Vegyünk 1 mol réz-oxidot. Ebből x mol keletkezett rézből, és 1-x mol réz karbonátból. Így 63,5*x + 123,5*(1-x) = 79,5. 60x = 44.



Hasonló dokumentumok
Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

Mágneses szuszceptibilitás vizsgálata

2011. március 9. Dr. Vincze Szilvia

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

KOVÁCS BÉLA, MATEMATIKA I.

XIV. AZ OXIGÉN, A KÉN ÉS VEGYÜLETEIK

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA II. KATEGÓRIA. Javítási-értékelési útmutató

Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA

Koordináta - geometria I.

[MECHANIKA- HAJLÍTÁS]

KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK június 6. du. JAVÍTÁSI ÚTMUTATÓ

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

A mérések eredményeit az 1. számú táblázatban tüntettük fel.

Azonosító jel: KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA október :00. Az írásbeli vizsga időtartama: 240 perc

Sillabusz az Orvosi kémia szemináriumokhoz. Pécsi Tudományegyetem Általános Orvostudományi Kar 2010/

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

XX. OXIGÉNTARTALMÚ SZERVES VEGYÜLETEK

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,

VEGYIPARI ALAPISMERETEK

Semmelweis Egyetem Orvosi Biokémia Intézet Orvosi Biokémia és Molekuláris Biológia gyakorlati jegyzet: Transzaminázok TRANSZAMINÁZOK

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

8. Feladat Egy bútorgyár asztalosműhelyében évek óta gyártják a Badacsony elnevezésű konyhaasztalt. Az asztal gyártási anyagjegyzéke a következő:

1. feladat Összesen: 10 pont

Párhuzamos programozás

Javítókulcs (Kémia emelt szintű feladatsor)

Gázhalmazállapot. Relatív sűrűség: A anyag B anyagra vonatkoztatott relatív sűrűsége: ρ rel = ρ A / ρ B = M A /M B (ρ: sűrűség, M: moláris tömeg)

Környezettechnológiai laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V. Enzimtechnológia. című gyakorlathoz

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)

1. feladat Összesen: 10 pont. 2. feladat Összesen: 6 pont. 3. feladat Összesen: 18 pont

B C B C B E B D B 1 C C B B C A C E E A 2 A D B A B A A C A D 3 B A A B A D A D A B 4 A

Gépi forgácsoló Gépi forgácsoló

Analízis elo adások. Vajda István október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1996

KOVÁCS BÉLA, MATEMATIKA I.

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Bevezetés a lágy számítás módszereibe

100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <

[GVMGS11MNC] Gazdaságstatisztika

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE

A XVII. VegyÉSZtorna III. fordulójának feladatai, november 26.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Jelek tanulmányozása

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1998

Korszerű geodéziai adatfeldolgozás Kulcsár Attila

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA 10. Osztály I. FORDULÓ

Első alkalomra ajánlott gyakorlópéldák. Második alkalomra ajánlott gyakorlópéldák. Harmadik alkalomra ajánlott gyakorlópéldák

A Hozzárendelési feladat megoldása Magyar-módszerrel

Lineáris algebra gyakorlat

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.

Lécgerenda. 1. ábra. 2. ábra

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők:

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 (pótfeladatsor)

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

feladatmegoldok rovata

MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok

A BIZOTTSÁG 355/2005/EK RENDELETE (2005. február 28.) A boranalízis közösségi módszereinek meghatározásáról szóló 2676/90/EGK rendelet módosításáról

A döntő feladatai. valós számok!

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: november. I. rész

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, november 20.

Azonosító jel: Matematika emelt szint

EGERPH16TAMNY NYILATKOZAT

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

ELEKTRONIKAI ALAPISMERETEK

Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS. v ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

Kémiai technológia laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V A KEMÉNYÍTŐ IZOLÁLÁSA ÉS ENZIMATIKUS HIDROLÍZISÉNEK VIZSGÁLATA I-II.

Egységes jelátalakítók

Műszaki ábrázolás II. 3. Házi feladat. Hegesztett szerkezet

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Polikondenzációs termékek

Régi súly, hosszúság és űrmértékek

ELEKTRONIKAI ALAPISMERETEK

S Z I N T V I Z S G A F E L A D A T O K

Térfogatáram mérési módszerek 2.: Térfogatáram mérés csőívben (K)

Conjoint-analízis példa (egyszerűsített)

ORSZÁGOS KÖRNYEZETEGÉSZSÉGÜGYI INTÉZET

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ

Boldva és Vidéke Taka r ékszövetkezet

Átírás:

1. feladat A rézsót és a rezet hevítve ugyanaz a vegyület keletkezik, ez csak a réz(ii)-oxid lehet. 100 g rézsóból lesz 64,4 g réz-oxid ami, 0,81 mol. ha a képlet Cu 3 X 2 akkor n=0,27 és M= 370,3 (=100/0,27) így M(X)=89,9 nem megoldás ha a képlet CuX akkor n=0,81 à M= 123,5 (=100/0,81) és M(X)=60 megoldás : karbonátion ha a képlet CuX2 akkor n=0,81 à M= 123,5 és M(X)=30 nem megoldás Tehát a rézsó a réz-karbonát. Vegyünk 1 mol réz-oxidot. Ebből x mol keletkezett rézből, és 1-x mol réz karbonátból Így 63,5*x + 123,5*(1-x) = 79,5 60x = 44 x=0,733 Tehát 73,3 n/n%-ban réz, és 26,7 %-ban réz-karbonát. Tömegre átírva: 46,5 g réz, és 33,0 réz-karbonát. 58,5 m/m%-ban réz, és 41,5 %-ban réz-karbonát.

2. feladat a) A táblázat adatai alapján a t = 23,6 C-hoz tartozó p v érték p ( t 23,6C) 2,8104 0,6 (2,9850 2,8104)kPa 2,9152kPa v b) V = 39,00 cm 3 0,53 cm 3 = 38,47 cm 3 b 0 = 101,3 kpa p v = 2,9152 kpa t = 23,6 C Ezeket behelyettesítve: g V ( b0 pv ) 273,15 ml 0,001293 3 cm 101,325kPa 273,15 t / C 0,001293 g cm 3 3 38,47cm (101,3 2,9152)kPa 273,15 0,044457g 101,325kPa 273,15 23,6 c) A rel mg / ml képlet alapján ismerve, hogy m l = 0,044457 g és m g = 0,0891 g, ρ rel = 2,004 adódik. Ezt az értéket a levegő átlagos moláris tömegének értékével (28,98 g/mol) szorozva adódik az ismeretlen moláris tömege: 58,08 g/mol. d) A moláris tömeg értéke és a leírt tulajdonságok alapján ez a folyadék az aceton, szerkezeti képlete: e) Ha a folyadékszinteket nem hoznánk egy magasságba, akkor a víz hidrosztatikai nyomása miatt a külső és a belső térben különbözne a nyomás értéke, mely meghamisítaná a mérést.

f) Egy idő után az aceton gőze elkezd beoldódni az f csőben lévő vízbe, emiatt a gőztérfogat csökken. 3. feladat A képlet meghatározásához vegyünk 100g klórpikrint! ebből 7,30g szén 0,608mol 1mol 64,71g klór 1,825mol 3mol 27,99g egyéb 46 gramm Tudjuk még, hogy a N/O mólarány 1/2, és a kiindulási vegyület szerkezete miatt feltételezhetjük, hogy ez a termékben is egy NO2 csoport formájában jelenik meg. Ha a fenti számításra tekintünk, láthatjuk, hogy a maradék 46gramm pont egy nitrocsoportot tesz ki. A szénatom négy vegyértékéből a nitrocsoport foglal le egyet, a maradék hármat pedig a három klóratom. Így meg is kaptuk a klórpikrin összegképletét: CCl 3 NO 2 Szerkezeti képlete: Az előállítás rendezett egyenlete:

1. ábra A labor térfogata 24m 3 ennek 1,5*1/10 9 része: 3,6*10-5 dm 3 n=rt/(pv) alapján, vagy egyszerűen 3,6*10-5 /24,5= 1,47*10-6 klórpikrin kell. mol Ha 75% kitermelésre számítunk, akkor = 1,47*10-6 /0,75=1,96*10-6 mol klórpikrin előállításához szükséges sztöchiometriai mennyiségeket kell kiszámolni. Az egyenlet alapján ehhez 1,96*10-6 /3=6,53*10-7 mol pikrinsav kell, ennek tömege: 229*6,53*10-7 =1,50*10-4 g 1,96*10-6 *11/3=7,18*10-6 mol NaOCl kell, ennek tömege: 74,5*7,18*10-6 =5,35*10-4 g Mivel az NaOCl oldat 10m/m%-os, abból 5,35*10-3 g kell, amelynek térfogata 5,35*10-3 /1,08 = 4,95*10-3 cm 3.

Megjegyzés: A feladat szövegében történt egy elírás, a ppmv nem 1/10 9, hanem 1/10 6 térfogatrészt jelent, a szövegben megadott, és a helyes definíció alapján történő számolásokat is elfogadtuk. 4. feladat A feladat megoldásának első lépéseként meg kell határozni azt, hogy az adott térfogat (1000 cm 3 ) megtöltéséhez szükséges idő hogyan függ a cső hosszától, sugarától valamint az alkalmazott nyomástól. Elsőként a cső hosszát vizsgálva azt vehetjük észre az első táblázat első 3 sorát nézve, hogy ha duplájára nő a hossz, duplájára nő az idő is. Tehát a cső hosszával egyenesen arányos a megtöltéshez szükséges idő. A cső sugaránál nem ilyen egyszerű a helyzet. Ugyanezen táblázat utolsó 3 sora alapján, ha a duplájára nő a sugár, akkor 16-odára csökken az idő. Ez azt jelenti, hogy az idő fordítottan arányos a sugár negyedik hatványával. A 2. táblázat első két sora alapján ha duplájára nő a fejnyomás, harmadára csökken az idő. Azonban ez az arányossági tényező a többi adatpár esetén más és más. Ha számításba vesszük a cső aljánál lévő légköri nyomást is akkor láthatjuk, hogy ha a nyomás helyére a fejnyomás és légköri nyomás különbségét írjuk, akkor már azt kapjunk, hogy ezzel fordítottan arányos a megtöltéshez szükséges idő. Tehát a következő képletet kaptuk: t = 1 C l (p p )r

A második táblázat tetszőleges sorából az adatokat kiválasztva megkapjuk, hogy a C értéke 2,616. SI mértékegysége: s/ kgm 2. Azonban ez az 1000 cm 3 kifolyásához szükséges időt jellemzi, ha a m 3 -re akarjuk megadni, akkor 2,616 *10-3 kg/(m*s) adódik. A két kenőolajra meg lehet határozni a jellemző számokat az előbbiek alapján. A KENO3b-re 3,98 * 10-3 adódik, míg a KENO5s-re 2,84 * 10-3. A döntés során általában a nehezebben folyó anyag a célszerűbb. (itt bármilyen értelmes indokkal alátámasztott döntést elfogadtunk). A következő feladatrészek függetlenek voltak az eddigiektől. Elsőként olyan oldószert kell választani ami oldja a kiindulási vegyületeket, azonban nem rontja a reakció hatékonyságát. Például nem lép reakcióba sem a jóddal, sem a kén-dioxiddal vizes közegben (pl.: ezért nem jó megoldás az aceton). Ilyen oldószerek lehetnek például az alkoholok. (megj. az alkoholoknak fontos szerepe van a reakcóban, lásd később). A reakcióegyenlet felírása során követhetjük az alábbi gondolatmenetet: Az "alapreakció" mely során a jód és a kéndioxid reagál a vízzel a következő: (a) I 2 + SO 2 + H 2 O = 2 HI + SO 3 azonban felírhatjuk a reakciót úgyis, hogy a SO 3 még egy víz felvételével kénsavvá alakul. Így az egyenlet:

(b) I 2 + SO 2 + 2 H 2 O = 2 HI + H 2 SO 4 A piridin azonban megköti a keletkező savakat. A feladatot tovább olvasva, az anyagmennyiség arányok figyelembe vételével megkaphatjuk az oldószer moláris tömegét, a következő egyenletet felírva. 530 / [50*(84,1 / 253,8)] = 31,8 g/ mol. Továbbá láthatjuk, hogy az oldószer sűrűsége 530 / 666 = 0,796 g/ml. A függvénytáblát használva megtalálhatjuk, hogy ez az oldószer a metanol. Így azonban a következőket vonhatjuk le a reakcióra vonatkozóan. A metanol képes reagálni az egyenletekben szereplő kén-trioxiddal vagy kénssavval. Ekkor a következő reakció játszódik le: CH 3 OH + SO 3 = CH 3 O-SO 3 H majd a piridin megköti a keletkező savat. Ha a (b) reakciót írjuk fel akkor a következőképpen gondolodhatunk. A keletkező kénsav piridin jelnlétében reagál a metanollal (B a piridint jelöli) - CH 3 OH + H 2 SO 4 + B= CH 3 OSO 3 + BH + + H 2 O. Így visszakapunk egy vizet. Összeségében a következő reakciót írthatjuk fel: (B ismét a piridint jelöli). I 2 + SO 2 + H 2 O + CH 3 OH + 3 B = 3 BH + + 2 I - + CH 3 OSO 3 - Ez alapján 1 mol jód 1 mól vízzel egyenértékű. Így a kapott adatok alapján 1 ml oldat 84,1*18 *0,666/ 253,8 = 4 mg vizet mér. Ezek alapján a 25 ml mintára 15,5-3,2 = 12, 3 ml oldat fogy. Azaz a minta 12,3 *4 = 49,2 mg vizet tartalmazott.

5. feladat a, Legyen az ismeretlen fém-oxid képlete MexOy, ahol x,y pozitív egészek. Ekkor (x*mme+16y)*0,2764 = 16y (x *MMe +16y )*0,0933 = 16y Adódik: y/x*41,887 = MMe y /x *155,49 = MMe Ritka sztöchiometriára tekintettel y/x értéke lehet 2/3, 3/2, 4/3, 3/4... Rövid próbálgatás után azt kapjuk, hogy Me = Fe, Me = Pb A laboráns minden bizonnyal a jellegzetes színből, valamint a korábbi hosszas számolás eredménytelen kimeneteléből következtetve jutott a helyes eredményre. b, A magnetit (Fe3O4) fekete színű. A mínium (Pb3O4) élénkpiros, narancssárga színű. Hevítés hatására a magnetit összetétele nem változik. Míg a mínium a következő egyenlet alapján bomlik: Pb 3 O 4 3 PbO + ½ O 2