Petrolkémia. Gresits Iván

Hasonló dokumentumok
KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV

KŐOLAJFELDOLGOZÁSI TECHNOLÓGIÁK

KÉMIA FELVÉTELI DOLGOZAT

Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás

KORSZERŰ MOTORBENZINEK ELŐÁLLÍTÁSA KÖNNYŰBENZIN IZOMERIZÁLÓ ÉS KATALITIKUS REFORMÁLÓ ÜZEMEK KAPCSOLATRENDSZERÉNEK VIZSGÁLATA

2004.március A magyarországi HPV lista OECD ajánlás szerint 1/6. mennyiség * mennyiség* kategória ** (Use pattern)

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

Alkánok összefoglalás

Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás

szerotonin idegi mûködésben szerpet játszó vegyület

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Szénhidrogének III: Alkinok. 3. előadás

Jellemző szénhidrogén típusok

SZERVES KÉMIAI REAKCIÓEGYENLETEK

Mobilitás és Környezet Konferencia

Badari Andrea Cecília

1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont

EGYEDI AROMÁSOK TOLUOL

MOL MOTORBENZINEK (ESZ-95, ESZ-98)

Mobilitás és Környezet Konferencia

ALKOHOLOK ÉS SZÁRMAZÉKAIK

Sztöchiometriai feladatok. 4./ Nagy mennyiségű sósav oldathoz 60 g 3 %-os kálcium-hidroxidot adunk. Mennyi kálciumklorid keletkezik?

AROMÁS SZÉNHIDROGÉNEK

1. feladat. Versenyző rajtszáma:

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók

FOLYÉKONY BIOÜZEMANYAGOK

Heterociklusos vegyületek

MOTORHAJTÓANYAG ADALÉKOK KÖRNYEZETI HATÁSAI ÉS MEGHATÁROZÁSI MÓDSZEREI

Szabadalmi igénypontok

Curie Kémia Emlékverseny 10. évfolyam országos döntő 2018/2019. A feladatok megoldásához csak periódusos rendszer és zsebszámológép használható!

Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. 1; PAP

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz

A kőolaj-finomítás alapjai

SZABADALMI IGÉNYPONTOK. képlettel rendelkezik:

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

MTBE GYÁRTÁSA *** ALKILEZÉSI ELJÁRÁSOK: Ritz Ferenc vegyészmérnök. Olefin I. Gázszétválasztó üzem. Olefin I. Pirolízis üzem

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Szerves Kémia. Farmakológus szakasszisztens képzés 2012/2013 ősz

OLDÓSZEREK XILOLELEGY ( IPARI XILOL, X-5 )

A kőolaj finomítás alapjai

Összefoglalás. Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció. Kötéshossz Nagyobb Kisebb Átmenet a kettő között

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai

Szerves Kémiai Problémamegoldó Verseny

H 3 C H + H 3 C C CH 3 -HX X 2

SZERVES KÉMIAI TECHNOLÓGIÁK

Kémiai reakciók sebessége

a NAT /2012 nyilvántartási számú akkreditált státuszhoz

Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék

szabad bázis a szerves fázisban oldódik

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Magyar tannyelvű középiskolák VII Országos Tantárgyversenye Fabinyi Rudolf - Kémiaverseny 2012 XI osztály

Bevezetés. Szénvegyületek kémiája Organogén elemek (C, H, O, N) Életerő (vis vitalis)

Olefingyártás indító lépése

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Szerves Kémiai Problémamegoldó Verseny

Név: Pontszám: / 3 pont. 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét!

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Szerves kémia Fontosabb vegyülettípusok

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont

6. Monoklór származékok száma, amelyek a propán klórozásával keletkeznek: A. kettő B. három C. négy D. öt E. egy

Mekkora az égés utáni elegy térfogatszázalékos összetétele

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

RÉSZLETEZŐ OKIRAT (1) a NAH /2018 nyilvántartási számú akkreditált státuszhoz

Klórozott szénhidrogénekkel szennyezett talajok és talajvizek kezelésére alkalmazható módszerek

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997)

EURÓPAI PARLAMENT. Ülésdokumentum

KŐOLAJ-FELDOLGOZÁS. Ki tud többet a kőolaj-feldolgozásról? Vetélkedő általános iskolák 7-8. osztályos csapatai számára

7. Kémia egyenletek rendezése, sztöchiometria

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

Szerves Kémiai Problémamegoldó Verseny

2. melléklet a 4/2011. (I. 14.) VM rendelethez

Nemzeti Akkreditáló Hatóság. RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

4) 0,1 M koncentrációjú brómos oldat térfogata, amely elszínteleníthető 0,01 mól alkénnel: a) 0,05 L; b) 2 L; c) 0,2 L; d) 500 ml; e) 100 ml

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú (1) akkreditált státuszhoz

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

TP-01 típusú Termo-Press háztartási műanyag palack zsugorító berendezés üzemeltetés közbeni légszennyező anyag kibocsátásának vizsgálata

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye

Vegyipari technikus Vegyipari technikus

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor

Fémorganikus vegyületek

MEGOLDÁS. 4. D 8. C 12. E 16. B 16 pont

Katalízis. Tungler Antal Emeritus professzor 2017

Ni 2+ Reakciósebesség mol. A mérés sorszáma

RÉSZLETEZŐ OKIRAT (2) a NAH /2014 nyilvántartási számú akkreditált státuszhoz

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Javítókulcs (Kémia emelt szintű feladatsor)

R nem hidrogén, hanem pl. alkilcsoport

Kőolaj és földgáz keletkezése és előfordulása

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAT /2011 nyilvántartási számú akkreditált státuszhoz

Készítették: Márton Dávid és Rác Szabó Krisztián

Fémorganikus kémia 1

Átírás:

Petrolkémia Gresits Iván gresits@mail.bme.hu

Petrolkémia kőolaj komponensek feldolgozásával foglalkozó iparág. Nyersanyagai: különböző földgázok, finomítói gázok, benzinpárlatok, gázolajok és kőolaj maradványok. Kisebb részét kivonják, elválasztják a kőolajból, nagyobb részüket kémiai reakcióval átalakítják. Száraz gáz: csak olyan komponenst tartalmaz, ami légköri nyomáson és hőmérsékleten gázhalmazállapotú. Nedves gáz: pentánnál nagyobb szénatom számú komponenst is tartalmaz.

AdBlue 32,5 % karbamid oldat. Fp. -11 oc 3 utas katalizátor

A háromutas katalizátor működési elve Lambda szonda

CNG Összetétele:,Oktánszáma: 120 90-95 % metán 1-2% etán 1-2% propán 1-2 % bután 0,1-0,5 % víz 0,1-0,5 % nitrogén 0,1-0,5 % széndioxid LPG Összetétele: propán és a bután kb 40%- 60% oktánszáma.: 95-100

Oktánszám RON avagy kiséleti oktánszám: 600/perc 52 C levegő MON avagy motor oktánszám: 900/perc, előgyujtás váltorik és levegő 150 C MON kisebb mint a RON

Molekulaszita

Oktánszám növelés Oktánszám növelés

Alkilálás + CH3OH H+ O MTBE + H+ alkilát benzin MTBE oktánszám javító és égésfokozó Alkilát benzin jó oktánszámú műbenzin finomítói C4 frakcióból Mindkét eljárásban savas katalízis!

metil-tercier-butiléter, MTBE (összegképlete C 5 H 12 O) illékony, gyúlékony, színtelen, jellegzetes szagú, vízzel nem elegyedő folyadék. benzin adalékként 1-2%-ban használják az oktánszám növelésére, a szénmonoxid kibocsátás csökkentésére. Illékony, ezért gyorsan párolog a nyitott tartályokból és a szennyezett felszíni vizekről, gőze általában kimutatható a levegőben. Vízben sokkal jobban oldódik (5-7%), mint a szénhidrogének, ezért a talajba kerülve sokkal gyorsabban szétterjed, és könnyen szennyez be nagy területeket, pl. az üzemanyagtöltő állomások környékén. Átmenetileg megkötődik az üledék vagy talaj szemcséin. Napsütés hatására gyorsan lebomlik, de a felszín alatti szennyezettség tartósan megmarad. Növényekben, állatokban nem akkumulálódik jelentősen. Gőzének belégzése orr- és toroknyálkahártya irritációt, fejfájást, hányingert okoz. Lenyelése az emésztő rendszer, máj, vese és idegrendszer károsodását okozhatja. rákkeltő hatása nem bizonyított. Az ivóvízben megengedett koncentráció (Amerikai Környezetvédelmi Hatóság, EPA) 3 mg/l, a munkahelyi levegőben megengedett koncentráció (American Conference of Governmental Industrial Hygienists, ACGIH) 40 ppm. (Forrás: Amerikai Toxikus Anyagok és Betegségek Regisztere, ATSDR, www.atsdr.cdc.gov) ETBE etilén tercier butil észter

A benzinhozam növelése I. (katalitikus krakkolás) Vákuumgázolaj Könnyű paraffinos olaj 400-500 0 C katalizátor Krakkbenzin Krakkgázolaj Krakkgázok Krakkolódás Izomerizáció

Hidrogén-fluoridos alkilálás Célja: a benzinhozam további növelése, a katalitikus krakkolás melléktermékéből, a krakkgázból. Az eljárás lényege, hogy a krakkgáz nagy mennyiségben tartalmaz izobutánt, butént és egyéb kis szénatomszámú olefint. Az olefinmolekulák erős sav jelenlétében (HF) protonálódnak, karbokationok képződnek belőlük. A karbokationok az olefinekkel és az izobutánnal is reakcióba léphetnek és ionos láncreakció jöhet létre, melynek során nagyobb szénatomszámú(c 7 -C 10 ) izomer paraffinok képződnek, melyek már jó minőségű motorhajtó anyagok. *A proton pozitív töltésű atomi részecske. Ha egy szénhidrogén-molekula valamely szénatomjához proton kapcsolódik, akkor pozitív töltésű ion, ún. karbokation képződik.ez a folyamat a protonálódás.

A reakció végtermékeként képződő alkilátbenzin oktánszáma 96-98, és a reakció igen kedvező hőmérsékleten (38 fok) játszódik le, ami az eljárás költségeit csökkenti.

A benzinhozam növelése II. (Hidrogén-fluoridos alkilálás) Krakkgázok (C 4 -frakció) HF, 38 0 C Alkilátbenzin Bután Izobután Butén Izobutén 6-10 szénatomszámú izomer szénhidrogének

Izooktán előállítása Al-oxid hordozós Pt katalizátorral sav jelenlétében 150 200 oc Izobutén + izobután Izooktán

Friedel Crafts reakcióknak nevezzük a Lewis savakkal (AICl 3, ZuCl 2, Fe Cl 3, BF 3, TiCl 4 stb.) katalizált alkilező illetve acilező reakciókat. A reakció szubsztrátuma valamilyen aromás karakterű vegyület, amely az úgynevezett aktív komponens Lewis savas komplexével reagált a reakció során. A szubsztrátum szerkezete jelentős mértékben befolyásolja annak reakciókészségét. A helyettesítőt nem tartalmazó szubsztrátumok aktivitási sorrendje a következő:

Alkilezéshez ritkán használnak különleges készülékeket. Általában keverős, visszafolyó hűtővel és adagoló berendezéssel felszerelt készülékek használhatók amennyiben a reakció atmoszferikus nyomáson megy. Amennyiben a reakciót nyomás alatt kell végezni: Közönséges középnyomású autoklávokat használnak. A gőzfázisú alkilezési folyamatokat általában csőköteges katalitikus reaktorokban, vagy töltetes reaktorokban végzik. A szerkezeti anyag a közeg kémhatásától függően változó. Általában acél, vagy zománcozott készülékek használatosak.

A molszám csökkenéssel járó reakciók esetén a nyomás növelése gyorsítja a reakciót (L Chateliér-Brown elv). Gyakran alkalmazzák a nyomás növelést olyan esetben is amikor nincs molszám változás. Ilyenkor részben a magasabb hőmérséklet elérése forráspont növekedés által (reakciósebesség növelés) és részben a jobb oldékonyság biztosítása a cél.

A Friedel Kraft reakciókban használt komponensek:

A két táblázat adataiból látható, hogy a Lewis sav az aktív komponensek többségénél a katalitikusnál nagyobb mennyiségben szükséges. Ennek az a magyarázata, hogy a molekulában jelenlévő oxigén, nitrogén- és általában a kénatom komplex formában olyan erősen megköti a Lewis savat, hogy az nem tudja katalitikus hatását kifejteni. A katalizátorból a szubsztrátum egy móljára vonatkoztatva annyi mol felesleg szükséges, amennyi oxigén vagy nitrogénatomot a szubsztrátum és a reagens molekula együttesen tartalmaz. Alkohol aktív komponens esetén, a másod- illetve harmadrendű szénatomhoz kapcsolódó hidroxilcsoporttal alkotott komplex stabilitása csökken,1 mol/mol katalizátornál kevesebb is elegendő

A II. táblázat adataiból látható, hogy a Lewis sav az aktív komponensek többségénél a katalitikusnál nagyobb mennyiségben szükséges. Ennek az a magyarázata, hogy a molekulában jelenlévő oxigén, nitrogén- és általában a kénatom komplex formában olyan erősen megköti a Lewis savat, hogy az nem tudja katalitikus hatását kifejteni. A katalizátorból a szubsztrátum egy moljára vonatkoztatva annyi mol felesleg szükséges, amennyi oxigén vagy nitrogénatomot a szubsztrátum és a reagens molekula együttesen tartalmaz. Alkohol aktív komponens esetén, a másod- illetve harmadrendű szénatomhoz kapcsolódó hidroxilcsoporttal alkotott komplex stabilitása csökken,1 mol/mol katalizátornál kevesebb is elegendő

A katalizátor tisztasága és szemcsemérete: Ipari célokra általában AlCl 3 -ot használnak. Ezt levegőtől elzárva kell tárolni (zárt dobokban), mivel nedvesség hatására HCl lehasadása közben bomlik. Színe az FeCl 3 szennyezéstől általában sárgás, de sem ez, sem a szintén előforduló TiCl 4. Szennyeződés nem csökkenti - sőt az utóbbi kismértékben növeli az aktivitását. A reakcióelegy az esetek többségében heterogén. Az AlCl 3 nem oldódik benne.

A reakció sebessége az érintkezési felület nagyságának tehát a szemcsenagyságnak a függvénye. Túl hevesnek ígérkező reakció esetén a darabos, lassú reakció esetén a finom por formájú katalizátor használata az előnyös. Ha az AlCl 3 adagolása valamilyen dugattyús adagolóval vagy szállítócsigával történik, a túl apró szemcsék összetapadva eltömhetik az adagoló berendezést. Ha a reakcióhoz csak katalitikus mennyiségű AlCl 3 szükséges, pórusos hordozóra felvíve is használható. Poláros oldószerrel, vagy a reaktánssal gyakran képződik oldható komplex. Ilyenkor a szemcseméret érdektelen.

A hőmérséklet szerepe: A reakció általában annyira exoterm, hogy a reakcióelegyet hűteni kell, mivel magas hőmérsékleten az aktív komponens, de gyakran a termék is kátrányosodik az AlCl 3 hatására. Ha a szubsztrátum nem elég aktív, melegíteni kell a reakcióelegyet. A hőmérséklet ritkán haladja meg a 90-100 o C-t. A hőmérséklet emelésének hatására izomerizációs reakciók is lejátszódhatnak (AlCl 3 hatására). Pl. n-propil-klorid-benzol reakció esetén -6 C-on n-propil-benzol, 35 C felett i-propil-benzol a főtermék. Hőmérsékletre nem érzékeny komplex képződése esetén előfordul, hogy ennek forrpontján végzik a reakciót.

Az oldószer szerepe: Az oldószer legfontosabb szerepe a reakcióelegy homogenizálása. Erre részben a reakció sima lefolytatása (koncentráció viszonyok), másrészt az egyenletes hőátadás miatt van szükség. Gyakran előfordul, hogy az oldószer forrponton tartásával biztosítják a hőelvonást és a reakció számára megfelelő hőmérsékletet. Az oldószer lehet a reakció szempontjából semleges tulajdonságú vegyület (CS 2, petrol-éter, CHCl 2 -CHCl 2 ), nem reakcióképes, de komplexképző hatású vegyület (nitrobenzol) és lehet maga a szubsztrátum (benzol).

Szubsztrátumként is alkalmas vegyület lehet semleges tulajdonságú hígító is, ha a reakciót aktívabb szubsztrátummal végezzük (pl. naftalin szubsztrátum, benzol hígító) A nitrobenzol komplexképző hatása mellett azért is alkalmas közege a reakciónak, mivel annak során simán, egyenletesen adja le a katalizátort. Az oldószer a szubsztituens belépésének a helyét is befolyásolhatja. (Pl. naftalin - acetilklorid reakció esetén etilénkloridban 1-acetil-naftalin, nitrobenzolban 2-acetil-naftalin keletkezik)

HCl jelenléte: A HCl a legtöbb reakció mellékterméke. A katalizátor bomlása során szintén keletkezik. Emiatt célszerű a reakcióelegyet gyenge vákuum alatt tartva, vagy a reakcióelegy szempontjából inert gáz átbuborékoltatásával eltávolítani a reakcióelegyből. Az olyan típusú reakciók esetén, ahol a HCl átmeneti klór vegyületek képződése miatt szükséges, a fenti módszert nem kell alkalmazni (pl. alkohol vagy olefin aktív komponens esetén).

Aromás vegyületekre történő alkilezés során alkil csoport vihető be az alábbi aktív komponensekkel a Friedel-Crafts reakciók alkalmazásával: Alkil halogenidek Olefinek Acetilén származékok

Aktív komponensek: Alkoholok Merkaptánok Tiocianátok

Aromás vegyületek dihalogénezett alkilvegyülettel vagy halogénezett alkil oldallánccal cikloalkilezhetők

Izomerizálásra is van lehetőség a Friedelm Craft reagansekkel

Acilezés savval, savkloriddal, foszgénnel, savanhidriddel, keténnel végezhető. A termék keton

Az első, ipari méretekben megvalósított alifás alkilezés, izoparaffinok alkilezését olefinekkel kénsav katalizátor jelenlétében még 1938-ban fejlesztették ki. Az eljárás egyszerűsége, a katalizátor olcsósága, a nyersanyagok variálhatósága és a termék jó minősége miatt az eljárást még jelenleg is használják az iparban. Izobután, izopentén, és izohexán 97%-os kénsav jelenlétében viszonylag könnyen alkilezhető, nagy oktánszámú termékek keletkeznek, amelyek motorhajtó adalékanyagként használatosak. Az oktánszámot a motorhajtó üzemanyagokra a n-heptán oktán számát 0- nak az izooktán oktán számát 100-nak véve úgy határozzák meg, hogy annak kopogási tulajdonsága milyen térfogatszázalék izooktán tartalmú izooktán - normál heptán elegy kopogási tulajdonságával egyezik meg.

Az izooktán előállítása izobután alkilezése révén izobuténnel, Friedel Crafts katalizátor, kénsav vagy HF jelenlétében történik. Izobutén + izobután izooktán

Az alkilezés célja leginkább a végtermék szempontjából lényeges tulajdonságok kialakítása. Motorhajtó adalékanyagok, gyógyszerek, lágyítók, műanyagipari segédanyagok, oldószerek, illatanyagok, műanyagipari monomerek állíthatók elő alkilezéssel. Kémiai adalékanyagok teljesítmény növelés környezetvédelmi előírások kielégítése benzin oktánszámának javítása szénmonoxid képződés csökkentése kibocsátott illékony szerves anyagok VOC reaktivitásának csökkentése

Kiszorították az ólom tartalmú adalékanyagokat. Legelterjedtebben alkalmazott éterek: metil tercier butil éter (MTBE) etil tercier butil éter (ETBE) tercier amil metil éter (TAME)

Az iparban megvalósított eljárások több változata létezik. módosítható izobutilén vagy izoamilén reagáltatására metanollal vagy etanollal a megfelelő éterek metil tercier butil éter (MTBE), etil tercier butil éter (ETBE), vagy a tercier amil metil éter (TAME) előállítására. Mindegyik eljárás savas ioncserélő gyanta katalizátort alkalmaz szabályozott hőmérsékleten és nyomáson. Az exoterm reakció hőmérséklet szabályozása fontos a konverzió maximalizálása és a nem kívánatos mellékreakciók és a katalizátor deaktiválódás minimalizálására. A reakciót általában két lépcsőben valósítják meg kis alkohol felesleggel a 99 % feletti izoolefin konverzió biztosítására. A különböző eljárások között a reaktor konstrukciójában és a hőmérsékletszabályozás módjában van különbség

Izobutilén és/vagy izoamilén és metanol (vagy etanol) szükséges az MTBE (vagy ETBE) és TAME előállításához. Az izobutilén előállítása többféle olajfinomító forrásból származik: Fluidizációs Katalitikus Krakkoló (FCC) és kokszoló egységből származó könnyűbenzin; a benzin gőzős krakkolásából melléktermék vagy az etilén és a propilén gyártásból származó könnyű szénhidrogének; az izobután katalitikus dehidrogénezéséből valamint a tercier butil alkohol a propilén oxid gyártás mellékterméke

A betáp áramokat a primer rektor tetejére történő bevezetés előtt lehűtik. A primer reaktorban lévő katalizátor apró gyöngy szemcsés fixágyas katalizátor. A reakcióelegy átáramlik a katalizátor rétegen, amelyben kb. 60-90 C és 14 bár nyomás van, fentről lefelé áramolva és a reaktor alján lép ki. A primer rektorból kilépő reakcióelegy étert, metanolt és el nem reagált izobutilént tartalmaz, valamint kismennyiségű paraffint, amely a betápból származik. A kilépő áram egy részét lehűtik és visszavezetik a reaktor tetejére a hőmérséklet szabályozás céljából. A primer reaktorból kilépő áram másik részét bevezetik a szekunder reaktor középső részébe, a katalizátor réteg alá. Az étert fenék termékként távolítják el a szekunder reaktorból, amelyben a nem reagált izobutilén és olefin gőzök a katalizátor rétegen felfelé áramolva éterré alakulnak. A szekunder reaktor tetején kilépő gőzöket lehűtik és reflux kondenzátorban kondenzáltatják. A kondenzátumból a metanolt egy vizes mosótoronyban kimossák és a keletkező vizes metanol elegyből

A TVK termékstruktúrájának szélesítése jegyében épült meg és működik 1982. óta a metil-tercierbutiléter üzem, amely magas oktánszámú, környezetbarát benzinkomponenst állít elő izobutilén tartalmú C4-frakció és metanol felhasználásával. Ehhez az üzemhez egy,, nagytisztaságú izobutilént gyártó egység kapcsolódik, ami az MTBE bontásával állítja elő a termékeket. Az MTBE üzem megtekintése gyakorlati foglalkozás keretében szerepel az oktatási programban.

1999. márciusában Gray Davis California kormányzója rendeletben elrendelte az MTBE (Metil Tercier butil éter) üzemanyag adalékanyagként történő betiltását California államban, mivel a Californiai ivóvíz kutakban a megengedett egészségügyi határértéket meghaladó koncentrációban találtak MTBE-t, amely egyes kutatók feltételezése szerint rákkeltő hatású. Ennek a problémakörnek a megoldására az ETBE (etil tercier butil éter) alkalmazását javasolják az MTBE helyettesítésére.

A MOL-csoport termékfejlesztési politikájában évek óta kiemelkedő fontosságú termékek környezetre gyakorolt hatásainak javítása. Így, miután több lépcsőben áttértek a kénmentesnek tekinthető üzemanyagok gyártására, hamarosan megkezdik egy biológiai eredetű alapanyagokból előállított üzemanyag-komponens, a bio-etbe gyártását és az üzemanyag adalék termékekben az MTBE helyett történő felhasználását. Megtörtént az MTBE (metil-tercier-butil-éter) üzem átalakítása bio-etbe üzemmé a MOL Dunai Finomítójában, Százhalombattán. A bio-etbe (etil-tercier-butil-éter) mezőgazdasági eredetű etanolból (bioetanol) előállított benzinkomponens, mely azon túl, hogy megújuló alapanyagból készül, olyan tulajdonságokkal rendelkezik, mint a ma oktánszámnövelő komponensként alkalmazott MTBE.

Az EU bioüzemanyagokról szóló közösségi célkitűzéseinek megfelelően a MOL-csoport tovább növelte a bio-etbe kapacitását: 2005 végére a pozsonyi finomító MTBE üzemét is bio-etbe üzemmé alakították át. A bio-etanol adalékanyagok, és a bio-etanol alapú ETBE alkalmazásának további növekedése várható.

Katalitikus benzin reformálás A benzinreformálás a motorbenzingyártás egyik legfontosabb technológiája. Az európai motorbenzinek tömegének 35-40 %-a reformált benzin. Az USA-ban ez a hányad valamivel kisebb, de ott is 30 % körüli. Az eljárás alapvető célja közép- és nehézbenzinek aromás és izoparaffin tartalmának növelése, nagy oktánszámú motorbenzinkomponens vagy egyedi aromásgyártás (benzol, toluol, xilolok, BTX) alapanyagának előállítására. A reformált benzin kísérleti oktánszáma az üzemeltetési paraméterektől függően 95-100, aromástartalma 60-70 %, olefintartalma gyakorlatilag nincsen. A nagy aromástartalom miatt szenzibilitása nem túl jó (12-13 pont), továbbá ma már önmagában nem alkalmazható motorbenzinként, hiszen abban max. 42 % aromástartalom a megengedett.

A reformálás fontos mellékterméke a hidrogén, ugyanis a naftén (cikloparaffin) szénhidrogének aromássá alakulása hidrogén felszabadulásával jár, az alábbi modellreakció szerint:

A képződött hidrogént a kőolajfinomító a különböző kőolajfrakciók hidrogénező finomítására, kéntelenítésére használja fel. Ésszerűen kiépített finomítóban általában az a helyzet, hogy amíg a finomítóban nincsen maradvány feldolgozás, addig a reformáló üzemek fedezik a finomító hidrogénszükségletét. A reformálás során a már említett két modellreakción kívül a n- paraffinok és naftének izomerizálása, és ezek hidrokrakkolása játszódik le. A hidrokrakkolás itt alárendelt és nem kívánt reakció, mert csökkenti a reformált benzin hozamát, hiszen a kiindulási benzin C 6 -C 10 komponenseit C 1 -C 4 gázokká alakítja. Mivel a hidrokrakkolás csak kis mértékű, ezért a reformált benzin hozama 80-85 %.

azonban a kis nyomás a katalizátor kokszosodását is gyorsítja, a dehidrogénező reakciók túlzott lejátszódása miatt.

következő ábra