Munkavédelmi mérnökasszisztens Galla Jánosné, 2012.

Hasonló dokumentumok
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Előadások (1.) ÓE BGK Galla Jánosné, 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI)

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

Alapfogalmak Metrológia Metrológia: Általános metrológia Mérés célja Mérési elvek, mérési módszerek Mér eszközök konstrukciós elemei, elvei

Az SI mértékegységrendszer

1991. évi XLV. törvény. a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Mérési hibák

Elérhetőség MÉRÉSTECHNIKA METROLÓGIA. A félév követelményei. A mérés tudománya

Gyártástechnológia alapjai Metrológia Tárgyfelelıs oktató: Dr. Zentay Péter

Gyártástechnológia alapjai Méréstechnika rész 2011.

Előadások (1.) Galla Jánosné

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

2011. ÓE BGK Galla Jánosné,

Amit tudnom kell ahhoz, hogy szakmai számításokat végezzek

MÉRÉSTECHNIKA. Mérés története I. Mérés története III. Mérés története II. A mérésügy jogi szabályozása Magyarországon. A mérés szerepe a mai világban

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói

Metrológia és mérésügy Magyarországon. Kálóczi László Főosztályvezető-helyettes

Bevezetés a laboratóriumi gyakorlatba és biológiai számítások GY. Molnár Tamás Solti Ádám

Mérési hibák Méréstechnika VM, GM, MM 1

TANÁCS III. (Előkészítő jogi aktusok)

Nemzetközi Mértékegységrendszer

Mérési struktúrák

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek


Méréstechnikai alapfogalmak

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

A klasszikus mechanika alapjai

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE. a mértékegységekre vonatkozó tagállami jogszabályok közelítéséről. (kodifikált szöveg)

1991. évi XLV. törvény. a mérésügyről. I. fejezet. Általános rendelkezések. A törvény hatálya. Mérésügy, mérésügyi szervezet. Hatáskör és illetékesség

1991. évi XLV. törvény a mérésügyről 1

EURÓPAI PARLAMENT. Ülésdokumentum

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

1. SI mértékegységrendszer

Kapcsolatok - építőipar és metrólógia

127/1991. (X. 9.) Korm. rendelet. a mérésügyről szóló törvény végrehajtásáról. (Tv. 2. -hoz)

1991. évi XLV. törvény a mérésügyről 1

Az SI mértékegység rendszer

Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik

BAGME11NLF Munkavédelmi mérnökasszisztens Galla Jánosné, 2012.

127/1991. (X. 9.) Korm. rendelet. a mérésügyről szóló törvény végrehajtásáról. (Tv. 2. -hoz) (Tv. 5. -hoz) (Tv. 6. -hoz)

Méréselmélet MI BSc 1

127/1991. (X. 9.) Korm. rendelet. a mérésügyről szóló törvény végrehajtásáról. (Tv. 2. -hoz) (Tv. 5. -hoz) (Tv. 6. -hoz)

127/1991. (X. 9.) Korm. rendelet. a mérésügyről szóló törvény végrehajtásáról. (Tv. 2. -hoz) (Tv. 5. -hoz) (Tv. 6. -hoz)

127/1991. (X. 9.) Korm. rendelet a mérésügyről szóló törvény végrehajtásáról

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)

Frissítve: augusztus 1. 15:40 Netjogtár Hatály: 2018.V VIII.17. Magyar joganyagok - 127/1991. (X. 9.) Korm. rendelet - a mérésügyről s

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Tartalom I. Az SI egységrendszer. 1 Tájékoztató. 2 Ajánlott irodalom. 3 A méréselmélet szerepe. 4 Bevezetés. 5 A mérőberendezés felépítése

Frissítve: 0. november 9. :37 Hatály: 07.VII V.. Magyar joganyagok - 7/99. (X. 9.) Korm. rendelet - a mérésügyről szóló törvény végrehajtásáról.

127/1991. (X. 9.) Korm. rendelet. a mérésügyről szóló törvény végrehajtásáról

Hatályos Jogszabályok Gyűjteménye Ingyenes, megbízható jogszabály szolgáltatás Magyarország egyik legnagyobb jogi tartalomszolgáltatójától

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Szenzorok bevezető és szükséges fogalmak áttekintése

VIZSGÁLATOK MEGFELELŐSÉGE

Matematikai geodéziai számítások 6.

A mérési bizonytalanság

Minden mérésre vonatkozó minimumkérdések

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Calibrare necesse est

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

SI kiegészítő egységei. Az SI-alapegységek meghatározásai

6. Előadás. Vereb György, DE OEC BSI, október 12.

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Matematikai geodéziai számítások 6.

A leíró statisztikák

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

Populációbecslések és monitoring

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

a mérésügyről [a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel egységes szerkezetben]

Populációbecslések és monitoring

A mérési eredmény megadása

4. A mérések pontosságának megítélése

[Biomatematika 2] Orvosi biometria

Tartalom I. Az SI egységrendszer. 1 Tájékoztató. 2 Ajánlott irodalom. 3 Bevezetés. 4 A méréselmélet szerepe. 5 A mérőberendezés felépítése

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

MÉRÉSTECHNIKA. Előadások (2.) Galla Jánosné

1991. évi XLV. törvény. a mérésügyről, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.

Kísérlettervezés alapfogalmak

1991. évi XLV. törvény. a mérésügyről 1. I. fejezet. Általános rendelkezések. A törvény hatálya. Mérésügy 3

A SZEMÉLYI DOZIMETRIAI SZOLGÁLAT ÚJ TLD-RENDSZERE TÍPUSVIZSGÁLATÁNAK TAPASZTALATAI

Mérés és modellezés 1

1991. évi XLV. törvény. I. fejezet Általános rendelkezések A törvény hatálya. Mérésügy, mérésügyi szervezet

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

1991. évi XLV. törvény. a mérésügyről, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.

Kontrol kártyák használata a laboratóriumi gyakorlatban

127/1991. (X. 9.) Korm. rendelet. a mérésügyrıl szóló törvény végrehajtásáról. (Tv. 2. -hoz) (Tv. 5. -hoz) (Tv. 6. -hoz)

Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre

Méréstechnika GM, VI BSc 1

Mérés és modellezés Méréstechnika VM, GM, MM 1

Átírás:

Munkavédelmi mérnökasszisztens Galla Jánosné, 2012. 1

Félévi követelmény: évközi jegy Az évközi jegy megszerzésének módja: A feladatok határidőre történő beadása és legalább elégséges zárthelyi dolgozatok Irodalom: Méréstechnika, Óbudai Egyetem, jegyzet 1. Előadás témakörei Metrológiai alapfogalmak. SI mértékegységek. Etalonok Matematikai statisztikai alapismeretek Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett mérési bizonytalanság GUM módszer. Hibaterjedés 2

Nyomásmérés Rezgésmérés Megvilágítás mérés Hőmérsékletmérés Zajmérés Páratartalom mérés Levegő tisztaság mérés 3

A mérendő (mérhető) mennyiség előírt hibahatárokon belüli meghatározása eredménye a mért érték A metrológia a mérés tudománya (a mérésekkel kapcsolatos elméleti és gyakorlati szempontok) tudományos metrológia mérésügy törvényes metrológia ipari metrológia A mérési folyamat célja Mérendő mennyiség, vagy mért mennyiség: a mérés tárgyát képező konkrét mennyiség A mérési elv a mérés tudományos alapja. 4

A mérés fogalma valamely fizikai (kémiai, biológiai, stb.) mennyiség nagyságának (számértékének) meghatározása kísérleti úton, adott mértékegység-rendszer mellett jelfeldolgozási folyamat (számítási), mely a szakterülettől általában független és valószínűségszámítási ismereteket igényelhet információszerzés egy folyamat jellemzőiről. Ez a folyamat lehet kémiai, biológiai, fizikai, gazdasági, társadalmi. a mérés műveletek összessége, amelynek célja egy mennyiség értékének meghatározása 5

A méréstechnika az érzékelés, jelátalakítás és a jelfeldolgozás módszereinek és eszközeinek összessége Érzékelő Jelátalakító Jelfeldolgozó Zavarok Zavarok A méréshez szükségesek: eszközök + módszerek Mérőeszközök: eszközök, melyeket a mérési folyamatban mérésre felhasználnak, esetenként segédeszközökkel együtt Mérési módszer a mérés elvégzéséhez szükséges, fő vonalakban leírt műveletek logikai sorrendje A mérési eljárás egy adott mérés során a mérési módszernek megfelelő módon elvégezhető, részletesen leírt, konkrét műveletek összessége 6

7

A befolyásoló mennyiség a mérendő mennyiségtől különböző olyan mennyiség, amely hatással van a mérési eredményre (pl.: hőmérséklet, rezgés) A zavaró mennyiség olyan befolyásoló mennyiség, melynek hatása nem ismert Mérhető mennyiség jelenség, tárgy vagy anyag minőségileg megkülönböztethető és mennyiségileg meghatározható tulajdonsága (pl.: vastagság, kerület, hő, energia, stb.) A mérési eredmény a mérendő mennyiségnek tulajdonított, méréssel kapott érték 8

A méterrendszer a francia forradalom idején született 1876. január 1-től Magyarország kötelező mértékegység rendszer 1875 - Nemzetközi Méteregyezmény (17 állam, Mo. is) - Nemzetközi Súly- és Mértékügyi Hivatal (BIPM) felügyeli a Nemzetközi Súly- és Mértékügyi Bizottság (CIMP) A legfőbb szerv a metrológia területén: - Általános Súly- és Mértékügyi Értekezlet (CGMP) a Nemzetközi Méteregyezményhez csatlakozott országok kormányképviselőiből áll, rendszeres időközönként ülésezik 1960 - a 11. Általános Súly- és Mértékügyi Értekezlet jóváhagyta a Nemzetközi Mértékegység-rendszert, az SI-t 9

A mértékegységek országon belüli szabályozása az állam joga 1991. évi XLV. törvény a mérésügyről 127/1991. (X. 9) Kormány rendelet a végrehajtásáról minden olyan mennyiség kifejezésére, amelyre jogszabály törvényes mértékegységet állapít meg, ezt a mértékegységet kell használni Törvényes mértékegységek: a Nemzetközi Mértékegység-rendszer mértékegységei (SI) külön jogszabályban meghatározott mértékegységek (SI-n kívüli) az SI-ből és SI-n kívüli törvényes mértékegységekből képzett mértékegységek az előző mértékegységek többszörösei és törtrészei A törvényes mértékegységen kívüli mértékegységek használati területei: - a külkereskedelmi kapcsolatok, - a nemzetközi megállapodások és - a tudományos kutatások 10

Magyarország területén a Magyar Kereskedelmi Engedélyezési Hivatal (MKEH) Metrológiai Hatóság - MKEH keretén belül működik - egyebek mellett gondoskodik: a törvényes mértékegységek használatára vonatkozó szabályozás előkészítéséről az országos etalonokról, (nemzetközi összehasonlítás és hazai továbbszármaztatás), valamint e feladatok ellátásához szükséges mérésügyi kutatásról, fejlesztésről www.mkeh.hu honlapon további információ a szervezetről 11

Alapegységek Mennyiség Egység jele 1 hosszúság méter m 2 tömeg kilogramm kg 3 idő másodperc s 4 villamos áramerősség amper A 5 termodinamikai kelvin K hőmérséklet 6 anyagmennyiség mól mol 7 fényerősség kandela cd 12

Származtatott egységek Frekvencia, hertz (Hz) Villamos ellenállás, ohm (W) Radioaktív sugárforrás aktivitása, becquerel (Bq) Villamos vezetőképesség, siemens (S) Erő, newton (N) Mágneses fluxus, weber (Wb) Nyomás, pascal (Pa) Mágneses indukció, tesla (T) Energia, joule (J) Induktivitás, henry (H) Teljesítmény, watt (W) Fényáram, lumen (lm) Elnyelt sugárdózis, gray (Gy) Megvilágítás, lux (lx) Dózis-egyenérték, sievert (Sv) Katalitikus aktivitás, katal (kat) Villamos töltés, coulomb ( C ) Síkszög, radián (rad) Villamos feszültség, volt (V) Térszög, szteradián (sr) Villamos kapacitás, farad (F) A hőmérséklet származtatott SI egysége a Celsius fok jele: C A Celsius-fok egység a kelvin egységgel egyenlő, a hőmérséklet tartomány, vagy különbség mindegyikkel kifejezhető. 13

Külön engedélyezett Térfogat, liter (l) vagy (L) 1 l = 1 dm 3 Tömeg, tonna (t) 1 t = 10 3 kg Nem decimális többszörösei vagy osztói Síkszög, Idő, Sebesség (km/h), Munka - energia (Wh) Az SI alapegységektől független Atomi tömegegység; jele: u. Elektronvolt; jele: ev. A Nemzetközi Mértékegység-rendszeren kívüli, kizárólag meghatározott szakterületen 1 tengeri mérföld = 1852 m. Parszek, jele: pc, 1 pc = 3,0857 x 10 16 m. 1 fényév = 9,460 x10 15 m. 1 ha = 10 000 m 2 1 bar = 100 000Pa = 10 5 Pa 1 mmhg = 133,322 Pa. Voltamper, jele: VA, 1 VA = 1 W. Teljesítmény-mértékegység a var; jele: var. 1 var = 1 W 14

Miért szükségesek az etalonok? Ismételt mérések eredményei általában nem egyezőek. Az eltérések okai: véletlen bizonytalanságok (csökkenthetők a mérések számának növelésével) - a mérőeszköz működése - a környezet - a mérő személy - azonos mérendő mennyiségek - megváltozott feltételek A mérőeszköz metrológiai jellemzői kalibrálással határozhatók meg. A kalibráláshoz etalonra van szükség, ehhez hasonlítjuk a vizsgált mérőeszköz értékmutatását Az etalon definiálja a mennyiség egységét, egy vagy több ismert értékét, mint vonatkoztatási alapot, azt megvalósítja, fenntartja vagy reprodukálja 15

Etalon mérték, mérőeszköz, anyagminta vagy mérőrendszer, amelynek az a rendeltetése, hogy egy mennyiség egységét, illetve egy vagy több ismert értékét definiálja, megvalósítsa, fenntartsa vagy reprodukálja, és referenciaként szolgáljon 16

Csoportosítás jogi státusz szerint lehetnek nemzetközi regionális és nemzeti (országos) etalonok metrológiai értelemben elsődleges vagy másodlagos (használati-, referencia-, transzfer-, utazó-, tanú-, ellenőrző-) etalonok; jellegük szerint pedig egyedi-, csoportos etalonok, illetve etalon csoport. 17

18

Etalonok néhány jellemző tulajdonsága Előállíthatóság: az etalon azon tulajdonsága, hogy mérőszámát hány jegy pontossággal tudjuk biztosan megadni, illetve milyen bizonytalansággal lehet a mérőszámot megközelíteni. Megbízhatóság: rövid időtartamú stabilitását (néhány óra néhány nap) értjük, ami azt jelenti, hogy mérőszáma meghatározott körülmények között rövid időn belül csak megadott határok között ingadozik. Reprodukálhatóság: hosszú időtartamú stabilitás: az etalon azon tulajdonsága, hogy ismert módon megváltozott körülmények között, hosszabb idő után mennyire változik meg a mérőszáma. 19

A visszavezethetőség egy mérési eredménynek vagy egy etalon értékének az a tulajdonsága, hogy ismert bizonytalanságú összehasonlítások megszakítatlan láncolatán keresztül kapcsolódik megadott referenciákhoz, általában országos vagy nemzetközi etalonhoz Vevői igény: a mérési eredmények legyenek: - megbízhatóak és - összehasonlíthatók A vizsgáló laboratóriumok működésének feltétele többek között: az etalonok visszavezethetőségének igazolása Vállalati kalibrálás esetén is: szükséges az etalonok egy pontosabb etalonnal történő összehasonlításának igazolása 20

A mérési eredmény mindig tartalmaz hibát a mérési eredmény bizonytalan A mérési eredmények mindegyikét meghamisítja egy nem tökéletes mérési módszer mérőberendezés vagy etalon a környezet behatásai a mérést végző személy szubjektív adottságai és általunk nem ismert, de jelenlévő véletlen hatás eltérés = valódi érték - mért érték A valódi értéket nem ismerhetjük meg, csak törekszünk annak legjobb becslésére a helyes érték meghatározására 21

helyes érték = a valódi érték közelítése a mérendő mennyiség valódi értékének legjobb becslése értékét megkapjuk a rendszeres hibáktól mentes, kielégítően nagyszámú mérési sorozat eredményéből is A becslés az elméleti jellemzők adott eljárással, módszerrel történő közelítése (korlátozott pontosságú meghatározása) az ismert véges számú és véges pontosságú adatból A mérendő mennyiség helyes értékét mérő vagy reprodukáló eszköz az etalon A helyes értéket megtestesítheti például egy mérték (a mérték egy méretet testesít meg) 22

A mérési hiba a mérési eredmény és a mérendő mennyiség valódi értékének különbsége H i = x i x h ahol: H i - a mérési hiba x i - a mért érték, x h - a helyes érték A valódi érték meghatározhatatlan, emiatt a helyes értéket kell használni A helyes érték bizonytalansága kicsi, kisebb, mint az ellenőrizendő mérőeszközé. A helyes érték megállapítása a mérés során fellépő konkrét hibák és a mérési bizonytalanság nagyságának meghatározása miatt szükséges. 23

A mérési hibák csoportosíthatók: eredetük szerint a modellalkotás a mérési eljárás (elv és módszer) a mérés kivitelezésének (mód, mérőeszköz, mérő személy), hibái jellegük szerint durva rendszeres véletlen hibák 24

A mérési hibák csoportosíthatók: a megjelenítés formája szerint abszolút hiba H absz = x - x v, relatív hiba H rel = [(x - x v ) : x v ]. 100 % redukált hiba ahol: x a mért érték x v a valódi érték a valódi érték százalékában H red = [(x x v ) : (x max x min )]. 100 %; ahol x max x min a mérési tartomány Megj.: a valódi érték soha nem ismert, így a hiba sem, tehát csak becslés adható meg P y U y y U 0, 95 valódi 25

Mérési hibák (jellegük szerint) Durva hiba Oka: figyelmetlenség, a mérőeszköz hibás működése, pontatlan modell A hiba eredetét fel kell tárni, ki kell küszöbölni! Rendszeres hiba állandó marad az ismételt mérések során, vagy előre meghatározható módon változik Oka: ismert, de lehet ismeretlen is Jellemzői: vagy előjele és nagysága ismert az egész méréstartományban, vagy ha nem, akkor véletlen hibaként kezeljük a mérési eredményt a rendszeres hibák torzítják, meghamisítják 26

27

Véletlen hiba véletlenszerűen változik a mérendő mennyiség ismételt mérése során a hibaokok időben és térben véletlenszerűen jelentkeznek a véletlen hiba valószínűségi változó Pl.: surlódási hibák, környezeti hatások, zajok, a mérendő mennyiség változásai a mérési eredményt a véletlen hibák bizonytalanná teszik 28

A hiba megszüntetésének módja Durva hiba: a kiugró érték kizárása Rendszeres hiba: meghatározható hiba esetében: korrekció (ismertek a mérőeszköz korrekciós adatai - algebrai összegzés) nem ismertek: hibaterjedés számítás és kalibrálás Véletlen hiba: ismételt mérésekkel ismerhető fel, statisztikai módszerekkel vehető figyelembe (átlag, szórás, konfidencia, várható érték, hibastatisztika, hibaösszegzés: négyzetes középérték) 29

h = F ( ) = s. tg A függvényt sorbafejtve: 1 3 2 5 h = F = s + + +... 3 15 A hatványsor első érvényes tagját figyelembe véve: h = s. 1 +. A hiba elsőrendű A hiba rendszáma (nagyságrendje) mindig a (csonka) hatványsorban szereplő legkisebb kitevőjű tag kitevőjével egyenlő, függetlenül attól, hogy a hiba pontos értékéhez hány tagot veszünk figyelembe 30

A mérési eredmény bizonytalanságát befolyásoló tényezők 31

Azonos körülmények között végzett mérések eredményei kisebb nagyobb mértékben eltérnek egymástól. Kérdés, hogy melyiket lehet elfogadni? A mérési bizonytalanság az eredmény minőségére vonatkozó számszerű jelzés, a mérési eredmény megbízhatóságát jellemzi. Enélkül az eredményeket nem lehet összehasonlítani sem egymással, sem a referencia értékkel (melyet szabvány vagy szerződés rögzít) A mérési bizonytalanság a mérés eredményéhez csatolt olyan paraméter, amely a mérendő mennyiségnek indokoltan tulajdonítható értékek szóródását jellemzi. Pl.: paraméter lehet a szórás vagy annak többszöröse A mérési hiba és a mérési bizonytalanság nem azonos fogalom 32

A mérési bizonytalanság sokféle, pontosan nem ismert véletlen hatás következménye. Értékének meghatározása ezeknek a mennyiségének a becslése. Pontosan nem tudni, hogy mennyi a mérendő mennyiség valódi értéke, azt határozzuk meg csak, hogy adott valószínűséggel esik az U bizonytalansági határokon belül. Megismételt mérésnél a mérendő mennyiséget jellemző legjobb becsült érték (helyes érték) az átlag, amely a rendszeres hibákat már nem tartalmazza. U - a kiterjesztett mérési bizonytalanság. 33

A mérési bizonytalanság hatása a tűréshatárokon 34

A mért érték a bizonytalansággal a tűréshatáron belül van 35

A mért érték a bizonytalansággal a tűréshatáron kívül van 36

A mért érték a tűréshatár közelében helyezkedik el 37

GUM (Guide to the Expression of Uncertainty in Measurement) Útmutató a mérési bizonytalanság kifejezéséhez Alapdokumentum, mely általános szabályokat ajánl a mérési bizonytalanság kifejezésére és értékelésére. Széles körben alkalmazható, a kalibráló laboratóriumok, kutatások területén éppúgy használható, mint a legegyszerűbb méréseknél. Jelölések: n a mérések száma u(x A ) i a standard mérési bizonytalanság értéke A módszerrel u(x B ) i a standard mérési bizonytalanság értéke B módszerrel u c (y) az eredő standard bizonytalanság U a kiterjesztett mérési bizonytalanság k kiterjesztési tényező 38

1 2 3 4 Az ellenőrzési/mérési folyamat elemzése. A bizonytalansági összetevők megnevezése. A standard mérési bizonytalanság meghatározása Az A és/vagy B módszerrel. Az eredő standard bizonytalanság meghatározása A kiterjesztett mérési bizonytalanság meghatározása 1, 2, 3,.n u(x A ) i u(x B ) i u i n 2 c (y) = u(x i) = 1 U = k. u c (y) 39

GUM ajánlás a bizonytalanságok meghatározásához: A-típusú és B-típusú értékelés A -típusú kiértékelés a mérési sorozat statisztikai elemzésével történik A standard bizonytalanság a mérési eredmény bizonytalansága szórásként kifejezve Azonos feltételek mellett, azonos mintán végzett mérések eredményei egymástól különböznek és az átlag érték körül helyezkednek el. Feltételezve, hogy az eloszlás normális, a szórás az n számú mérési eredményből becsülhető Ezt nevezik standard bizonytalanságnak 40

B -típusú kiértékelés a bizonytalanság kiértékelésének az észlelési sorozatok statisztikai elemzésétől eltérő, más módszere Megjegyzés: A B -típusú összetevők jellemzésére szintén a becsült szórást s(x i ), alkalmazzák, melynek egy un. érzékenységi együtthatóval megszorzott értéke a B-típusú standard bizonytalanság: u(x i ) = c i. s(x i ), ahol c i az érzékenységi együttható Az érzékenységi együttható megmutatja, hogy az adott bemeneti mennyiség változására mennyire érzékenyen válaszol a kimeneti mennyiség. 41

Az eredő standard bizonytalanság számítása A standard bizonytalanságokból számítható négyzetes összegzéssel Az eredő standard bizonytalanság a mérés eredményének standard bizonytalansága, ha ez az eredmény egy vagy több más mennyiség értékéből van előállítva u i n 2 c (y) = u(x i) = 1 A kiterjesztett bizonytalanság, a mérési eredmény környezetében olyan tartomány, amelyben feltehetően a mérendő mennyiségnek tulajdonítható értékek eloszlásának meghatározott része benne van (pl. k = 2 kiterjesztési tényezővel 95%) U = k. u c (y) Mérési eredmény megadás Y = X U 42