 90 napos, 100 mm-es betonkockákon végeztek nyomószilárdsági vizsgálatokat. Oxford 5526-os pásztázó

elektronmikroszkóppal és energiadepresszív röntgensugár (EDX) elemzővel mikroszerkezeti vizsgálatokat végeztek 32 napos mesterséges határfelületi próbatesteken. Az újrafeldolgozott töltőanyagok tulajdonságai A vizsgált anyagok fizikai tulajdonságait a 3. táblázat ismerteti. A durva töltőanyag fajtája 3. táblázat Természetes és újrafeldolgozott durva töltőanyagok fizikai tulajdonságai 10% finom frakciójú törési érték (kn) Látszólagos sűrűség (kg/m 3 ) Vízabszorpció (%) Nedvességtartalom előállítási állapotban (%) 10 mm 20 mm 10 mm 20 mm Gránitzúzalék 159,7 2,620 1,25 1,24 0,52 0,56 Újrafeldolgozott normálszilárdságú beton Újrafeldolgozott nagyszilárdságú beton 101,9 2,409 8,82 7,89 3,64 3,25 123,8 2,390 6,77 6,53 5,36 2,89 Az újrafeldolgozott töltőanyagok porózusabbak, kisebb sűrűségűek és gyengébbek a gránitzúzaléknál. Lényegesek a különbségek a kétféle visszanyert töltőanyag szilárdságában és vízfelvételében is. A 4. táblázat a visszanyert töltőanyagok savban oldható anyagtartalmára vonatkozó vizsgálati adatokat ismerteti. A savban oldható anyag nagyjából a régi beton cementmátrixának tulajdonítható, mivel a homok és a gránitzúzalék savban általában nem oldható. Az újrafeldolgozott töltőanyagok savban oldható anyagainak elemzése 4. táblázat Az újrafeldolgozott töltőanyag fajtája Savban oldható anyag a A savban oldható anyagok összetétele, % habarcsban, % CaO SiO 2 Al 2 O 3 Fe 2 O 3 Normálszilárdságú (NC) 22,94 61,02 14,38 7,91 4,72 Nagyszilárdságú (HPC) 31,30 55,43 21,63 9,18 5,29

A 2. és a 3. ábra mutatja a durva töltőanyagok pórusainak méreteloszlását. E három anyag higanyintrúziós porozitása 1,60%; 16,81% és 7,86% (gránit, normál- és nagyszilárdságú beton). kumulatív intrúzió, ml/g átmérő, µm 2. ábra Természetes és újrafeldolgozott töltőanyagok kumulatív póruseloszlási görbéi a differenciális intrúzió logaritmusa, ml/g átmérő, µm 3. ábra Természetes és újrafeldolgozott töltőanyagok differenciális póruseloszlási görbéi

A normálszilárdságú töltőanyag pórusai főleg a 0,01 és 1 µm mérettartományban oszlanak el, míg a nagyszilárdságú pórusainak többsége a 0,1 µm alatti régióban van (3. ábra). Ez a visszanyert nagyszilárdságú betonban lévő puccolánadalék következménye, amely lényegesen javítja a cementpép és a pép töltőanyag határfelületi átmeneti zóna mikroszerkezetét. Az újrafeldolgozott töltőanyagokkal előállított beton tulajdonságai Nyomószilárdság Az 5. táblázat ismerteti a különböző töltőanyagokkal készített betonok nyomószilárdság-értékeit. 5. táblázat Különböző töltőanyagú betonok nyomószilárdsága A durva töltőanyag fajtája Látszólagos sűrűség Nyomószilárdság (MPa) (kg/m 3 ) 7 napos 28 napos 90 napos Zúzott gránit 2382 32,8 41,5 54,7 Újrafeldolgozott beton, normálszilárdságú Újrafeldolgozott beton, nagyszilárdságú 2233 26,2 32,6 46,5 2266 29,9 29,9 55,0 Látható, hogy az újrafeldolgozott nagyszilárdságú betonnal készített beton nyomószilárdsága közel van a természetes töltőanyagú betonéhoz, sőt, a 90 napos betoné el is éri azt. Ez összhangban van a 3. táblázat adataival. Ismeretes, hogy a beton szilárdsága függ a cementmátrix, a töltőanyag és a mátrix-töltőanyag határfelületi kötés szilárdságától. A cement és az újrafeldolgozott durva töltőanyag közötti erősebb kötés képes valamilyen mértékben kompenzálni a gyengébb töltőanyag hatását. A beton mikroszerkezete Mivel a cementmátrix és a víz/cement arány minden esetben azonos volt, a pásztázó elektronmikroszkópos vizsgálatokat a határfelületi régióra összpontosították.

A megfigyelések szerint a gránit cement határfelületi réteg viszonylag laza, vastagsága a szemcsék felülete mentén változó. A normálszilárdságú újrahasznosított beton és cement közötti határfelületi zóna főként laza részecskékből áll, és a laza zóna szélessége közel 30 60 µm. A zóna nagyon porózus. Porozitása fokozatosan csökken a határfelülettől való távolság növekedésével. Az újrafeldolgozott nagyszilárdságú töltőanyag és a cementmátrix közötti határfelületi réteg sokkal tömörebb, és a határfelületi zóna nehezen különböztethető meg. A cementpép mikroszerkezete a mesterséges határfelületeknél A cementpépek mikroszerkezetét a mátrix és a durva töltőanyag közötti határfelületeknél mesterséges határfelületi próbatesteken is vizsgálták. energia, kev 4. ábra Normálszilárdságú töltőanyag határfelületén lévő pelyhes kristályok EDX-képe A természetes gránit és a cement közötti határfelület A határfelületen sok a pórus, a nagyobban 10 20 µm méretűek. Egyes pórusok alakja szalagszerű, hosszúsága több mint 50 µm. Sok a szabálytalan alakú, 5 µm-nél kisebb pórus. A felvételeken nagy mennyiségű, jól kristályosodott Ca(OH) 2 és kisebb mennyiségű, tűkristályszerű

ettringit látható. Kis mennyiségű CSH (kalcium-szilikát-hidrát) gél is jelen van a határfelületen. A Ca(OH) 2 kristályokat a határfelületi zónában is sikerült azonosítani (4. ábra). Egészében a természetes gránit cement határfelületi zóna a normálszilárdságú beton mikroszerkezeti jellemzőit mutatta. energia, kev 5. ábra Normálszilárdságú töltőanyag határfelületén lévő szemcsés hidrátok EDX-képe A normálszilárdságú újrafeldolgozott beton és a cement közötti határfelület A mesterséges határfelületek mikroszerkezete általában hasonló a valódi betonban megfigyelthez. A hidrátok a határfelület közelében főként laza, szemcsés alkotókból állnak, és a porozitás hasonló ahhoz, amelyet a természetes gránit cement határfelületben megfigyeltek. Az üregekben kis mennyiségű finom, pelyhes és tűs kristály képzett egymásba hatoló hálót (5. ábra). A nagyszilárdságú újrafeldolgozott beton és a cement közötti határfelület A határfelületi zóna főként viszonylag tömör hidrátrétegből áll, amely jelentősen különbözik a másik két betonétól. A három betonfajta közül ennek a legtömörebb a határfelületi zónája. Bár a zónában számos 10 µm-es és nagyobb pórus látható, a pórusok összes térfogata sokkal ki-

sebb, mint a másik két betonfajtában. Itt alig találhatók szemcsés tűs és pelyhes kristályok. A nagyszilárdságú újrafeldolgozott beton és a cement közötti zóna mesterséges határfelülettel kimutatott jellemzői konzisztensek a valódi betonon végzett megfigyelésekkel. Összegző értékelés Ha különböző tulajdonságú (vegyi összetételű, pórusszerkezetű) újrafeldolgozott töltőanyagokat használnak betonok készítéséhez, különböző mikroszerkezetek jönnek létre a cement és a töltőanyag közötti határfelületen. Az alábbiakban ezek képződésének mechanizmusait tárgyaljuk, és azok összefüggését a nyomószilárdság alakulásával. Az újrafeldolgozott anyagok a természetes töltőanyagoknál porózusabbak és rendszerint részben karbonizáltak, a régi cementpépeknek a töltőanyagok felületéhez tapadása következtében. Az újrafeldolgozott töltőanyagú beton határfelületének mikroszerkezete eltér a természetes töltőanyaggal előállított betonétól. A friss, természetes töltőanyagú betonban rendesen vízhártya képződik a töltőanyag szemcséi körül a nedvesedési és szivárgási hatások következtében. A helyi víz/cement arány a határfelületi zónában kétszer akkora lehet, mint a cementpép zömében. A hidratáció előrehaladtával a vízzel töltött teret a töltőanyag közelében fokozatosan növekvő mennyiségű hidrát váltja fel. A normálszilárdságú újrafeldolgozott töltőanyagból és cementből álló rendszerben a mikroszerkezeti vizsgálat viszonylag laza határfelületeket mutatott, bár az új cement mátrixa és az újrafeldolgozott töltőanyagban maradó cementes anyagok közötti vegyi reakciók valószínűleg létesítenek némi határfelületi kötést. Ez részben a normálszilárdságú újrafeldolgozott töltőanyag nedvességi állapotának a következménye lehet. Az ilyen töltőanyag nagy porozitása és vízfelvevő képessége, valamint kis kiinduló víztartalma nagy mennyiségű víz felvételéhez vezet a keverés kezdeti szakaszában, és így nyílt és laza határfelületi zónához a megszilárdult betonban. Egy másik lehetőség széndioxid helyi felszabadulása a töltőanyagban lévő karbonizált cementes maradékok és a friss cementmátrix közötti reakció eredményeként. Hasonló reakciókat kimutattak mészköves töltőanyagok és cementpépek között. További vizsgálatok szükségesek azonban a rendszerben fellépő kölcsönhatások kimutatására. A nagyszilárdságú újrafeldolgozott anyagú betonban viszonylag tömör határfelületet értek el. Ennek a mechanizmusa az lehet, hogy a

mérsékelt kezdeti víztartalmú töltőanyag bizonyos mennyiségű szabad vizet nyel el, és csökkenti a kezdeti víz/cement arányt a határfelületben a korai hidratáció során. A régiót fokozatosan újonnan képződő hidrátok töltik meg. Ezek a folyamatok hatékonyan javítják a határfelületi kötést a töltőanyag és a cement között. A porózus töltőanyaggal készített könnyű beton mikroszerkezete bizonyos hasonlóságot mutat az újrafeldolgozott töltőanyagú betonéval. Összeállította: Szende György Poon, C. S.; Shui, Z. H.; Lam, L.: Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. = Construction and Building Materials, 18. k. 6. sz. 2004. p. 461 468. Tuncan, M.; Tuncan, A.; Cetin, A.: The use of waste materials in asphalt concrete mixtures. = Waste Management and Research, 21. k. 2. sz. 2003 p. 83 91. Zur Technologie der Wiederverwendung von altem Strassenbeton. = Strasse und Autobahn, 44. k. 12. sz. 1993. p. 715 718.