Lézer. Lézerek mindenütt. Lézer: Lézer



Hasonló dokumentumok
Lézer. Lézerek mindenütt. Lézer: Lézer

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v.

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Lumineszcencia mindenütt. Fehérjék szerkezetvizsgáló módszerei. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Lumineszcenciás technikák

Lumineszcencia (fluoreszcencia, foszforeszcencia)

LÉZER: Alapok, tulajdonságok, kölcsönhatások

Light Amplification by Stimulated Emission of Radiation rövidítése; magyarul: fényerősítés indukált emisszióval

Lumineszcencia. Atomszerkezet. Molekulaszerkezet. Molekula energiája. E e > E v > E r. + E v. + E r. = E e. E total. Alapok, tulajdonságok

LÉZER: Alapok, tulajdonságok, alkalmazások

OPAL P25 CO 2 OPAL L30/L50 CO 2. lézer. lézer. engineering laser technology

nyforrás 2014 Gerhátné Dr. Udvary Eszter

Lumineszcencia Fényforrások

A lézersugár és szerepe a polimer technológiákban

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Biofizika tesztkérdések

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

Mérnökgeodézia 6. A lézertechnika, és mérnökgeodéziai alkalmazása Dr. Ágfalvi, Mihály

Kimenő üzemmód ; Teljesítmény

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Száloptika, endoszkópok

1. Atomspektroszkópia

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Fény kölcsönhatása az anyaggal:

A LÁTÁS BIOFIZIKÁJA. D szem = 63 dioptria, D kornea = 40, D lencse = 15+ Rövidlátás myopia, Asztigmatizmus cilinderes lencse

Az elektromágneses spektrum és a lézer

Lumineszcencia alapjelenségek

Anyagfelvitel nélküli felületkezelések

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.

HU Az Európai Unió Hivatalos Lapja. 13. cikk Útmutató

A fény terjedése és kölcsönhatásai

A lézer működési elve. Lézerek orvosi alkalmazási területei, fény-anyag kölcsönhatás.

Az infravörös spektroszkópia analitikai alkalmazása

SPEKTROFOTOMETRIAI MÉRÉSEK

A LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI SPONTÁN VS. INDUKÁLT EMISSZIÓ A FÉNYERŐSÍTÉS FELTÉTELE A POPULÁCIÓ INVERZIÓ FELTÉTELE

Üzembehelyezıi leírás

Femtokémia: a pikoszekundumnál rövidebb reakciók kinetikája. Keszei Ernő, ELTE Fizikai Kémiai Tanszék

Pozitron-emissziós tomográf (PET) mire való és hogyan működik?

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Gerhátné Udvary Eszter

Modern mikroszkópiai módszerek

Fogorvosi anyagtan fizikai alapjai 10.

Koherens fény (miért is különleges a lézernyaláb?)

ATTOSZEKUNDUMOS IMPULZUSOK

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések

A Raman spektroszkópia alkalmazása fémipari kutatásokban Raman spectroscopy in metallurgical research Dénes Éva, Koós Gáborné, Kőszegi Szilvia

TYP UTR Elektronikus Hőmérsékletszabályozó UFS-2 Kezelési utasítás

Konfokális mikroszkópia elméleti bevezetõ

zernyaláb, mint szerszám

Koherens fény (miért is különleges a lézernyaláb?)

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY

Hogyan segíti a MALDI-TOF MS az aerob baktériumok gyors species identifikálását. Kardos Gábor DEOEC Orvosi Mikrobiológiai Intézet

Fizika 2 (Modern fizika szemlélete) feladatsor

OPAL E25 CO 2 OPAL L30/L50 CO 2. lézer. lézer. engineering laser technology

Napenergia hasznosítási lehetőségek összehasonlító elemzése. Mayer Martin János Dr. Dán András

Bevezetés a lágy számítás módszereibe

Lézerek Lézer és orvosbiológiai alkalmazásaik

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

ŰRTECHNOLÓGIA GYAK. Hőtani számítás, dokumentáció- -műszaki rajz, forgácsoló gépek. ea: dr. Bánfalvi Antal V2/708-as labor

Fény- és fluoreszcens mikroszkópia. Szuperrezolúciós mikroszkópia

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás május 3.

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta

Lézer, a különleges fénysugár. Dr. Paripás Béla fizikus, egyetemi tanár

Lumineszcencia mindenütt. Fehérjék szerkezetvizsgáló módszerei. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Lumineszcenciás technikák

Abszorbciós spektroszkópia

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

3. alkalom, gyakorlat

HAJLÉKONY ÁRAMKÖRI HORDOZÓK LÉZERES BERÉNYI RICHÁRD MIKROMEGMUNKÁLÁSA TÉRBELI ALAKZATOK KIALAKÍTÁSÁHOZ

Ultrahangos mérőfej XRS-5. Használati utasítás SITRANS. XRS-5 mérőfej Használati utasítás

IX. Az emberi szem és a látás biofizikája

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás


1-2. melléklet: Állóvíz típusok referencia jellemzői (11, 13)

Fehérjék szerkezetvizsgáló módszerei

Nemkoherens fényforrások 1. Termikus és lumineszcens sugárzók

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Monotektikus felületi rétegek létrehozása lézersugaras felületkezeléssel. PhD értekezés. Svéda Mária okleveles anyagmérnök

Amit a Hőátbocsátási tényezőről tudni kell

Gerhátné Udvary Eszter

INFORMÁCIÓS MEMORANDUM

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:

Feladatok haladóknak

Einstein: Zur Quantentheorie der Strahlung, 1917

DGP. Hátrahúzott vortex járókerék. Általános jellemzők

kollokvium Kötelező előtanulmányi rend

NEMKOHERENS FÉNYFORRÁSOK I TERMIKUS ÉS LUMINESCENS SUGÁRZÓK

Elhelyezési és kezelési tanácsok

DOC DR FELHASZNÁLÓI KÉZIKÖNYV január, 3. kiadás. Hach Lange GmbH, Minden jog fenntartva. Nyomtatva Németországban.

Havancsák Károly, ELTE TTK Fizikai Intézet. A nanovilág. tudománya és technológiája

ITIL alapú szolgáltatás menedzsement megvalósítása a KELER Zrt-ben

3. Térvezérlésű tranzisztorok

Árnyék. Félárnyék. 3. A fény keletkezése

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

Átírás:

ek mindenütt Alapok, tulajdonságok, alkalmazások 5 mw diódalézer néhány mm Terawattos NOVA lézer - Lawrence Livermore Laboratories Futballpálya méret : Light Amplification by Stimulated Emission of Radiation 1. Mi a lézer? 2. Rövid lézertörténet 3. A lézerműködés alapjai 4. A lézerfény tulajdonságai 5. A lézerek típusai 6. A lézer orvosi és biológiai alkalmazásai MASER: Microwave Amplification by Stimulated Emission of Radiation hν hν

történet dióhéjban A lézer alapjai I. indukált emisszió Albert Einstein (1879-1955) Theodore Maiman (1927-2007) Charles H. Townes (1915-) Steven Chu (1948-) Arthur L. Schawlow (1921-1999) Nikolay G. Basow (1922-2001) Alexander M. Prokhorov (1916-2002) Gábor Dénes (1900-1979) 1917 - Albert Einstein: indukált emisszió elméleti predikciója. 1946 -G. Meyer-Schwickerather: első szemműtét fénnyel. 1950 - Arthur Schawlow és Charles Townes: az emittált fotonok a látható tartományba eshetnek. 1954 - N.G. Basow, A.M. Prochorov, és C. Townes: ammónia mézer 1960 - Theodore Maiman: első lézer (rubin lézer) 1964 - Basow, Prochorow, Townes (Nobel-díj): kvantum elektronika 1970 -Arthur Ashkin: lézercsipesz 1971 - Gábor Dénes (Nobel-díj): holográfia 1997 - S. Chu, W.D. Phillips és C. Cohen-Tanoudji (Nobel-díj): lézeres atomhűtés. 1. Abszorpció 2. Spontán emisszió 3. Indukált emisszió N 2 ρ(ν) ρ(ν) B 21 B 12 N 1 Átmenet gyakorisága: n 12 =N 1 B 12 ρ(ν) ΔE= - =hν energiakvantum elnyelésekor. Magyarázat: kétállapotú atomi vagy molekuláris rendszer, : energianívók, > ρ(ν) : sugárzási tér spektrális energiasűrűsége N 1, N 2 : adott energianívón levő atomok, molekulák száma B 12, A 21, B 21 : energianívók közötti átmeneti valószínűségek (Einstein-féle együtthatók), B 12 = B 21 A 21 Átmenet gyakorisága: n 21 =N 2 A 21 - fotonok egymástól függetlenül a tér minden irányába. Átmenet gyakorisága: n 21 =N 2 B 21 ρ(ν) Külső sugárzási tér hatására. Sugárzási tér energiája nő. Emittált és külső fotonok fázisa, iránya, frekvenciája megegyezik. A lézer alapjai II. Populáció inverzió A lézer alapjai III. Optikai rezonancia Fényerősítés az energianívók relatív betöltöttségétől függ J K Aktív közeg dx J+dJ dj=jk(n 2 -N 1 )dx J = energiaáram-sűrűség K = állandó x = fény által a közegben megtett út N1, N2 = atomok száma az energianívón Zárótükör (99.9%) Pumpálás Részlegesen áteresztő tükör (99%) Aktív közeg nyaláb d=mλ/2 m = 1, 2, 3,... Termikus egyensúly Populáció inverzió csak többállapotú rendszerben! Pumpálás: elektromos, optikai, kémiai energia Pumpálás Populáció inverzió Gyors relaxáció Metastabil állapot átmenet Rezonátor: két párhuzamos sík (vagy homorú) tükör a kimenő fényteljesítmény egy részét visszacsatolja a közegbe pozitív visszacsatolás -> öngerjesztés -> rezonancia Optikai zár a rezonátorban: Q-csatolás, impulzus üzemmód E 0

1. Kis divergencia Párhuzamos nyaláb 2. Nagy teljesítmény Folytonos üzemmódban több tíz, akár száz W (pl. CO 2 lézer) A lézerfény tulajdonságai I. Q-csatolású üzemmódban a pillanatnyi teljesítmény hatalmas (GW) Kis divergencia miatt óriási térbeli teljesítménysűrűség 6. Koherencia A lézerfény tulajdonságai II. fázisazonosság, interferenciaképesség Időbeli koherencia (különböző időpontokban emittált fotonok fázisazonossága) Térbeli koherencia (nyalábkeresztmetszet menti fázisazonosság) 3. Kis spektrális sávszélesség Monokromaticitás Nagy spektrális energiasűrűség 4. Polarizáltság 5. Rendkívül rövid impulzusok lehetősége ps, fs Alkalmazás: holográfia típusok A zöld lézermutató Fényerősítő közeg alapján: 1. Szilárdtest lézerek Kristályokba v. üveganyagokba bevitt fémszennyeződés; Rubin, Nd-YAG, Ti-zafír Vörös-infravörös spektrális tartomány; Folytonos, Q-kapcsolású üzemmód, nagy teljesítmény 2. Gázlézerek Legismertebb: He-Ne lézer (10 He/Ne). Kis energia, Széleskörű használat CO 2 lézer: CO 2 -N 2 -He keverék; λ~10 μm; Óriási teljesítmény (100 W) 3. Festéklézerek Szerves festékek (pl. rodamin, kumarin) híg oldata; Pumpálásra más lézer használt Nagy teljesítmény (Q-kapcsolt módban); Hangolható Tápegység (telep) Pumpáló dióda vezérlő DPSS lézer egység Lépések: 1. Diódalézer (808 nm) pumpál 2. Szilárdtest-lézer (Nd:YVO 4: neodimiummal szennyezett yttrium-vanadát) 1064 nm-es fényt állít elő 3. KTP (kálium titanil-foszfát) kristály frekvenciát dupláz (hullámhosszt felez): 532 nm (zöld) 4. Félvezető lézerek Összefekvő p- és n-típusú, szennyezett félvezetők határán. Rezonátor tükrökre nincs szükség (belső visszaverődés) Vörös, IR spektrális tartomány. Nagy kontinuus üzemmódú teljesítmény (akár 100W) Nyalábkarakterisztika nem túl jó. Kis méret miatt széleskörű alkalmazás. 808 nm pumpáló dióda Fókuszáló lencse Szórólencse Kollimátor lencse IR szűrő *Megjegyzések: DPSS: diode-pumped solid state MCA: multiple crystal assembly LD: laser diode

ek, spektrális vonalak és sávok ek alkalmazása Teljesítmény alapján 5 mw CD-ROM meghajtó 5 10 mw DVD lejátszó vagy DVD-ROM meghajtó 100 mw Nagysebességű CD-RW író 250 mw DVD-R író 1 20 W szilárdtest-lézer mikromegmunkálásra 30 100 W sebészeti CO 2 lézer 100 3000 W ipari CO 2 lézer (lézervágó) 1 kw 1 cm diódalézer rúd Holográfia Sebességmérés lézerrel LIDAR: Light Detection and Ranging Pásztázó tükör Gábor Dénes (1900-1979) Hologram felvétele Hologram megtekintése Felülnézeti elrendezés Felvétel: rekonstruált térbeli elhelyezkedés. Közlekedési sebességmérőben: 100 impulzus 0.3 s alatt Hologram fotolemez felülete Hologramok

MALDI-TOF: matrix-assisted laser desorption/ionization time of flight mass spectrometry Fluorescence activated cell sorter (FACS) Sejtszuszpenzió MALDI-TOF sémája Folyadékköpeny Áramló sejtek Szűrők Detektor Impulzus lézer N2, 337 nm Gyorsítóba/ Detektorba Ionok Fókuszáló optika Sejtszorter Dikroikus tükör Lencsék és zűrők Detektor 30 Minta Mintatartó Szferikus sejtek Ovoid sejtek pásztázó konfokális mikroszkóp Teljes belső visszaverődés fluoreszcencia mikroszkópia (TIRFM) Evaneszcens mező Pásztázás Y X sejt Üveglemez Objektív lencse nyaláb Konfokális elv Objektív lencse Fókuszsíkból érkező nyaláb Detektor Alexa532-vel jelölt bakteriális flagellumok Minta Fókuszsíkon kívülről érkező nyaláb Pinhole

Csomókötés egyetlen DNS láncra - lézercsipesszel csipesz mikrogyöngy mozgatható lézercsipeszben Fáziskontraszt kép Fluoreszcencia kép F Fénytörő mikrogyöngy Mikroszkóp objektív F Grádiens erő EGYENSÚLY mikrogyöngy stacionárius lézercsipeszben Szórási erő (fénynyomás) Kinosita Group Csomókötés aktin filamentumra lézercsipesszel A lézer orvosi alkalmazásai I. Alapelvek: 1. Fény kölcsönhatása a biológiai mintával Beeső nyaláb Reflexió Transzmisszió Szóródás Reemisszió Abszorpció Arai et al. Nature 399, 446, 1999. 2. A lézernyaláb tulajdonságai: Fókuszálhatóság, kiválasztott hullámhossz, teljesítmény 3. A biológiai minta tulajdonságai: Transzmittivitás, abszorbancia, fényindukált reakciók

A lézer orvosi alkalmazásai II. 1. Szempontok Sebészeti szakmák: lézerszike, koaguláció, vérzés nélküli operáció. Daganateltávolítás, tetoválás-eltávolítás. CO 2 és Nd:YAG lézer. Bőrgyógyászat: rendkívül kiterjedt alkalmazás. Fogászat: szuvas részek preferáltan abszorbeálnak. Photodynamiás tumorterápia: fotoszenzitív, tumor által preferáltan felvett kémiai anyagok aktiválása lézerrel. Szemészet: Retinaleválás, szemfenék fotokoagulációja, glaucoma, fotorefraktív keratektomia (PRK). 1. Alkalmazott hullámhossz: Argon: 488 or 514.5 nm Ruby: 694 nm Alexandrite: 755 nm Pulsed diode array: 810 nm Nd:YAG: 1064 nm 2. Impulzusszélesség 3. Megvilágított terület nagysága (8-10 mm átmérő) 4. Energiasűrűség (J/cm 2 ) 5. Repeticiós ráta (akkumulációs hatások) 6. Epidermális hűtés (gélek, folyadékok, spray-k, levegő) 2. es szőrtelenítés 3. Tetoválás eltávolítás Phototricholysis, photoepiláció Alapja: szelektív photothermolysis chromophorok általi szelekív abszorpció Q-kapcsolású Nd:YAG lézer (1064 nm) Alkalmazott chromophorok: 1. Szén (exogén, széntartalmú kenőcsök) 2. Hemoglobin (endogén) 3. Melanin (endogén) Kezelés után Kezelés után

4. Anyajegy eltávolítás 5. Felületes erek, vénák eltávolítása Kezelés után Kezelés után 2 évvel a kezelés után 6. Bőr felületi módosítása ( resurfacing ) 1993. Adrian CO 2, Erbium:YAG lézer Szemészeti alkalmazások: 1. Alapelvek Az optikai közegek transzmittivitása hullámhossz-függő Látható lézer UV lézer Ránctalanítás Napkárosítás Rhinophyma Szisztémás epidermális naevusok

Szemészeti alkalmazások: 2. LASIK Fotodinámiás terápia Laser-assisted In Situ Keratomileusis A refraktív lézer-szemsebészet egy fajtája Történet: Jose Barraquer, 1970: microkeratome építése, mellyel a corneába lézerrel hasadékokat vágott és lemezeket alakított ki (keratomileusis). Lucio Buratto (Olasz) és Ioannis Pallikaris (Görög), 1990: keratomileusis és photorefractív keratectomia kombinálása. Thomas and Tobias Neuhann (Németo), 1991: automatizált microkeratome. Lépések: 1. Kontaktlencse eltávolítása (7-10 nappal a beavatkozás előtt) 2. es letapogatás (kis teljesítmény): a cornea topográfiájának megrajzolása 3. Cornea felületéről egy lemez felhajtása (fs lézerrel) 4. Stroma anyagából eltávolítás (néhány 10 mikrométer vastagságban). Excimer lézer (193 nm). Phtotorefraktív keratektomia (PRK) A refraktív lézer-szemsebészet egy másik fajtája. Nincs lemez kialakítás, kisebb a felületi átalakítás mértéke. DE: fájdalmasabb, a regeneráció lassabb. Photodynamiás terápia (PDT): Roswell Park Cancer Institute 1970-es évek. Háromkomponensű tumorterápiás módszer: 1. Fotoszenzitizáló ágens, 2. Fény, 3. Oxigén. Lépések: 1. Fotoszenzitizáló prekurzor beadása (aminolevulinsav, ALA). 2. Néhány órás inkubációs idő. Ez alatt az ALA protoporhyrin IX-é alakul. 3. A célterület megvilágítása diódalézerrel (néhány perc). 4. Protoporphyrin abszorbeál -> gerjesztett szinglett állapot -> triplett állapot -> energiatranszfer triplett oxigénnel -> gerjesztett, reaktív oxigén -> szöveti reakció 5. Néhány napon belül a terület elhal, leválik. : Kulcsszavak Mi kell a lézerműködéshez? Kényszerített emisszió Populáció inverzió Pumpálás Optikai rezonancia Milyen a lézerfény? Monokromatikus Koherens Nagy teljesítményű