Elektromos alapjelenségek

Hasonló dokumentumok
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Elektrosztatikai alapismeretek

Vezetők elektrosztatikus térben

1. Elektromos alapjelenségek

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektrosztatika tesztek

Fizika 1 Elektrodinamika beugró/kis kérdések

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektrotechnika. Ballagi Áron

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Fizika A2 Alapkérdések

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Fizika A2 Alapkérdések

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Fizika 1 Elektrodinamika belépő kérdések

Elektrosztatikai jelenségek

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

EHA kód: f. As,

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Q 1 D Q 2 (D x) 2 (1.1)

1. ábra. 24B-19 feladat

Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok

Az elektromosságtan alapjai

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

Pótlap nem használható!

Időben állandó mágneses mező jellemzése

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

Elektrotechnika 9. évfolyam

Elektromosság, áram, feszültség

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hőerőgépek, hűtőgépek, hőszivattyúk. Feladat: 12. Körfolyamat esetén az összes belső energia változás nulla. Hőtan I. főtétele::

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály

Elektromos áramerősség

Mágneses mező jellemzése

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

II.11 Az elektromos feszültség

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

3.1. ábra ábra

= Φ B(t = t) Φ B (t = 0) t

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

1. fejezet. Gyakorlat C-41

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

FIZIKA II. Dr. Rácz Ervin. egyetemi docens


A mechanikai alaptörvények ismerete

Hőtan, termodinamika. A gázok cseppfolyósításához a gázt le kell hűteni kritikus hőmérséklete alá, és megfelelő nyomást kell alkalmazni.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező jellemzése

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék

évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: Tanítási órák száma: 1 óra/hét

Elektrosztatika tesztek

Fizika A2 TÉTELSOR. Készítette: Bolemányi Tibor

Kifejtendő kérdések június 13. Gyakorló feladatok

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

1. ELEKTROSZTATIKA. 1.1 Elektromos kölcsönhatás. Fizika 10.

Elektromágnesség tesztek

1. SI mértékegységrendszer

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

Fizika 2 - Gyakorló feladatok

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

TARTALOMJEGYZÉK. Előszó 9

Fizika minta feladatsor

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Az Ampère-Maxwell-féle gerjesztési törvény

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Elektromos áram, áramkör

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

V e r s e n y f e l h í v á s

Elektromos áram. Vezetési jelenségek

Elektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből

Elektrosztatikai jelenségek

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Osztályozó vizsga anyagok. Fizika

Elektrosztatika tesztek

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Átírás:

Elektrosztatika

Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor azt mondjuk, hogy a testek elektromos állapotba kerültek, és a testek elektromosan töltötté váltak.

Pozitív és negatív töltések Pozitív töltéshordozó a proton. Ha a test töltése pozitív, az azt jelenti, hogy a testnek elektronhiánya van. Negatív töltéshordozó az elektron. Ha a test töltése negatív, az azt jelenti, hogy a testnek elektrontöbblete van.

Coulomb törvény Két pontszerű elektromos töltéssel rendelkező test között ható erő (F) nagysága egyenesen arányos a testek elektromos töltésének a nagyságával, és fordítottan arányos a köztük lévő távolság négyzetével.

Coulomb törvény (1785) Elektromosan töltött részecskék között erő hat: Q Q F = k 1 2 r 2 Nm k = 9 10 9 C 2 2

Elemi töltés Az elektromos töltés legkisebb adagja az elektron. Az elektront Thomson fedezte fel 1897-ben. Az elektron töltését Millikan 1909-ben Millikan mérte meg először. e = 1,6 10 19 C

Elektromos mező jellemzése Elektromos térerősség: Az elektromos mező jellemezhető a belehelyezett próbatöltésre ható erőhatás segítségével, azaz azzal, hogy egységnyi töltésű testre a mezőben mekkora erő hat. F Qq 1 E = = k = k 2 q r q Q 2 r

Térerősség A térerősség vektormennyiség, iránya a pozitív próbatöltésre ható erő iránya. Az elektromos mezőt erővonalakkal szemléltethetjük: Az erővonalak sűrűsége a térerősség nagyságát, az erővonalak iránya a térerősség irányát jellemzik. A térerősségre merőleges egységnyi felületen annyi erővonalat húzunk, amennyi a térerősség nagysága.

Elektromos fluxus Egy tetszőleges felület elektromos fluxusa megadja, a felületen áthaladó összes erővonal számát: Ψ = E A

Elektromos feszültség 1V az elektromos feszültség az elektromos mező két pontja között, ha a mező 1C töltést 1J munkával visz át az egyik pontból a másikba. W U = Q U = [ ] V

Elektromos mező jellemzése Konzervatív mező Zárt görbe mentén a mező munkája zérus. Ez az energiamegmaradás következménye. Nullnívó vagy zérus potenciálú hely megadása, legtöbbször a földfelszín. A potenciál számértéke megadja a pozitív próbatöltés helyzeti energiáját a zérus potenciálú helyhez viszonyítva.

Ekvipotenciális felületek Az elektromos mezőben azok a felületek, ahol a potenciál állandó. Az ekvipotenciális felületek pontjai között nincs feszültség. Ekvipotenciális felületen mozgatva egy töltést nem végzünk munkát a térerősség merőleges az ekvipotenciális felületre.

Pontszerű töltés elektromos mezőjének jellemzése E = k Gömbfelület fluxusa: Q 2 r Ψ = EA = k Q r 2 4πr 2 = 4πkQ ε 0 = 1 4πk Ψ = Q ε 0

Potenciál Határozzuk meg a Q ponttöltés elektromos mezejében a ponttöltéstől r távolságban a potenciált. U = r Eds = r k Q x 2 dx = kq r 1 x 2 dx 1 = kq x r = kq r

Vezetők az elektrosztatikus mezőben Vezető:az olyan anyag, amelyben a töltések szabadon elmozdulhatnak. Szigetelő: olyan anyag, ahol a töltések helyhez kötöttek. A vezetőre vitt többlettöltés mindig a vezető külső felületén helyezkedik el. A vezető minden pontja ekvipotenciális.

Faraday kalitka Vezetőfelületekkel határolt térrészek kívülről elektromosan árnyékoltak.

Csúcshatás A feltöltött, vagy elektromosan megosztott vezető csúcsaiban felhalmozodó töltések a csúcsokban összesűrűsödnek, erős inhomogén mezőt hoznak létre.

A csúcshatás magyarázata A töltéssűrűség fordítottan arányos a vezető sugarával. Ennek igazolására modellezzük a vezetőt egy nagyobb és egy kisebb sugarú gömbfelülettel, amelyet vezetőszakasszal kötöttünk össze, így a potenciálja állandó lesz. σ = U = σ = Q 4r 2 π kq r U 4kπr Q = Ur k

A csúcshatás magyarázata Látható, hogy állandó potenciál esetén ott a nagyobb a szigmával jelölt töltéssűrűség, ahol kisebb a sugár. σ = U 4kπr U = 4kπrσ

A csúcshatás alkalmazása Villámhárító: Benjamin Franklin (1706-1790)

Kondenzátorok A kondenzátor elektromos töltések tárolására alkalmas. A síkkondenzátorok lemezei, fegyverzetei között homogén elektromos mező van jelen. A kondenzátort jellemző fizikai mennyiség a kapacitás.

Síkkondenzátor A kondenzátorra vitt töltés nagysága egyenesen arányos a lemezek közötti feszültséggel: C C = Q U = ε rε 0 A d

a légüres tér dielektromos állandója ε 0 ε r a szigetelőanyag relatív dielektromos állandója, vagy permittivitása Kondenzátor energiája: W = 1 CU 2 2

Kondenzátorok kapcsolása Soros kapcsolás: A kondenzátorok töltése ugyanaz. A kondenzátorokra eső feszültségek összegződnek. 1 1 = C e C i Párhuzamos kapcsolás: A kondenzátorok töltése összeadódik A kondenzátorokra eső feszültség ugyanaz. C = e Ci