KÖRNYEZETI KOCKÁZATMENEDZSMENT

Hasonló dokumentumok
Benzintölt -állomás szénhidrogénekkel szennyezett területének részletes kockázatfelmérése

Gruiz Katalin Szennyezett területeken lejátszódó folyamatok és a környezeti kockázat

KÖRNYEZETTOXIKOLÓGIA II. a talaj kockázatának kezelésére Gruiz Katalin. Gruiz Katalin - KÖRINFO

KÖRNYEZETI KOCKÁZATMENEDZSMENT

KÖRNYEZETTOXIKOLÓGIA. Vegyi anyagok a környezetben mérhető paraméterek Toxicitási tesztek osztályozása I.

2. Biotranszformáció. 3. Kiválasztás A koncentráció csökkenése, az. A biotranszformáció fıbb mechanizmusai. anyagmennyiség kiválasztása nélkül

dinamikus rendszerben

SAVANYÚ HOMOKTALAJ JAVÍTÁSA HULLADÉKBÓL PIROLÍZISSEL ELŐÁLLÍTOTT BIOSZÉNNEL

Fenyvesi Éva, Molnár Mónika, Kánnai Piroska, Illés Gábor, Balogh Klára, Gruiz Katalin

KÖRNYEZETI MIKROBIOLÓGIA ÉS REMEDIÁCIÓ

Fémmel szennyezett területek kezelése kémiai és fitostabilizációval. Feigl Viktória

Toxikus vegyi anyagokkal szennyezett területek kockázatának jellemzése integrált kémiai biológiai környezettoxikológiai módszeregyüttessel

Vegyi anyagok a környezetben Környezettoxikológia

RNYEZETTOXIKOLÓGIAI TESZTEK TALAJRA

KÜLÖNBÖZŐ BIOSZENEK ÖSSZEHASONLÍTÓ ÉRTÉKELÉSE ÉS HATÉKONYSÁGÁNAK JELLEMZÉSE TALAJ MIKROKOZMOSZOKBAN

Kémiaival kombinált fitostabilizácó alkalmazása szabadföldi kísérletben

Fémmel szennyezett talaj stabilizálása hulladékokkal

Vörösiszap talajjavító hatásának környezettoxikológiai elemzése mikrokozmosz kísérletekben

Vörösiszappal kevert talajok környezettoxikológiai elemzése mikrokozmosz kísérletekbenk

Vízgyőjtıszintő kockázatmenedzsment Vaszita Emese Gruiz Katalin Siki Zoltán

A környezeti kockázat egyik kulcsparamétere a vegyi anyagok hozzáférhetősége: mennyire oldja a víz, mennyire veszik fel az élőlények

SOILUTIL Hulladékok talajra hasznosítása: menedzsment-koncepció és eredmények Gruiz Katalin

AZ ELSŐDLEGES KÖRNYEZETI KOCKÁZATBECSLÉST MEGALAPOZÓ TALAJVIZSGÁLATOK

Ciklodextrinnel intenzifikált bioremediáció (CDT) ESETTANULMÁNY - BIOREMEDIÁCIÓ

Kőolaj- és élelmiszeripari hulladékok biodegradációja

Talajvédelem előadás VIII. Szennyezőanyagok a talajban Toxicitás problémája Határérték rendszerek

Ciklodextrines kezeléssel kombinált technológiák a környezeti kockázat csökkentésére

A TALAJSZENNYEZŐK HATÁRÉRTÉKEINEK MEGALAPOZÁSA ÉS ALKALMAZÁSA. Dr. Szabó Zoltán

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

Kockázatalapú Környezetmenedzsment : igényfelmérés

Az ökoszisztéma vizsgálata. Készítette: Fekete-Kertész Ildikó

TÉMAVEZETŐ DR. GRUIZ KATALIN KONZULENS DR. FENYVESI ÉVA

Szennyezett talaj jellemzéséhez szükséges módszeregyüttes Útmutató és irányelvek

LCA alkalmazása talajremediációs technológiákra. Sára Balázs FEBE ECOLOGIC 2010

A GINOP PROJEKT BEMUTATÁSA SZENNYVÍZTELEPEK ÁSVÁNYOLAJ FELMÉRÉSÉNEK TAPASZTALATAI

KÖRNYEZETTOXIKOLÓGIAI TESZTEK TALAJRA. Gruiz Katalin. Molnár Mónika

Vegyi anyagok kockázatának mérése

KÖRNYEZETTOXIKOLÓGIA I. a kockázatkezelés fontos eszköze Gruiz Katalin. Gruiz Katalin - KÖRINFO

Szabadföldi kísérletek

Vízben oldott antibiotikumok (fluorokinolonok) sugárzással indukált lebontása

Készítette: Témavezető: Dr. Gruiz Katalin

LOKKOCK GVOP /3.0 HELYSPECIFIKUS KOCKÁZATFELMÉRÉST TÁMOGATÓ ÚJ TALAJVIZSGÁLATI MÓDSZEREK KIDOLGOZÁSA RÉSZLETES SZAKMAI BESZÁMOLÓ

A tisztítandó szennyvíz jellemző paraméterei

Technológia-verifikáció

Háhn Judit, Tóth G., Kriszt B., Risa A., Balázs A., Nyírő-Fekete B., Micsinai A., Szoboszlay S.

2. fejezet KÖRNYEZETI KOCKÁZATBECSLÉS

Technológiai módszeregyüttes, az optimális biotechnológiához tartozó paraméterek: KABA, Kutricamajor

Növényi termőközeg (mesterséges talaj) létrehozása hulladék alapanyagokból

2. Technológia-monitoring módszerei, laborkísérletek

1.1.a. A környezeti kockázat kialakulása

Növényi termőközeg (mesterséges talaj) létrehozása hulladék alapanyagokból

A Víz Keretirányelvről, a felszíni vízvédelmi jogszabályok felülvizsgálatának szükségességéről

A környezetmenedzsment mérnöki eszköztára 2.

VÖRÖSISZAP TALAJJAVÍTÓ HATÁSÁNAK KÖRNYEZETTOXIKOLÓGIAI ELEMZÉSE MIKROKOZMOSZ KÍSÉRLETEKBEN

2006R1907 HU

Modern Mérnöki Eszköztár Kockázatalapú Környezetmenedzsment megalapozásához (MOKKA) 2. jelentés. BME III/4.b. 1.

Felszín alatti közegek kármentesítése

2006R1907 HU

Talaj/talajvíz védelem IX. Talaj és talajvíz szennyezés környezeti és humánegészségügyi kockázata

A rizsben előforduló mérgező anyagok és analitikai kémiai meghatározásuk

SZENNYEZETT TERÜLETEK

FELSZÍNI VÍZMINŐSÉGGEL ÉS A HIDROMORFOLÓGIAI ÁLLAPOTJAVÍTÁSSAL KAPCSOLATOS INTÉZKEDÉSEK TERVEZÉSE A

TCE-el szennyezett földtani közeg és felszín alatti víz kármentesítése bioszénnel

Környezetanalitikai vizsgálatok a Budapesti Vegyi Művek volt Illatos úti telephelye környékén

A nitrogén körforgalma. A környezetvédelem alapjai május 3.

Vezető regisztrálói webtanfolyam kémiai biztonsági értékelés/kémiai biztonsági jelentés (I) 2. rész március 9. George Fotakis, ECHA

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖRNYEZETVÉDELMI ISMERETEK KÖZÉPSZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

KÖRNYEZETGYÓGYÍTÁS A GYAKORLATBAN

VÍZFOLYÁSOK FITOPLANKTON ADATOK ALAPJÁN TÖRTÉNŐ MINŐSÍTÉSE A VÍZ KERETIRÁNYELV FELTÉTELEINEK MEGFELELŐEN

KÖRNYEZETTOXIKOLÓGIA. Környezettoxikológia helye, szerepe toxicitási tesztek I II. Molnár Mónika, Gruiz Katalin

Brockhauser Barbara, Deme Sándor, Hoffmann Lilla, Pázmándi Tamás, Szántó Péter MTA EK, SVL 2015/04/22

Értékelés a Chesarban Március 26.

Korszerű eleveniszapos szennyvízkezelési eljárások, a nitrifikáció hatékonyságának kémiai, mikrobiológiai vizsgálata

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

BIZTONSÁGI ADATLAP (a R.E.A.C.H. 1907/2006-os sorszámú Európai Szabályzat Annex II. sz. melléklete szerint) PYRUS 400 SC

NÉV. HATÓANYAG NEVE, KÉPLETE, MEGJELENÉSI FORMÁJA Név IUPAC név. Benzil-butil-ftalát (BBP) Benzil-butil-ftalát Vegyületcsoport

A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG

a NAT /2007 számú akkreditálási ügyirathoz

No Change Service! Verzió Felülvizsgálat dátuma Nyomtatás Dátuma

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

Kiadás: Oldalszám: 1/5 Felülvizsgálat: Változatszám: 2

A növény által felvehető talajoldat nehézfém-szennyezettsége. Murányi Attila. MTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó 15.

Oldal: 1 of 7 BIZTONSÁGI ADATLAP Felülvizsgálat dátuma: Nyomtatás Dátuma:

SZENNYVÍZ ISZAP KELETKEZÉSE,

A Hárskúti- fennsík környezetterhelésének vizsgálata az antropogén hatások tükrében

A vízi ökoszisztémák

Mikrobiológiai üzemanyagcella alapvető folyamatainak vázlata. Két cellás H-típusú MFC

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE

Referencia név Frissítés sorszáma Frissítés dátuma

UV-sugárzást elnyelő vegyületek vizsgálata GC-MS módszerrel és kimutatásuk környezeti vízmintákban

BIZTONSÁGI ADATLAP 1907/2006/EK és a 1272/2008/EK rendelet és módosításai szerinti biztonsági adatlap

Laboratóriumi toxicitási tesztek. A PNEC statisztikus megközelítése. Hogyan becsüljük a hatásokat?

BIZTONSÁGI ADATLAP a 44/2000.(XII.27.)EüM rendelet szerint

KÖRNYEZETGAZDÁLKODÁS Az ember és környezete, ökoszisztémák. Dr. Géczi Gábor egyetemi docens

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

Nano cink-oxid toxicitása stimulált UV sugárzás alatt és az N-acetilcisztein toxicitás csökkentő hatása a Panagrellus redivivus fonálféreg fajra

Bozó László Labancz Krisztina Steib Roland Országos Meteorológiai Szolgálat

BIZTONSÁGI ADATLAP. 1. Termék neve ÖKO-FLEX VÉKONY VAKOLT dörzsölt/kapart hatású dekoratív vakolat Felhasználása Falazat dekoratív védelme.

Az energia áramlása a közösségekben

KÖRNYEZETI MIKROBIOLÓGIA ÉS BIOTECHNOLÓGIA. Bevezető előadás

Átírás:

KÖRNYEZETI KOCKÁZATMENEDZSMENT Környezeti kockázatfelmérés, példák Molnár Mónika, Feigl Viktória, Gruiz Katalin Budapesti Műszaki és Gazdaságtudományi Egyetem Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék

A vegyi anyagok környezeti kockázatának mérése EU TGD 1996 (2006) Technical guidance document for environmental risk assessment of new and existing substances, Brussels A technikai útmutató az EC 1488/94 és EEC 793/33 rendeleteket támogatja Forrás (Kibocsátás) Hatás Eloszlás modellezése Extrapoláció PEC PNEC RQ = PEC / PNEC Page 2

PEC előrejelzése és részletes felmérése (bármilyen környezeti elemre és fázisra) 1. Maximális mért koncentráció (a szennyeződés középpontjában) 2. Egyszerű terjedési modell alkalmazása, amely figyelembe veszi a kibocsátást és a koncentráció csökkenését a forrás és a receptor között terjedési- és sorsmodell 3. Finomított transzportmodell, amely a fázisok közötti megoszlást és a biodegradációt is figyelembe veszi terjedési- és sorsmodell 4. Különleges igényeket is figyelembe vesz, pl. tápláléklánc jellegzetességei, biokoncentráció, biomagnifikáció, biológiai hozzáférhetőség, stb. Page 3

MODELLTÍPUSOK Sokelemes modellek Egyelemes modellek Biológiai modellek Gyógyszer kinetikai modellek Expozíciós (kitettségi) modellek Page 4

Modellszámítások A modellszámítások során teljesen átláthatóvá kell tenni az környezeti koncentráció meghatározásának folyamatát és dokumentálni kell a számításokhoz felhasznált paramétereket és az előválasztott értékeket. Expozíciós modellekhez szükséges adatok: Page 5 Az anyag fizikai-kémiai tulajdonságok: -molekulasúly -oktanol-víz megoszlási hányados -vízoldékonyság -gőznyomás -forráspont (csak bizonyos kibocsátás becsléshez) Az anyag felhasználási jellemzői: -megtermelt mennyiség -importált mennyiség -exportált mennyiség -ipari kategória -felhasználási kategória -fő kategória A terjedési- és sorsmodellek fent megadott adatigénye csak semleges szerves és ionokat nem képező anyagokra érvényes. Más típusú anyagok esetén több adatra is szükség lehet.

Terjedési- és sorsmodellek célja A szennyezőanyag előrejelezhető környezeti koncentrációjátnak kiszámítása A modellek a szennyeződési folyamatok matematikai leírása szimulálják a valóságban lejátszódó folyamatokat modellszámítások révén a vizsgált terület bármely pontjára és a vizsgált időszak bármely időpontjára képesek becslést adni a szennyezőanyag koncentrációra. Alap a koncepciómodell, működő változata pedig általában egy szoftver. A terjedési- és sorsmodellek a vegyi anyag jellemzőin kívül a környezet jellemzőit veszik számításba az előrejelzéshez. A környezet lehet egy előre meghatározott jellemzőkkel bíró fiktív (pl. európai) vagy egy konkrét, helyspecifikus jellemzőkkel bíró környezet. Page 6

PEC számítása - vegyi anyagok szabályozására és hatósági célokra Előre meghatározott európai standard környezeti jellemzők megadásával egységesítik a környezeti paramétereket. A PEC számítása során egy vegyi anyag életét követjük végig a gyártástól a felhasználáson keresztül a hulladékká válásig. A PEC érték értelmezhető lokális, regionális és kontinentális szinten is. Page 7

Európai standard környezeti jellemzők Page 8 Standard európai környezeti jellemzők: egy fiktív európai környezetet jelentenek a valóságban nem létezik egy vegyi anyag környezeti viselkedését és terjedését egész Európában egységesen jellemzi.

A terjedési- és sorsmodellekkel szemben támasztott követelmények A modellnek tükröznie kell a vegyi anyag szerkezete és aktivitása közötti kvantitatív összefüggést ((Q)SAR) a modell hátteréül szolgáló fizikai-kémiai és/vagy biológiai kölcsönhatások révén. Egyértelműen kell közölni a modell létrehozásához felhasznált peremfeltételeket, a figyelembe vett környezeti fázisokat, folyamatokat. QSAR - a szerkezet hasonlósága alapján becsülhetjük a viselkedést, transzportot hasonló szerkezetű ismert hatású vegyület adataiból (az eljárás angol nyelvű rövidítése QSAR = Quantitative Structure - Activity Relationship). Page 9

SimpleBox modell -Sokelemes modell, dobozmodell -a környezeti elemek (homogének és jól keveredők (?)) -az anyag inputot folyamatosnak kell tekinteni (folyamatos diffúz emisszió) Page 10 A környezet összes elemét és fázisát figyelembe vevő SimpleBox modell

Víz A szennyvíztisztító telepekről kiengedett tisztított víz a felszíni vizekbe kerülve felhígul sorsfolyamatok Page 11

PEC lokális, víz számítása-1 Page 12

KÖRNYEZETI ELEM: TALAJ Kiemelt szerep a szárazföldi szervezetek expozíciója miatt. Mezőgazdasági talaj: növénytermesztés, legeltetés, állattenyésztés, tápláléklánc. Kimosódás: talaj mélyebb rétegeibe, vagy felszíni vízbe Page 13

BIOLÓGIAI MODELL Ezek a modellek matematikai egyenletekkel fejezik ki adott élőlény környezetével való kölcsönhatását. Számba veszi a vegyi anyagok felvételét a légzés és a táplálkozás során kiürülését a légzés, az ürítés során valamint átalakulását, lebomlását a szervezetben Page 14

GYÓGYSZERKINETIKAI MODELL Kép forrása: http://www.landesbioscience.com/curie/chapter/4661/ A gyógyszerkinetika azzal foglalkozik, hogy a szervezetbe bevitt gyógyszerek melyik szervben milyen koncentrációban jelennek meg, és hogy mennyi idő elteltével bomlanak le, ürülnek ki. A gyógyszerek szervezetre gyakorolt hatása szorosan Page összefügg 15 koncentrációjukkal.

PNEC meghatározása, kiszámítása Az adatbázisokban elérhető adatok értékelésével kezdődik. Az adatbázisok a legtöbb vegyületre vonatkozóan hiányosak. Ha az adatbázisban nincs adat, akkor QSAR Mennyiségi összefüggés egy vegyi anyag szerkezete és aktivitása között. A környezettoxikológia eszköze veszélyes anyagok hatásainak és környezetben való viselkedésének előrejelzésére. Azonos csoportba tartozó vegyületek környezeti viselkedése kémiai szerkezetüktől függően szisztematikus és előrejelezhető összefüggéseket, ill. eltéréseket mutat, melyek matematikai egyenletekkel leírhatóak. Sokváltozós regressziós matematikai összefüggések. log 1/ LC 50 = 0,871 * log K ow -4,87 egyenlet az aromás és alifás szénhidrogének toxicitását adja meg hal esetében. Page 16

PNEC előrejelzése és részletes felmérése 1. Általános PNEC (TDI) alkalmazása, pl. rendeleti határérték vagy környezetminőségi kritérium a legérzékenyebb területhasználatra 2. Helyspecifikus területhasználatok és szokások figyelembevétele 3. Direkt ökotoxikológiai vagy toxikológiai tesztelés, helyspecifikus PNEC megállapítása Page 17

A PNEC érték becsléséhez alkalmazott biztonsági faktorok (EU TGD) Page 18 Alkalmazott teszt Három különböző trofikus szint élőlényeivel legalább 1-1 akut toxicitási teszt (LC50: hal, alga, Daphnia) Legalább egy hosszú távú NOEC mérés akár hal akár Daphnia tesztorganizmussal Két különböző NOEC mérés, két különböző trofikus szint élőlényeivel (hal és/vagy alga és/vagy Daphnia) Három trofikus szint élőlényeivel meghatározott krónikus NOEC értékek Szabadföldi adatok vagy mikrokozmosz kísérletek Biztonsági faktor 1000 100 50 10 egyedi felmérés

KÖRNYEZETI KOCKÁZATFELMÉRÉS Példa (1.) Trifluralin kockázata a Duna üledékében Page 19

Trifluralin környezeti kockázata a Duna üledékében A trifluralin korábban nagy mennyiségben gyártott és importált peszticid Hatása az ökoszisztémára Apoláros szerves vegyület: nehezen biodegradálható, vízben rosszul oldódik és ezért jól adszorbeálódik a szilárd szerves anyagokon, pl. humusz-anyagokon. Valószínűsíthető, hogy az üledékben felhalmozódik. Kémiai időzített bomba! Szabályozás Page 20

A trifluralin kockázata a Duna ökoszisztémájára Felszíni vizet érő trifluralin terhelés, PEC számítás Trifluralin hatása az ökoszisztémára, a PNEC érték becslése A trifluralin kockázati tényezője Duna vízében és üledékben Page 21

Trifluralin környezeti kockázata a Duna üledékében - Környezeti koncentráció becslése Kibocsátási faktorok : Kibocsátás gyártás során szennyvízbe: F víz = 0,02 (EU-TGD) Kibocsátás felhasználás során felszíni vízbe: F víz = 0,1 Felszíni vizeket érő terhelés: A termelésből adódó terhelés: 184 t/év x 0,02 = 3,6 t/év, (nincs szennyvíztisztító) Ha van szennyvíztisztító, akkor az F stp értékkel szorozva, ennél kisebb terhelést fogunk kapni. F stp = 0,14 esetén 0,5 t/év terhelés értékkel kalkulálhatunk. Termelésből adódó terhelés = 3,6 t/év x 0,14 = 0,5 t / év Felhasználásból származó terhelés = 255 t/év x 0,1 = 25,5 t/év A felszíni vizeket érő teljes trifluralin terhelés (Mo): 25,5 + 0,5 = 26 t/év Page 22

Trifluralin környezeti kockázata a Duna üledékében A biodegradáció: nehezen bidegradálódik, biodegradációs faktora: F degvíz = 0,5 A Duna áramlási sebességét és a trifluralin biodegradálhatóságát figyelembe véve a regionális környezeti koncentráció: PECregionálisvíz = terhelés x F degvíz : Q = = 26 t/év x 0,5 : 2204 m 3 /sec Q = a Dunára jellemző átlagos áramlási sebesség PEC regionálisvíz = 1,9 x 10-4 mg/l Page 23

Trifluralin környezeti kockázata a Duna üledékében Környezeti koncentráció becslése A vízre vonatkozó trifluralin koncentrációból becsüljük az üledék koncentrációját. PEC regionálisvíz = 1,9 x 10-4 mg/l PEC regionálisüledék = PEC regionálisvíz x Koc x foc PEC regionálisüledék = 1,9 x 10-4 mg/l x 10 4 l/kg x 0,2 = 0,38 mg/kg foc = a Duna üledékére jellemző szerves szén hányad Koc = szerves szén víz megoszlási hányados (6400-13 400 az üledékminőségtől függő Koc érték; átlag: 10 4 l/kg) Page 24

Az ökoszisztémára károsan nem ható koncentráció, a PNEC érték meghatározása Egyes tesztorganizmusokkal folytatott vizsgálati eredményekből kapható meg extrapolálással A bioindikáció a vizsgált ökológiai rendszer legérzékenyebb tagjának meglétét, vagy hiányát vizsgálja. A biomonitoring a monitor-szervezetekben lejátszódó változásokat, pl. akkumulációt. Adott terület diverzitásának vizsgálata (pl. életközösségek, koreloszlás, egyedszám, egyedsűrűség, egészségi állapot, szaporodási ráta, stb.) a biodiverzitás eltérése a háttér területtől. A környezettoxikológiai tesztek laboratóriumban végzett vizsgálatok, egy, vagy több fajt alkalmazó tesztek, a koncentráció hatás görbe kimérésére. Page 25

A PNEC érték becsléséhez alkalmazott biztonsági faktorok (EU TGD) Page 26 Alkalmazott teszt Három különböző trofikus szint élőlényeivel legalább 1-1 akut toxicitási teszt (LC50: hal, alga, Daphnia) Legalább egy hosszú távú NOEC mérés akár hal akár Daphnia tesztorganizmussal Két különböző NOEC mérés, két különböző trofikus szint élőlényeivel (hal és/vagy alga és/vagy Daphnia) Három trofikus szint élőlényeivel meghatározott krónikus NOEC értékek Szabadföldi adatok vagy mikrokozmosz kísérletek Biztonsági faktor 1000 100 50 10 egyedi felmérés

Trifluralin PNEC érték vízre (Duna) Organizmus Hatás Koncentráció [mg/l] Fajok száma Alga Crustacea Crustacea Hal Hal Hal EC 50 LC 50 NOEC LC 50 LOEC NOEC 2,5 0,05 12,0 0,004 0,010 1,0 0,005 0,02 0,001 0,002 Az ökoszisztéma egészére károsan nem ható koncentráció, vagyis a PNEC érték előrejelezhető az ökoszisztéma egyes tagjaira kapott eredményekből. A legkisebb koncentrációértéket vesszük alapul: NOEC érték 0,001, ezt osztjuk a faktor (10) értékével. Page 27 PNEC víz = 0,0001 mg/l 1 9 1 6 2 2

Trifluralin: PNEC becslése üledékre Kevés mérési adat (a becsült érték nem reális) a vízre számított és elfogadott, hatáson alapuló értékből az üledék PNEC értékét a megoszlási modell alapján adjuk meg A megoszlási hányados alapján becsült érték reálisabb PNEC üledék (mg/kg) = Koc (l/kg) x PNEC víz (mg/l) x foc PNEC üledék = 6400 (13 400) x 0,0001 x 0,2 = 0,12 0,27 mg/kg (6400-13 400 az üledékminőségtől függő Koc érték) Page 28 234

A trifluralin kockázati tényezője Duna üledékében A kockázat jellemzésére a környezeti koncentráció és a hatást még nem mutató koncentráció hányadosát használjuk. Ez üledék esetén így számítható: PECüledék = 0,38 PNECüledék = 0,27 0,12 Rq = 1,4 3,2 NAGY KOCKÁZAT Tehát a trifluralin az egyik olyan vegyi anyag Magyarországon, mely a felszíni vizek, köztük a Duna üledékében nagy kockázatot jelent. (A kockázati tényező pontosításának lehetőségei!!!) Page 29 234

Lépcsőzetes kockázatfelmérés szénhidrogénekkel szennyezett területre Page 30

Szénhidrogénekkel szennyezett terület, Kaba Kaba, volt benzintöltő-állomás Szennyezőforrás: földalatti üzemanyagtartály és szerelvényei, valamint az üzemanyagkút Jellemző transzportfolyamatok: növekvő mozgékonyság és biológiai hozzáférhetőség terjedés talajvízzel Expozíciós utak: talaj felporzása következtében porszemcsék lenyelése és belégzése talajvízzel Területhasználat: mezőgazdasági (szántó) Kockázatfelmérés 3 lépcsőben Page 31 Feltárógödör a területen

A szénhidrogénekkel szennyezett terület előzetes állapotfelmérésére alkalmazott módszeregyüttes 8 db talajfúrás: az üzemanyagkút és földalatti tartály környezetében a szennyezés mértékének, összetételének és kiterjedésének meghatározása TalajTesztelő Triád szénhidrogénekkel szennyezett terület (benzintöltő állomás) előzetes állapotfelmérésére Kémiai analitikai módszerek A szennyezőanyag jellemzésére talajban A talaj szénhidrogén tartalmának mérése Kémiai analitikai módszerek A szennyezőanyag jellemzésére talajvízben A talajvíz szénhidrogén tartalmának mérése Talaj ultrahangos extrakció hexán-aceton (2:1) eleggyel extraktum gravimetriával Talaj összes extrahálható szénhidrogén (EPH) GC alkalmazásával Talajvíz extrakció n-pentánnal extraktum gravimetriával Talajvíz összes extrahálható szénhidrogén (EPH) GC alkalmazásával Page 32

Az előzetes kockázatfelmérés főbb eredményei A szennyezőanyag: szénhidrogének, elsősorban dízelolaj és motorolaj Koncentrációja a talajban: 3 000 28 800 mg/kg; talajvízben: 0,1 36,8 mg/l A kockázati tényező (RQ), a mért koncentráció értékek és a határértékek figyelembe vételével (pesszimista becsléssel): A szennyezőanyag (dízelolaj és motorolaj) kockázati tényezője talajvízben RQ talajvíz = PEC talajvíz PNEC talajvíz = 36,8 (0,1 36,8) IGEN NAGY KOCKÁZAT A szennyezőanyag (dízelolaj és motorolaj) kockázati tényezője talajban RQ talaj = PEC talaj PNEC talaj = 9,5 (1 9,6) NAGY KOCKÁZAT A szennyezett terület részletes kockázatfelmérése (A megoszlások, a biológiai hozzáférhetőség, a biodegradáció és a helyszínspecifikus toxicitás figyelembevétele) Page 33

A szénhidrogénekkel szennyezett terület részletes állapotfelmérésére alkalmazott módszeregyüttes TalajTesztelő Triád A szénhidrogénekkel szennyezett terület talajának részletes állapotfelmérésére Kémiai analitikai módszerek A szennyezettség jellemzésére a talajban és a talajvízben Biológiai vizsgálatok A talajökoszisztéma, talajaktivitás jellemzésére Környezettoxikológiai tesztek A talaj toxikus hatásának jellemzésére Talaj ultrahangos extrakció Hexán-aceton (2:1) eleggyel Extraktum gravimetriával Talaj összes extrahálható szénhidrogén (EPH) GC alkalmazásával Talajvíz extrakció n-pentánnal extraktum gravimetriával Talajtulajdonságok vizsgálata ph, redox, EC, CaCO 3, C-, N-, P- és humusztartalom Talajban sza. megoszlás és hozzáférhetőség jellemzése Kow és biológiailag hozzáférhető frakció mérése Talaj aerob heterotróf telepképző sejtek számának meghatározása Talaj szénhidrogén biodegradáló sejtek koncentrációjának mérése Talaj biolumineszcencia gátlás vizsgálata Vibrio fischeri bakteriális tesztorganizmussal Gyökér, ill. szárnövekedés gátlási teszt Sinapis alba tesztorganizmussal Talaj szaporodás-gátlás Tetrahymena pyriformis állati egysejtűvel Talajvíz összes extrahálható szénhidrogén (EPH) GC alkalmazásával Page 34 Letalitás vizsgálata Folsomia candida állati tesztorganizmussal

Page 35 A részletes kockázatfelmérés eredményei A területen főként dízelolaj van jelen, de a felszínen és a mélyebb rétegekben található szennyeződés nem dízelolajtól származik (motorolaj). A biológiai eredmények (a sejtszámok) aktívan működő talajra utaltak. Aerob heterotróf sejtszám: 1,0*10 7 / g talaj Dízelolaj-bontó sejtszám: 2,0*10 4 /g talaj A szénhidrogénbontó baktériumok jelenléte a szénhidrogénbiodegradáció természetes feltételei adottak a területen. A szennyezett talaj direkt kontakt tesztelésével végzett környezettoxikológia tesztek eredményei, mind a bakteriális, mind a növényi tesztorganizmussal enyhe toxicitást mutattak. A szennyezőanyag nincs hozzáférhető formában.

Környezeti kockázat jellemzése a szennyezett területen Részletes kockázatfelmérés 1. Mért Kow érték segítségével meghatároztuk a szennyezőanyag talaj-víz megoszlási hányadosát, Kp-t Kutricamajor talajára mért szerves szénhányad (foc=0,024) figyelembevételével. A szennyezőanyag talaj-víz megoszlási hányadosa: Kp = 978 l/kg Ebből számítva a PEC talaj érték = 10 465 mg/kg. A szerves szennyezőanyag megoszlását figyelembe véve az új, finomított kockázati tényező értéke: RQ talaj = PEC talaj PNEC talaj = 3,5 NAGY KOCKÁZAT Page 36 A kockázati tényező értékének további finomítása a toxicitási tesztek eredményei alapján

Környezeti kockázat jellemzése a szennyezett területen Részletes kockázatfelmérés 2. A PNEC érték pontosítása a környezettoxikológiai eredmények alapján: A Vibrio fischeri biolumineszcencia-gátlási teszt alapján a szennyezett talajra RQ Vf = 2,4 NAGY KOCKÁZAT A Sinapis alba gyökér- ill. szárnövekedés-gátlási teszt alapján a szennyezett talajra RQ Sa = 2,5 NAGY KOCKÁZAT A helyszínspecifikus jellemzőkkel (pl. toxicitási adatok) kiküszöbölhetők az előzetes kockázatfelmérés pontatlanságai. Page 37

A részletes kockázatfelmérés főbb eredményei A szerves szennyezőanyag megoszlását figyelembe véve az új, finomított kockázati tényező értéke: RQ talaj = PEC talaj PNEC talaj A PNEC érték pontosítása: A Vibrio fischeri biolumineszcencia-gátlási és Sinapis alba gyökér- ill. szárnövekedés-gátlási teszt alapján a szennyezett talajra RQ Vf, Sa = 2,4-2,5 = 3,5 NAGY KOCKÁZAT NAGY KOCKÁZAT A helyszínspecifikus jellemzőkkel (pl. toxicitási adatok) kiküszöbölhetők az előzetes kockázatfelmérés pontatlanságai. A szennyezett terület remediációt megalapozó felmérése Page 38

A szénhidrogénekkel szennyezett terület remediációt megalapozó felmérésére alkalmazott módszeregyüttes TalajTesztelő Triád A szénhidrogénekkel szennyezett terület remediációt támogató részletes felmérésére Kémiai analitikai módszerek A szennyezettség jellemzésére a talajban és a talajvízben Biológiai vizsgálatok A talajökoszisztéma, talajaktivitás jellemzésére Környezettoxikológiai tesztek A talaj toxikus hatásának jellemzésére Talaj ultrahangos extrakciója hexán-aceton (2:1) eleggyel Extraktum gravimetriával Talajvíz extrakciója n-pentánnal extraktum gravimetriával Talaj aerob heterotróf telepképző sejt számának meghatározása Biolumineszcencia-gátlás vizsgálata Vibrio fischeri bakteriális tesztorganizmussal Talajból összes extrahálható szénhidrogén (EPH) GC alkalmazásával Talajvízből összes extrahálható szénhidrogén (EPH) GC alkalmazásával Talaj szénhidrogén biodegradáló sejtkoncentrációjának mérése Szaporodás-gátlás vizsgálata Tetrahymena pyriformis állati egysejtűvel Talajmikroflóra dehidrogenáz enzim aktivitásának mérése Talajlégzés mérése statikus rendszerben (zárt palack teszt) Page 39 Talajlégzés mérése dinamikus rendszerben (levegőztethető oszloreaktorban)

A remediációt megalapozó kockázatfelmérés eredményei Aktívan működő talaj Aerob heterotróf sejtszám: 1,0 2,0*10 7 / g talaj Speciális szénhidrogén-bontó sejtszám: 1 75*10 5 /g talaj Dinamikus talajlégzés-mérés oszlopreaktorban a helyi mikroflóra biodegradációs képessége javítható a levegőztetés mértékének növelésével CO 2 termelés Szénhidrogén-eltávolítás Szénhidrogénbontó sejtszám C O 2 [%] 20 18 16 14 12 10 8 6 4 2 0 Page 40 1 2 3 4 5 6 7 8 9 Idő [nap] Napi 10 perc Napi 2 óra Napi 6 óra EPH-tartalom eltávolítás [%] 40 35 30 25 20 15 10 5 0 2. hét (10 min) 2. hét (2h ) 2. hét (6h) EPH eltávolítás [%] 17,5 26,8 35,5 16 14 12 10 Olajbontó 8 sejtszám [*10 6 /g] 6 4 2 0 Ind 2. hét (10 min) 2. hét (2h ) 2. hét (6h) Olajbontó sejtszám 0,02 5 15 15

A remediációt megalapozó kockázatfelmérés eredményei A talajökoszisztéma adaptálódott a szennyezőanyaghoz, a levegőztetés serkentette a helyi mikroflórát Kockázatcsökkentés biodegradáción alapuló remediáció Page 41 Technológia-együttes a területen folyó természetes biodegradáció intenzifikálására: felúszó olajréteg eltávolítása talajvíz ex situ fizikai-kémiai kezelése talaj telítetlen zónájának bioventillációja, tápanyagpótlással talaj telítetlen zónájának időszakos átmosása

KÖSZÖNÖM A FIGYELMET!