8. Előadás Röntgenlézerek. A röntgenlézerek létrehozásának nehézségei Röntgenlézerek gerjesztési sémái Alkalmazások, néhány kiválasztott kísérlet



Hasonló dokumentumok
Koherens fény (miért is különleges a lézernyaláb?)

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Koherens fény (miért is különleges a lézernyaláb?)

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie II. Feladat: Lézer (10 pont)

Az elektromágneses színkép és egyes tartományai

A lézer alapjairól (az iskolában)

SPECIÁLIS EXCIMER LÉZEREK

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz november 19.

Röntgen. W. C. Röntgen. Fizika-Biofizika

A LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI SPONTÁN VS. INDUKÁLT EMISSZIÓ A FÉNYERŐSÍTÉS FELTÉTELE A POPULÁCIÓ INVERZIÓ FELTÉTELE

A femtoszekundumos lézerektől az attoszekundumos fizikáig

Ultrarövid lágy röntgen impulzusok vizsgálata Részletes jelentés

Koherens fény (miért is különleges a lézernyaláb?)

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpció, emlékeztetõ

Fúziós elrendezések. Direkt összenyomás lézerrel. Indirekt összenyomás röntgennel

2.ea Fényforrások. Nagynyomású kisülő lámpák OMKTI

Terahertzes óriásimpulzusok az ELI számára

Rövid impulzusok esetén optikai Q-kapcsolót is találhatunk a részben áteresztő tükör és a lézer aktív anyag között.

Gerhátné Udvary Eszter

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

Röntgensugárzás. Röntgensugárzás

Attoszekundumos impulzusok keltése és alkalmazásai

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

LÉZERFÚZIÓS KUTATÁSOK: ENERGIATERMELÉS MIKRO- HIDROGÉNBOMBÁKKAL

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint

A hőmérsékleti sugárzás

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

Atomfizika. Fizika kurzus Dr. Seres István

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

ATTOSZEKUNDUMOS IMPULZUSOK

Az ELI projekt ( szuperlézer ) Dombi Péter

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Tartalom. Történeti áttekintés A jelenség és mérése Modellek

FORD FOCUS FOCUS_2016_V8_MASTER_240x185 Cover.indd /10/ :52:23

9. Fotoelektron-spektroszkópia

Az NMR és a bizonytalansági elv rejtélyes találkozása

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Sugárzások kölcsönhatása az anyaggal

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

LÉZEREK ÉS (KATONAI) ALKALMAZÁSAIK BEVEZETÉS

Abszorpciós fotometria

SZAKDOLGOZATI TÉMÁK 2017/2018. tanév

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudomány Tanszék. Lézerek és mézerek

Mikroszerkezeti vizsgálatok

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

Lézerek és alkalmazásai, lézerfizikai kutatások Szegeden

Az optikai szálak. FV szálak felépítése, gyakorlati jelenségek

Lézerek Lézer és orvosbiológiai alkalmazásaik

Folyékony mikrominták analízise kapacitívan csatolt mikroplazma felhasználásával

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

VÍZGŐZKONCENTRÁCIÓ-MÉRÉS DIÓDALÉZERES FOTOAKUSZTIKUS MÓDSZERREL

Tehetetlenségi összetartású, vagy mikrorobbantásos fúzió

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Construction of a cube given with its centre and a sideline

Abszorpciós fotometria

Az elektromágneses hullámok

A HÉLIUM AUTOIONIZÁCIÓS ÁLLAPOTAI KÖZÖTTI INTERFERENCIA (e,2e) KÍSÉRLETI VIZSGÁLATA

Kvantumos jelenségek lézertérben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

Optika Gröller BMF Kandó MTI

Műszeres analitika II. (TKBE0532)

A Tycho-szupernova. 1572ben Tycho Brahe megfigyelt egy felrobbanó csillagot. 400 évvel később egy többmillió fokos buborék látható (zöld és kék a

A lézersugár és szerepe a polimer technológiákban

HIGANYMENTES DBD FÉNYFORRÁSOK FEJLESZTÉSE. Beleznai Szabolcs. Témevezet : Dr. Richter Péter TÉZISFÜZET

A évi fizikai Nobel-díj

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Röntgen-gamma spektrometria

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Nagyintenzitású lézerfény - anyag kölcsönhatás. Lézer- és gázkisülésfizika

Nanoelektronikai eszközök III.

Sugárzások kölcsönhatása az anyaggal

Szinkrotronspektroszkópiák május 14.

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Sugárzásos hőtranszport

Távolságmérés hullámokkal. Sarkadi Tamás

Elektronspektrométerek fejlesztése az ATOMKI-ben ( )

Fotonikai eszközök ZH bulid10.10.sp1

Új típusú anyagok (az autóiparban) és ezek vizsgálati lehetőségei (az MFA-ban)

Atomfizika. Fizika kurzus Dr. Seres István

Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!

DIPLOMAMUNKA TÉMÁK 2017/2018. tanév

ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata

Átírás:

8. Előadás Röntgenlézerek A röntgenlézerek létrehozásának nehézségei Röntgenlézerek gerjesztési sémái Alkalmazások, néhány kiválasztott kísérlet

Röntgenlézerek Miért nehéz röntgenlézert csinálni? 4 problémát említünk. 1. A 10-20 nm közötti vonalak élettartama igen rövid, 100ps nagyságrendű, a 2-4 nm közöttieké még rövidebb, 10ps. Ok: Az Einstein-koefficiensek hullámhossz-függése. A spontán emisszió: A ki 6.6710 2 ( nm) 13 g g i k f ik, f ik a 0 a Z 1 a Z 2 2... Ha Z nő, f alig változik mivel az első, hidrogénszerű járulék dominál. A ki ezért -2 -vel arányos, ezért rövidebb a röntgenvonalak élettartama. Lézer felső szint rövid élettartamú gyors pumpálás kell, szelektív depopuláció kell az inverzióhoz a plazmában. Alsó szint depopulációja gyors legyen! 2. Az indukált emisszió: B ik 2 c 3 2h g g k i A ki 3 A ki ~ f Az indukált emisszió valószínűsége csökken a hullámhossz rövidítésével, a spontán emisszióhoz képest 3 szerint. Röntgenlézerek esetén a sugárzás valójában erősített spontán emisszió (ESE lézer). ik.

3. Az atomok és ionok magas gerjesztéséhez magas hőmérséklet kell. A rövid hullámhosszú átmenetek gerjesztéséhez nagy rendszámú atomok belső héjait kell felszabadítani, azaz sokszorosan ionizált atomokat kell létrehozni, ami magas hőmérsékletet, nagy pumpáló energiát követel. 4. Nagyon nehéz ezekre a hullámhosszakra tükröket készíteni. Még nagyobb probléma, hogy a lézerszint rövid gerjesztési élettartama miatt a rezonátor körbefutási ideje pikoszekundum nagyságrendbe kellene essen. A legtöbb röntgenlézer ezért egyszeres átfutású, és ezért a nyaláb minősége gyenge. Tükör-rezonátor probléma (ps, hullámhossz) egyutas lézer, rossz nyaláb. ASE nő valójában ASE lézer.

Röntgenlézer erősítési tényező. 4 /,, 1 faktor : az inverziós ahol, : 2 0 2 2 0 mc e r f g g r n n F F n n n G e I I l lu u l l ind ind u abs l ind u abs l ind u GL Akkor van erősítés, ha n u ind FL>1. A szükséges lézerteljesítmény:, FV n P u ahol n u F az invertált populáció-sűrűség, V a plazmatérfogat és az élettartam(=1/a ul ). Ebből. / 16 4 2 2 G c V P

Mivel V=AL, ezért P A 2 2 16 c / GL 4. 5 ~. 4 A szükséges lézerenergia a hullámhossz rövidülésével nagyon erősen nő!!!

Röntgenlézer gerjesztési sémák 1. Ütközéses gerjesztés (Peter Hagelstein), alapvetően 3-szintesek. Ionizációs üvegnyaknál (bottleneck), azaz ha egy adott ionizációjú állapot még gerjesztődik, de a következő már nehezen. Pl. az Al 12. elektronja eltávolításához 18.8eV kell, a 11.-hez 28.4 ev, de a 10.-hez (nemesgázszerű) már 120eV! Az elektronhőmérsékletet az adott ion gerjesztéséhez kell választani. Nemesgáz-, Ne-szerű ionok. A felső szintet az elektronok ütközéssel gerjesztik, az alsó szint kell gyorsan rekombinálódjon, kiürüljön. Ez azt jelenti, hogy a felső lézerszint alapállapotba való sugárzásos átmenete tiltott, míg az alsó szint sugárzással gyorsan bomlik. Általában a n=0 átmenetek alkalmasak. Hosszú fóliák hengeres megvilágítása, homogén sűrűségprofil. Első lézer a Ne-szerű Se (Z=34, 10 maradék elektron), T e ~1keV.

Ne-szerű Se egyszerűsített sémája. Az ütközéses gerjesztéshez legalább 1.5keV elektronok szükségesek. A pumpálás 2.4TW, 0.527m lézerrel 450 ps impulzushosszal történt. (M. Rosen LLNL, D.Attwood könyvében) Hasonló a Ne-szerű Ge lézer is. T e =800eV, n~510 20 cm -3 G~4cm -1, L=1-2cm A séma működik kapilláris kisülésben is Ar gázban (Rocca USA, Kuhlevszkij csoportja Pécsett)

Különböző röntgenlézer-elrendezések

Ni-szerű europium sémája 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4d-4p Általában 3d, 4d-4p átmenettel. Sm: 7.3nm Au: 3.5nm g2cm -1 Rövidebb hullámhossz, mint a Ne-szerű ionoknál Újdonság: Tranziens pumpálás (Nickles, Shlyaptsev): Nanoszekundumos impulzus ionizál, ultrarövid impulzus gerjeszt, nem stacionárius inverzió.

Ionizálás: 0.6-1ns, 1-15J, max 10 13 W/cm 2. Inverzió: 0.35-7ps, 10 13-10 15 W/cm 2. Késleltetés ~600ps Kapilláris kisüléssel is összehangolható. Tranziens gerjesztés eredmények: RAL: G=30cm -1 (Sm, 7.3nm) LULI: G=15cm -1 LLNL: G=24cm -1 GL~15 Baj: GL nem túl nagy, telítődik. Haladó hullámos pumpálás működik, de a GL-t nem javította.

2. Rekombinációs gerjesztésű lézerek: Úgy kell gerjeszteni egy iont, hogy a következőt már nem, a zárt héj utáni konfiguráció. Ezért a H-szerű, Li-szerű, Na-szerű ionok alkalmasak erre. Az alsó szint gyorsan bomlik (rezonancia-átmenet), de az alapállapotba való átmenet az önabszorpció miatt telítődik. A plazma legyen hideg és ritka! Különben az ütközések mindent alapállapotba visznek. Suckewer et al. (Princeton): Erős mágneses térben C 5+ 3-2 lézer (300J, 80ns lézerrel). RIKEN (Japán) Li-szerű Al, 3J/cm pumpálás GL=4.2 3d-4f 15.5nm 3d-5f 10.6nm Mg, Si: 8.9nm lézer.

Röntgenlézerek a vízablakig (ahol az oxigén, s a víz átlátszó, a szén nem)

Az impulzushossz rövidítése Lássuk, mit is kutatnak most a nagyobb laboratóriumok ezen a téren. R. Lee (LLNL) nyomán. 1. A mutatott röntgenlézerek általában 100-200 ps-os impulzusokat bocsájtanak ki. A gyors folyamatok megfigyeléséhez célszerű ezt rövidíteni. Két impulzusos besugárzással 20 ps és rövidebb impulzus. Az első impulzus hozza létre a plazmát kis gradienssel, a második ionizál és gerjeszt.

Haladó hullámú gerjesztés A séma és a rács elrendezése a pumpáló lézerimpulzus fázisfrontjának megfelelő szögbe állításához. 3cm hosszú fólia-target 200 nm yttriumból és 100 nm lexanból (CH polimer), amelyet két oldalról 100 ps hosszú, 0.53m sugároz be. Időkülönbség: 300 ps.

A gerjesztés és a lézerspektrum Az ábra a neonszerű Y időfelbontásos spektrumát mutatja mind a kemény röntgen, mind az XUV tartományban. A kemény röntgen spektrum (A) a karakterisztikus neonszerű és fluorszerű 3-2 és 4-2 átmeneteket mutatja, ami arra utal, hogy mindkét impulzus alatt a gerjesztési feltételek azonosak voltak. Ezzel szemben az XUV spektrum (B) csak a 2. impulzus alatt mutat erős J=2-1 lézeremissziót 15.5 nm-en. Valószínű magyarázat: Az első impulzuskor még nagy sűrűség-gradiens refraktálja a lézeremissziót, ki az aktív közegből.

A rövid lézerimpulzus A kemény röntgensugárzás és a lézerműködés közös időtörténete 45 ps-os röntgen lézerimpulzust mutat.

Röntgenlézer-alkalmazások Röntgen árnyképfelvétel lézerplazmáról: 10 m plasztikon 3 m Al. A hátoldalon látszanak az 5-6 m-es filamentumok, ami 2 m felbontásnak felel meg.

Röngenmikroszkóp és interferometria Röntgenmikroszkópiával sikerült 40 nm felbontást elérni, és azzal 40 nm Au szemcsékről és patkány-spermáról felvételeket készíteni.

A Mach-Zehnder interferométer 15.5 nm-en a nagysűrűségű, hosszú plazmáról készített képet. Lézer: 1 mj, 150 ps.

3. Lézerek alacsonyabb hőmérsékleten, a belső héjak gerjesztésével? Fotoionizációs lézer (Duguay, Rentzepis): Az alsó lézerszint lehet alapállapot is, amelyet fotoionizációval mintegy kiürítünk. A kiürítő sugárzás lehet egy másik plazmából eredő vonalas sugárzás, amely vonal alkalmas a fotoionizációra, azaz egybeesés kell. Problémát jelent az, hogy a lézermédium hőmérséklete alacsony kell maradjon, hogy az egyéb folyamatok (fotogerjesztés, rekombináció stb.) elhanyagolhatók maradjanak. Goodwin, Fill: C Ly- vonal vonalas pumpálásának elvi lehetősége. Saját kísérletek: Lehet-e Planck-spektrummal szelektíven fotoionizálni? Bár inverzióról nem volt szó (nem is volt várható), de a termodinamikai egyensúlytól való eltérés bizonyítható volt. 4. Szabad elektron-lézer (DESY). 5. Magas harmonikusok gázokban és plazmákban (Szegeden is).

OFI lézer: egy érdekes alternatíva Érdekes lehetőség az OFI, azaz az optikai tér ionizációs, ütközéses gerjesztéses lézer. Az optikai tér ionizáció (küszöb fölötti is) elektronokat gyorsít, amelyek az ionokkal ütközve gerjesztik azokat. A target lehet gáz is, pl. gázjet. Ekkor klaszterek is keletkeznek, amelyek mérete növeli az ütközési hatáskeresztmetszetet, de könnyen elronthatják a homogenitást. Egy kínai csoport 41.8 nm-en látott lézerműködést, a Pd-szerű Xe-on.

Európa legnagyobb működő röntgenlézere:pals jódlézer, Prága (Bedrich Rus szegedi IAMPI előadásából, 2006) Output beam 290 mm Iodine laser, 1.315 µm Energy Pulse length Shot rate 1 kj + 100 J aux (two beams) 200-600 ps 20 min

PALS target area Interaction chambers Example of focusing optics: line focus matrix for X-ray lasers

Ne-like zinc X-ray laser at 21.2 nm (58.5 ev)

Plasma-based X-ray laser: generic scheme Conditions for lasing: - appropriate ionization balance - high T e to maximise collisional pumping - moderate transverse and lateral n e gradients

Standard pump configuration: 4 mj output 130 µm 700 µm Weak prepulse : 2-10 J after 10 ns Main pump pulse: ~450 J 3 cm Single-pass beam Double-pass beam 120 1800 5 mrad 0 5 mrad 0

50-ns prepulse: possibility to achieve 10 mj output Prepulse 50 ns ahead I prep = 8 10 10 Wcm -2 I prep /I main = 2.5 10-3 Single-pass Double-pass ASE beam beam 450 J 6 J 5 mrad Half cavity Mo:Si multilayer 0 4600 200

Generic experimental scheme

Characteristics of the developed XRL @ 21.2 nm (58.5 ev) Prepulse delay 10 ns 50 ns XRL pulse energy Pulse duration Peak power 4 mj 30 MW 120-150 ps 10 mj 70 MW Photons per pulse 3 10 14 1.2 10 15 Currently the most energetic soft X-ray laboratory source

Experimental arrangement Mo:Si multilayer mirror, R=0.35: typically 1.5 mj of focused energy available Targets: LUXEL 500 nm Al 160 nm polyimide attenuating filters

Spatial distribution of the focused 21.1-nm light though 500-nm Al foil without foil with foil 10 11 Wcm -2 100 µm 100 µm without foil with foil 10 12 Wcm -2 100 µm 100 µm

A Rhodes-alternatíva Charles Rhodes (Univ. Illinois) 2007-ben Szegeden járt - állítása szerint intenzív lézerműködést tapasztaltak 4.5 kev foton energián. KrF lézert használtak, a target cluster (gázjet) volt. A lézernyaláb teljesen elnyelődik, egy filamentum szalad végig. Ez teszi lehetővé a haladó hullámú gerjesztéssel a belső héj kiürítését. Rácz Ervin jelenleg Chicagoban dolgozik a témán. Itthon is megvalósítható (?). Miről is van szó?

EXPERIMENTAL CONFIGURATION wall xenon gas jet Aperture ~ 1.5 mm 12.7 m Ti foil von Hámos Mica Crystal Spectrograph ~ 1.5 mm f/3 Focus 248 nm ~ 400 mj ~230 fs ~ 3 m CHANNEL L = 1.5 2.5 mm Xe n cluster target Distance to the Source ~ 2.5 cm Channel Axis Contour of gas expansion ( B ) Diffracted x-ray at wavelength ~ 200 m Diameter Aperture xe ~ 36 10 19 cm 3 Alignment Angle ( B ) curved mica crystal axis of spectrograph (in film plane) x-ray pinhole camera Fig. (2): Experimental configuration used for the observation of amplification of Xe(L) radiation in self-trapped channels inside an evacuated chamber. The x- ray pinhole camera was equipped with a ~ 10 m thick Be foil enabling the morphology of the channel to be visualized by the Xe(M) emission (~ 1 kev). The observed channel length typically is L 1.52.5 mm. The wall defining the entrance plane having the 200 m aperture was fabricated from ~ 100 m thick steel and the incident 248 nm pulse was focused with an f/3 off-axis parabolic optic to a spot size of ~ 3 m. The entrance of the von Hámos spectrograph viewing the forward directed emission was protected with a Ti foil of 12.7 m thickness whose transmission factor in the 2.73.0 Å region is ~ 0.5. The Bragg angle for the Xe 34+ component at 2.88 Å is B 26. The film plane, which lies on the axis of the instrument, does not have a direct path to the x-ray source and, hence, only receives exposure by diffraction from the curved mica crystal. An identical von Hámos spectrograph, equipped with Muscovite mica from the same cut, was also used to record the spontaneous emission emitted transversely with respect to the channel axis. Not shown is the location of a film pack used for measurement of the amplified x-ray beam composed of a 2 cm square 12.7 m thick Ti foil backed by a matching piece of x-ray film. With removal of the axial von Hámos spectrograph, this detector was placed on the channel axis in a perpendicular orientation at a distance of 12.5 cm from the cluster target.

CHANNEL MORPHOLOGY Xe(M) ~ 1 kev IMAGE

Xe(L) SPONTANEOUS EMISSION SPECTRUM 2p 5 3d n 2p 6 3d n1 Fig. (1). Unamplified spontaneous emission profile of the Xe(L) 3d2p hollow atom [7] spectrum (film #3) produced from Xe clusters with femtosecond 248 nm excitation without plasma channel formation. The splitting between the major and minor lobes arises from the spin-orbit interaction of the 2p vacancy. The full width of the main feature is ~ 200 ev. The positions of selected charge state transition arrays (Xe 31+, Xe 32+, Xe 34+, Xe 35+, and Xe 36+ ) are indicated.

Intensity (arb. units) Intensity (arb. units) Xe(L) Xe(L) Amplification Ruby 140 120 100 80 Xe 35+ Xe 36+ Xe 34+ Xe 32+ Xe 31+ Film #3 s ~ 200 ev 60 40 20 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 Wavelength (Å) 125 100 Xe 31+ Xe 32+ Film #11A Xe 30+ 75 50 25 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 Wavelength (Å)

Amplified X-Ray Spectrum Xe 35+ g 0 l 16

Xe(L) AMPLIFICATION / Xe 32+ ~ 2.71 Å

X-RAY BEAM DOUBLE VISION x ~ 200 r

Állítások és kételyek Állítás: G=10 6 elképesztő a normál röntgenlézerek G=10- hez képest. Mérés nem abszolút, roncsolódásból, tehát nem megbízható. Több, különböző ionizáltságú Xe ionon figyelt meg lézerműködést. Ez egyidejűleg gyakorlatilag kizárt. Rhodes: A szaladó hullámban ezek egymás után gerjesztődnek, azaz különböző időkben. Mindazonáltal intenzív röntgenforrás létrehozható? Alkalmazások egészen a röntgen-holográfiáig. Mit kell hozzá itthon? Új lézererősítő. Filamentum feltételek teljesíthetők, legalább rövidebb hosszon.

Az eddigiek kombinációja: harmonikus seed impulzus erősítése röntgenlézerrel Egy lézer általában oszcillátorból és erősítőkből áll, ami nehezen kivitelezhető röntgenlézerek esetén. A plazmákban való refrakció torzítja a nyalábot, nem hatékony a csatolás az erősítő fokozatba, ezért az elérhető összenergia alacsony. Magas harmonikusokkal jó minőségű injektált impulzus állítható elő, ami immár a kisebb sűrűségű, kevesebbet torzító plazmában erősödhet (Zeitoun, 2004). Nagyobb intenzitás, koherensebb nyaláb kapható (Lambert et al., 2008).