Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV
Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 69 7. 86 90. Amíg a 0-nél kisebb számok fogalma a különböző konkrét tapasztalatok absztrakciójaként induktív úton alakult ki a gyermekekben, addig a kétjegyű számok fogalmát alapvetően deduktív úton, a korábban tanultak alkalmazásával alakíthatjuk ki. Ugyanakkor most is szükség van sokoldalú szemléltetésre (játékpénz, golyós számológép, számegyenes stb.). Fontos azonban, hogy ezek a szemléltetések valamilyen módon tükrözzék a kétjegyű szám képzésének gondolatmenetét, a helyiértékes írásmód lényegét. Ne feledkezzünk meg a sorszám, a számszomszédok, a páros és páratlan számok fogalmának általánosításáról sem. Tk. 84/., 85/5. feladat: A képek segítségével a 0 és 0 közötti számokkal ismerkednek a tanulók. Felelevenítjük és általánosítjuk a sorszám fogalmát. Tudatosítsuk, hogy a kétjegyű számokat felírhatjuk a 0 és egy egyjegyű szám összegeként. A korcsolyázók száma: 0 + = 0 áll, elesett. A hóember körül állók: 0 + 5 = 5 0 a körben, 5 a körön kívül. A szánkózók száma: 0 + 6 = 6 0 ül a szánkón, 6 nem. 0 + = 0 ül a szánkón, leesett. 0 + 4 = 4 0 ül a szánkón, 4 húzza. Felismertetjük, hogy a tanult kétjegyű számok nagyobbak (mennyivel nagyobbak) 0-nél. Tk. 84/. megoldása: 0 gyerek vesz részt a síversenyen. Tk. 84/. megoldása: 4. helyen: -as. helyen: 0-es 0. helyen: -es versenyző áll. Tk. 84/. megoldása: 0 + = 0 0 + 5 = 5 0 + 6 = 6 Tk. 85/5. megoldása: 0 0 5 5 0 6 0 0 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 84/4. feladat: A számegyenes használatát kiterjesztjük úgy, hogy bejárjuk a 0-as számkört. Figyeltessük meg az analógiákat a 0 és 0 közötti számok, illetve a 0 és 0 közötti számok között. Az ilyen típusú feladatok olyan szemléleti alapot nyújtanak a szám- és műveletfogalom kialakításához, amelyre később is jól építhetünk. Ezért ha szükséges, akkor adjunk fel további feladatokat a számegyenessel kapcsolatosan. Tk. 85/6. feladat: Elevenítsük fel, hogy a 0 páros szám (például a szánkón ülő gyerekekkel szemléltethető). A páros és páratlan szám fogalmának általánosításakor a szemléletre támaszkodva azt sejtetjük meg a gyermekekkel, hogy a tíz (páros szám) és egy másik páros szám összegeként páros számot kapunk, a tíz és egy páratlan szám összegeként páratlant. Tk. 85/7. feladat: Tájékozódás a térben. A korábban tanultak felelevenítése. Citromsárga ruhás, barna ruhás, narancssárga ruhás gyereket kell színezni. Tk. 86/. feladat: A kétjegyű számok értelmezését többféleképpen szemléltetjük. Figyeltessük meg a helyiértékes írásmód lényegét. A biztos számfogalom kialakulása érdekében adjunk fel további feladatokat úgy, hogy minél többféle alakban találkozzanak a tanulók a kétjegyű számokkal. Tk. 87/. feladat: Figyeljük meg, hogy minden tanuló képes-e elszámlálni 0-tól 0-ig. Adjunk feladatokat 0-tól 0-ig visszafelé történő számlálásra is. Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 87/. feladat: Játékos feladat a sorszám fogalmának kiterjesztésére. Tk. 87/. feladat: A kisebb, nagyobb fogalmak általánosításához a tankönyvi feladatokon túl adjunk fel sok szemléletes feladatot is. 5 > 4 < 9 < 0 > 7 = 7 Tk. 87/4. feladat: A 0-hez adjuk hozzá az egyjegyű számokat és a 0-et. Ismertessük fel: A 0 és 0 közötti számok felírhatók a 0 és egy egyjegyű szám összegeként. Mivel a 0 páros, ezért elegendő az egyeseket vizsgálni, hogy párosak, illetve páratlanok-e. Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 88/. feladat: Szerezzenek tapasztalatot a tanulók arról, hogy a paritásság megállapításához elég, ha csupán az egyesek helyén álló számot vizsgáljuk. Ehhez ismételten elevenítsük fel a következőket: A 0 páros szám. Ha ehhez páros számot adunk, akkor páros, ha páratlan számot adunk, akkor páratlan számot kapunk. Ezért, ha az egyesek helyén páros szám áll, maga a szám is páros, ha az egyesek helyén páratlan szám áll, maga a szám is páratlan. Tk. 88/. megoldása: 0 forint Igen 6 forint Igen forint Nem 9 forint Nem 5 forint Nem 0 forint Igen Tk. 88/. megoldása: Tk. 88/. feladat: A számegyenesen történő lépegetéssel, a sorozat folytatásával újra bejárjuk a 0-as számkört. Adjunk szóban is hasonló feladatot növekvő, illetve csökkenő sorozat alkotására. Ismét figyeltessük meg a számok elhelyezkedését, egymáshoz való viszonyát, paritásságát. 0 4 6 8 0 4 6 8 0 5 7 9 5 7 9 0 6 9 5 8 Tk. 88/4. feladat: Két szempont (egyjegyű kétjegyű; páros páratlan) egyidejű figyelembevételével kell csoportosítani, rendezni a számokat. Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 89/. feladat: A számfogalom mélyítését segítő feladatsor. Figyeltessük meg, hogy a számegyenesen a páros, illetve a páratlan számokat más szín jelöli. 6 7 8 9 6 7 8 9 8 6 4 0 4 6 8 0 9 7 5 7 9 9 0 4 Tk. 89/. feladat: Analógiák segítségével általánosíthatjuk a kisebb és nagyobb számszomszéd, illetve a páros és páratlan számszomszédok fogalmát. Külön figyeltessük meg a 0 szomszédait, illetve a 9 és a páratlan szomszédait. A feladatban a színek segítséget nyújtanak a megoldás megkeresésében. A 0 kisebb szomszédjára csak akkor térjünk ki, ha a tanulók egy része utal rá. Megbeszélhetjük, hogy ezt később fogják tanulni. Gy. 9/. feladat: Kétjegyű számok tízesre és egyesekre bontásával találkoznak a tanulók a pénzhasználathoz kapcsolva. Figyeltessük meg az analógiát a két sor között. < 5 > > < 4 = 4 < 5 > > < 4 = 4 Gy. 9/. feladat: Bontott alakban felírt számok helyét kell megkeresni a számegyenesen, ezzel bejárjuk a 0-as számkört. Beszéljük meg, hogy egy számot többféleképpen is felírhatunk. Gy. 9/. feladat: Szerezzenek tapasztalatot a tanulók a páros, illetve a páratlan számok felismerésében. Ismét figyeltessük meg, hogy a páros számú értékek kifizethetők csupa 4 Scherlein Hajdu Köves Novák: Matematika. Program
kétforintossal ( többszörösei), a páratlan számúak pedig nem fizethetők ki (-nek nem többszörösei). Kifizethető csupa kétforintossal: 0 Ft, Ft, 6 Ft, 8 Ft. Gy. 9/4., 96/. feladat: A kisebb, nagyobb fogalmak általánosításához a tankönyvi feladatokon túl adjunk fel sok szemléletes feladatot is. Gy. 9/4. megoldása: 6 < 8 6 < 8 6 < 8 6 > 8 Gy. 96/. megoldása: 5 < 6 8 > 6 < 0 7 = 7 4 < 0 5 < 6 8 > 6 < 0 7 = 7 4 > 0 5 < 6 8 < 6 < 0 7 < 7 4 < 0 5 > 6 8 > 6 > 0 7 > 7 4 < 0 Gy. 94/. feladat: A számegyenesen lépegetéssel bejárjuk a 0-as számkört. Vetessük észre az analógiákat a 0 és 0, illetve 0 és 0 közötti számok képzése, elhelyezkedése között. Gy. 94/. megoldása: 5 5 0 0 Gy. 94/. megoldása: 7 7 5 5 0 0 Gy. 95/. feladat: A 0 és 0 közötti számoknál már megfigyeltük, ha páros számmal (páratlan számmal) kezdődik a sorozat, és mindig -vel nő vagy csökken, akkor a sorozat minden eleme páros szám (páratlan szám). Ezt a tapasztalatot kiterjesztjük a 0 és 0 közötti számokra is. 6 0 4 8 0 4 8 6 0 7 5 9 5 9 7 8 4 0 6 0 6 8 4 0 Scherlein Hajdu Köves Novák: Matematika. Program 5
7 9 5 9 5 7 ( ) Gy. 95/., 96/., 4 feladat: Két szempont (egyjegyű kétjegyű; páros páratlan) egyidejű figyelembevételével kell csoportosítani, rendezni a számokat. Gy. 95/. megoldása: Gy. 95/. megoldása: Egyjegyű számok Kétjegyű számok Páros számok 0,, 4, 6, 8 0,, 4, 6, 8 Páratlan számok,, 5, 7, 9,, 5, 7, 9 Gy. 96/. megoldása: 6 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 96/4. megoldása: Gy. 96/. feladat: A számfogalom mélyítését segítő feladatsor. Figyeltessük meg, hogy a számegyenesen a páros, illetve a páratlan számokat más szín jelöli. A 0-nál nem kisebb (nagyobb vagy egyenlő vele) számok közé a 0 is beletartozik. Beszéljük meg, mi a különbség a nem kisebb kapcsolat és a nagyobb kapcsolat között. a =8 b = c =6 d =0 a-nál nagyobb egyjegyű számok: 9 b-nél nagyobb páros számok: 4, 6, 8, 0 c-nél kisebb kétjegyű számok: 5, 4,,,, 0 d-nél nem kisebb páros számok: 0 Gy. 97/ 4. feladat: Analógiák segítségével általánosíthatjuk a kisebb és nagyobb számszomszéd, illetve a páros és páratlan számszomszédok fogalmát. Gy. 97/. megoldása: egyes szomszédai 0 4 5 6 7 8 9 0 4 5 6 7 8 9 0 páros szomszédai 0 4 5 6 7 8 9 0 4 5 6 7 8 9 0 páratlan szomszédai 0 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Gy. 97/. megoldása: A szám kisebb szomszédja 7 9 8 0 0 A szám 8 4 0 9 A szám kisebb szomszédja 9 4 4 5 0 Gy. 97/. megoldása: szomszédait, páros szomszédait, páratlan szomszédait < 4 < 5 < 4 < 6 < 4 < 5 < 4 < 5 < 4 < 6 < 4 < 5 Scherlein Hajdu Köves Novák: Matematika. Program 7
< < < < < 5 < 6 4 < 5 < 6 8 < 9 < 0 8 < 9 < 0 Gy. 97/4. megoldása: 0 < < 4 0 < < 4 4 < 5 < 6 4 < 5 < 6 8 < 9 < 0 8 < 9 < 0 < < < < < 5 < 7 < 5 < 7 7 < 9 < 7 < 9 < 0 0 0 Összeadás és kivonás a 0 átlépése nélkül Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 7 76. 9 95. Az összeadás fogalmának kiterjesztése a 0 és 0 közötti számokra, illetve a kétjegyű szám mint 0-nek és egy egyjegyű számnak az összege. A kivonás fogalmának kiterjesztése a 0 és 0 közötti számokra, 0-nál kisebb kétjegyű számból a tíz, illetve egyesek elvétele. Tk. 90/.,. feladat: Az összeadás fogalmának kiterjesztése a 0 és 0 közötti számokra, illetve a kétjegyű szám mint 0-nek és egy egyjegyű számnak az összege. Figyeltessük meg a tagok felcserélhetőségét. Hasonló feladatokat adjunk a tanulóknak, amelyekben eszközzel (korong, pálcika, számegyenes stb.) modellezzék a műveletet. Tk. 90/. megoldása: 0 + = 0 + = 0 + 8 = 8 + 0 = + 0 = 8 + 0 = 8 Tk. 90/. megoldása: 0+7=7 7+0=7 Tk. 90/., 4. feladat: A kivonás fogalmának kiterjesztése a 0 és 0 közötti számokra, 0-nál kisebb kétjegyű számból a tíz, illetve egyesek elvétele. A feladat feldolgoztatásával tartalmilag elmélyítjük a kétjegyű szám fogalmát. Eszközzel (korong, pálcika, számegyenes stb.) modellezzék a műveleteket. 8 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 90/. megoldása: =0 =0 8 8=0 0= 0= 8 0=8 Tk. 90/4. megoldása: 7 7=0 7 0=7 Tk. 90/5. feladat: Hasonló típusú összeadások és kivonások gyakorlása elvezet az összeadás és kivonás fogalmának általánosításához és a kétjegyű szám fogalmának elmélyítéséhez. Figyeltessük meg az összeg tagjainak felcserélhetőségét, valamint a műveletek közti kapcsolatot. 0 + 5 = 5+0= 5 5 = 5 0= 0 + 4 = 4+0= 4 4 = 4 0= 0 + 6 = 6+0= 6 4 = 6 0= 0 + 0 = 0 0= Tk. 9/. feladat: Az összeadás értelmezésének kiterjesztése a 0-as számkörre. Az összefüggések, analógiák megfigyeltetése. Több hasonló feladatot adjunk a tanulóknak. Tk. 9/. megoldása: + 5= 8 + 6= 7 + 5 = 8 + 6 = 7 + 5 = 8 + 6 = 7 Tk. 9/. megoldása: 5+ = 8 5+ =8 5+=8 4+ 4= 8 4+ 4=8 4+4=8 Tk. 9/. megoldása: +7= 8 +7=8 Tk. 9/. feladat: A kivonás értelmezésének kiterjesztése a 0-as számkörre. Az összefüggések, analógiák megfigyeltetése. Több hasonló feladatot adjunk a tanulóknak. Tk. 9/. megoldása: 8 6= 7 4= 8 6= 7 4= 8 6= 7 4= Tk. 9/. megoldása: 8 =5 8 =5 8 = 5 9 5=4 9 5=4 9 5= 4 Scherlein Hajdu Köves Novák: Matematika. Program 9
Tk. 9/. feladat: Szöveg értelmezése, Szöveg alapján egyenlet írása, az összeadás és kivonás szemléltetése számegyenesen lépegetéssel. 5 5 = 0 5 + 5 = 0 5 0 = 5 7 4 = 7 + = 0 7 4 = Tk. 9/. feladat: Szöveges feladatok megoldása: Az adatok kigyűjtése rajzkiegészítéssel, színezéssel (a szöveg elemi információtartalmának megértését igazolja). A számolási terv leírása. A számolás elvégzése. Egész mondatos válasz. Tk. 9/. megoldása: málnát kell rajzolni Dömi kosarába. 0 + 7 = 7 7 málnát gyűjtöttek. Tk. 9/. megoldása: 7 0 = 7 0 + 7 = 7 0 süteményt ettek meg. Gy. 98/. feladat: Többtagú összeg, illetve az összeg helyének meghatározása 0-as számkörben. Először végezzék el a tanulók az összeadást, majd írják be az összeget a keretbe, majd kössék össze a számot a számegyenes megfelelő pontjával. Gy. 98/. feladat: Tapasztalatszerzés: a valamennyivel több, valamennyivel kevesebb relációk kapcsolata a kétjegyű szám fogalmával, illetve az összeadással és a kivonással. Gy. 98/. megoldása: 0 0 5 5 0 0 + = 0 + 5 = 5 0 + = Gy. 98/. megoldása: 4 4 0 7 7 0 6 6 0 4 4 = 0 7 7 = 0 6 6 = 0 Gy. 98/4. feladat: Az összeadás fogalmának kiterjesztése a 0 és 0 közötti számokra, illetve a kétjegyű szám mint 0-nek és egy egyjegyű számnak az összege. Figyeltessük meg a tagok felcserélhetőségét. 0 + 4 = 4 0 + 7 = 7 0 + = 0 + 6 = 6 4 + 0 = 4 7 + 0 = 7 + 0 = 6 + 0 = 6 40 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 98/5. feladat: A kivonás fogalmának kiterjesztése a 0 és 0 közötti számokra, 0- nál kisebb kétjegyű számból a tíz, illetve egyesek elvétele. A feladat feldolgoztatásával tartalmilag elmélyítjük a kétjegyű szám fogalmát. Eszközzel (korong, pálcika, számegyenes stb.) modellezzék a műveleteket. Gy. 99/. feladat: Szöveges feladat megoldása: Az adatok kigyűjtése színezéssel (a szöveg elemi információtartalmának megértését igazolja). Az összehasonlítás elvégzése. Gy. 99/. feladat: A kétjegyű számokat itt is többféleképpen szemléltetjük, felbontjuk tízesek és egyesek összegére. Gyakoroltatjuk a helyiértékes írásmódot. Gy. 99/ 4. feladat: Tapasztalatszerzés: a valamennyivel több, valamennyivel kevesebb relációk kapcsolata a kétjegyű szám fogalmával, illetve az összeadással és a kivonással. Gy. 99/. megoldása: 0 6 0 6 0 0 0 0 6 6 0 0 7 7 0 9 0 9 0 0 0 0 0 0 7 0 7 0 9 9 0 0 0 0 0 0 Scherlein Hajdu Köves Novák: Matematika. Program 4
Gy. 99/4. megoldása: Gy. 00/. feladat: Az összeadás szemléltetése számvonalon, számegyenesen lépegetéssel. Figyeltessük meg az analógiákat. + 6 = 8 + 6 = 8 + 6 = 8 + 4 = 7 + 4 = 7 + 4 = 7 Gy. 00/. feladat: Az összeadás értelmezésének kiterjesztése a 0-as számkörre. Az összefüggések, analógiák megfigyeltetése. Több hasonló feladatot adjunk a tanulóknak. Gy. 00/. megoldása: +=5 +=5 +=5 +4=7 +4=7 +4=7 4+5=9 4+5=9 4+5=9 Gy. 00/. megoldása: 5+=7 4+5=9 +7=8 6+4=0 +5=7 5+4=9 7+=8 4+6=0 5 + = 7 4 + 5 = 9 + 7 = 8 6 + 4 = 0 + 5 = 7 5 + 4 = 9 7 + = 8 4 + 6 = 0 Gy. 0/. feladat: Az összeadás szemléltetése számvonalon, számegyenesen lépegetéssel. Figyeltessük meg az analógiákat. 9 4 = 5 9 4 = 5 9 4 = 5 8 6 = 8 6 = 8 6 = Gy. 0/. feladat: A kivonás értelmezésének kiterjesztése a 0-as számkörre. Az összefüggések, analógiák megfigyeltetése. Több hasonló feladatot adjunk a tanulóknak. Gy. 0/. megoldása: 6 =4 6 =4 6 =4 7 5= 7 5= 7 5= 4 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 0/. megoldása: a) 8 =6 9 6= 6 4= 0 7= 8 6= 9 =6 6 =4 0 =7 b) 8 =6 9 6= 6 4= 0 7= 8 6= 9 =6 6 =4 0 =7 c) 8 =6 9 6= 6 4= 0 7= 8 6= 9 =6 6 =4 0 =7 Gy. 0/. feladat: A valamennyivel több és a valamennyivel kevesebb relációk alkalmazása a 0-as számkörben. Figyeltessük meg e két reláció kapcsolatát egymással, illetve az összeadással és a kivonással. Fontos, hogy sok különböző példát hozzunk, és sokféleképpen szemléltessük ezeket a kapcsolatokat. 5 8 0 6 6 0 7 4 5 8 0 6 6 0 7 4 5 8 0 6 6 0 7 4 Gy. 0/. feladat: Analóg számítások a 0-nál nem nagyobb számok körében a 0-es számkörben kialakított számolási rutin alkalmazásával. A számolási rutin fejlesztése. Gy. 0/. megoldása: 6 8 9 6 8 9 6 8 9 8 9 9 8 9 9 8 9 9 Gy. 0/. megoldása: 0 0 0 Gy. 0/4. feladat: Az analóg számításokban az összeg, illetve a különbség változásait figyeltetjük meg. Természetesen még nem várhatjuk el, hogy a tanulók megfogalmazzák ezeket az összefüggéseket, de ezek lényegét már felismerhetik. Például: 0-zel nagyobb számot adtunk hozzá ugyanahhoz a számhoz, ezért az eredmény is 0-zel nagyobb lett. 0-zel nagyobb számból vontuk ki ugyanazt a számot, ezért az eredmény is 0-zel nagyobb lett. 0-zel nagyobb számot vontunk ki ugyanabból a számból, ezért az eredmény 0-zel kisebb lett. Scherlein Hajdu Köves Novák: Matematika. Program 4
0-zel nagyobb számhoz 0-zel kisebb számot adunk, az eredmény nem változik. 0-zel nagyobb számból 0-zel nagyobb számot vonunk ki, az eredmény nem változik. +4 } {{ } 7 5+ } {{ } 7 } {{ + 6 } 7 +5 } {{ } 8 0 +4 } {{ } 7 0 5 + } {{ } 7 = +6 } {{ } 7 = +5 } {{ } 8 7 5 } {{ } 9 8 } {{ } } {{ } 6 5 } {{ } 0 7 5 } {{ } = 9 8 } {{ } 0 } {{ } 0 6 5 } {{ } Gy. 0/. feladat: Az összeadás és a kivonás gyakorlása, függvénytáblázat kitöltése felismert szabály (kétféle összeg-, illetve kétféle különbségalakban írhatjuk fel) alapján. a + b = c; b + a = c; c a = b; c b = a A konkrét műveletek kapcsán figyeltessük meg az összeg tagjainak felcserélhetőségét, a két kivonás, az összeadás és a kivonás kapcsolatát, illetve az összeg, különbség változásait. a 6 6 6 4 4 4 4 4 4 b 7 7 7 5 5 5 c 8 8 8 8 8 8 9 9 9 7 7 7 Gy. 0/. feladat: A számolási rutin fejlesztésére a műveletek gyakorlására szánt feladatsor. 4 8 8 4 8 8 4 8 8 Gy. 0/. feladat: A valamennyivel több, valamennyivel kevesebb relációk kapcsolata a kétjegyű szám fogalmával, illetve az összeadással és a kivonással. Gy. 0/4. feladat: Az összeadás és a kivonás kapcsolatának megfigyelése. Egy-egy oszlopban az analógiákat ismerhetik fel a tanulók. 44 Scherlein Hajdu Köves Novák: Matematika. Program
+5 8 5 +4 4 6 7 5 + 9 + 6 +5 5 8 +4 4 6 7 + 5 9 + 6 +5 5 8 +4 4 6 7 5 + 9 + 6 Gy. 04/. feladat: Szöveges feladatok megoldása: Az adatok kigyűjtése rajzkiegészítéssel, színezéssel (a szöveg elemi információtartalmának megértését igazolja). A számolási terv leírása. A számolás elvégzése. Egész mondatos válasz. Gy. 04/. megoldása: répát rajzolni kell. 5 + = 8 8 répája lett. salátát át kell húzni. 5 = salátája maradt. Gy. 04/. megoldása: Az első ládában 0, a másodikban 5 körtét kell kiszínezni. 0 5=5 0 + 5 = 5 5 körte van összesen. céklát rajzolni kell. 0 =7 0 + 7 = 7 7 cékla van összesen. Gy. 04/. feladat: Az összeadás és a kivonás gyakorlása: sorozat folytatása felismert szabály alapján. A 0 és 0 közötti számok bejárása. 0 +5 +5 +5 5 7 4 9 0 6 +4 6 +4 6 4 8 6 0 0 + + + 4 5 0 8 + 7 8 + 7 8 9 8 0 Scherlein Hajdu Köves Novák: Matematika. Program 45
Összeadás a 0 átlépésével Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 77 80. 96 00. Ezeken az órákon kezdjük el a számolást a tíz átlépésével. A megfelelő számolási rutin kialakítása több hónapot vesz igénybe. Ne ragaszkodjunk egy adott számolási eljáráshoz. Mielőtt az itt bemutatott számolási terveket megbeszélnénk, hagyjuk, hogy a gyermekek saját maguk ismerjenek fel minél többféle összefüggést és eljárást az eredmények meghatározására. Ugyanakkor a vizsgálatok szerint a tanulóknak mintegy egyharmada, egynegyede nem képes önállóan saját számolási tervet kitalálni. Ezeknél a gyermekeknél törekednünk kell arra, hogy legalább a hagyományos számolási algoritmust sajátítsák el, és legyenek képesek azt biztosan alkalmazni. A matematikai gondolkodásnak két fontos alappillére van: Az egyik a rugalmasság, ötletgazdagság. Ezt a tulajdonságot fejlesztjük, amikor elvárjuk, hogy a tanulók minél többféle egyéni ötlet alapján dolgozzanak. A másik alappillér a fegyelmezett algoritmikus gondolkodás. Az algoritmikus gondolkodásra végig szükség van nemcsak a matematikatanulás során, hanem az élet sok más területén is. A hagyományos tízesátlépés az első komolyabb matematikai algoritmus, amellyel találkozik a tanuló. Ezért javasoljuk, hogy miután sokféle megoldási tervet már felfedeztek, ismerjék meg a tanulók ezt a számolási modellt is. Tk. 94/ 4. feladat: A tízesátlépés algoritmusának megfigyeltetése, begyakoroltatása eszköz segítségével. Tk. 94/. megoldása: -höz adunk először 8-at (ezt már tudniuk kell a tanulóknak), majd 9-et. A második esetben az eredmény -gyel több lesz mint az elsőben. A számlétrán le is lépegethetik a kijelölt műveleteket. Ha a gyemek a mienktől különböző helyes algoritmust talál a műveletek elvégzésére örüljünk ennek, és engedjük azt alkalmazni. Tk. 94/. megoldása: -hoz adunk 7-et, 8-at, majd 9-et. A piros színű golyók elhelyezkedése mutatja a tízesátlépés menetét: ( + 7 + ) 46 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 94/. megoldása: 4-hez adunk 6-ot, 7-et, 8-at, majd 9-et. Itt is a piros téglalapok mutatják a számolás menetét. (4 + 6 + ) Tk. 94/4. megoldása: 5-höz adunk 5-öt, 6-ot, 7-et, 8-at, 9-et. Figyeljük meg, megértették-e a tanulók a számolás menetét, azt, hogy először 0-re egészítjük ki a számot, majd innen lépünk tovább. (5 + 5 + ) Tk.95/ 4. feladat: Egy másik számolási algoritmust mutatunk be, amikor különböző számokhoz ugyanazt a számot adjuk, és az összeg változásait figyeljük meg. Korábban már sok tapasztalatot szereztek a tanulók az összeadásban a tagok és az összeg változásairól, most ezeket a tapasztalatokat használhatjuk fel a művelet elvégzése során. Tk. 95/. megoldása: 8-hoz, 9-hez, 0-hez adunk -t. 8-hoz és 0-hez könnyen tudnak -t adni a gyerekek, s e két összeg között van 9 + összege. Tk. 95/. megoldása: 7-hez, 8-hoz, 9-hez, 0-hez adunk -t. A golyók színezése segíti a megoldást. Tk. 95/. megoldása: 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez adunk 4-t. Az ábra segít a számolásban. Megfigyeltetjük például: 6+4 7+4 0+4 9+4 Tk. 95/4. megoldása: 5-höz, 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez adunk 5-öt. Scherlein Hajdu Köves Novák: Matematika. Program 47
Tk. 96/. feladat: Folytatjuk a tízesátlépés algoritmusának gyakorlását. 6-hoz, 7-hez adunk egyjegyű számot úgy, hogy az összeg legalább 0 legyen. Tk. 96/. megoldása: A gyöngyök színezése segít az algoritmus menetének követését. Tk. 96/. megoldása: A számegyenesen történő lépegetéssel tesszük szemléletessé a számolás menetét. Először az első tagot egészítjük ki 0-re, amennyivel kiegészítettük azt kivonjuk a második tagból, végül ezt a maradékot adjuk hozzá 0-hez. Ez lesz az eredmény. (7 + + ) Tk. 97/. feladat: Ezekben a feladatokban különböző számokhoz ugyanazt a számot adva figyeljük az összeg változásait. Tk. 97/. megoldása: 4-hez, 5-höz, 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez adunk 6-ot. A színezés folytatásával szemléltetjük az összeg változásait. Tk. 97/. megoldása: -hoz, 4-hez, 5-höz, 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez adunk 7-et. Itt is a színezés segíthet a változás megfigyelésében. Tk. 98/. feladat: Az összeadás gyakorlása a 0 átlépésével a tízes-átlépés algoritmusának alkalmazásával. Tovább folytatjuk a tízesátlépés algoritmusának megtanítását. 48 Scherlein Hajdu Köves Novák: Matematika. Program
8-hoz, 9-hez adunk 0-nél nem nagyobb számokat úgy, hogy az összeg legalább 0 legyen. Tk. 98/. megoldása: A színezés segít a számolási menet megértésében. (8 + + ) Tk. 98/. megoldása: A MATANDA golyós számoló szemléletessé teszi a tízesátlépés menetét. (9 + + ) Tk. 99/. feladat: Ismét azt figyeltetjük meg, hogy különböző számokhoz ugyanazt a számot adva hogyan változik az összeg. Tk. 99/. megoldása: -höz, -hoz, 4-hez, 5-höz, 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez adunk 8-at. A színezés szemléletessé teszi az összeg változását. Tk. 99/. megoldása: -hez, -höz, -hoz, 4-hez, 5-höz, 6-hoz, 7-hez, 8-hoz, 9-hez, 0-hez 9-et adunk. Gy. 05/. feladat:. Most 0-től -gyel lépünk csak tovább, s -ig kel kiegészíteni a rajzot, leírni a megfelelő műveletet. 6+5= 9+= 7+4= 8+= 5+6= +9= 4+7= +8= Scherlein Hajdu Köves Novák: Matematika. Program 49
Gy. 05/., 06/. feladat: Az összeadásnál a tízesátlépés algoritmusának gyakorlására szánt feladatsorok. Gy. 05/. megoldása: +0= +8= 9 +9= 0 +0= +8= 0 +9= { }} { + 8+ +7= 0 4+6= 0 5+5= 0 6+4= 0 7+= 0 8+= 0 9+= 0 Gy. 06/. megoldása: +8= { }} { +9= { }} { + 7+ + 7+ 4+8= { }} { 4+9= { }} { 4+ 6+ 4+ 6+ 5+8= { }} { 5+9= { }} { 4 5+ 5+ 5+ 5+ 4 6+8= { }} { 4 6+9= { }} { 5 6+ 4+ 4 6+ 4+ 5 7+8= { }} { 5 7+9= { }} { 6 7+ + 5 7+ + 6 8+8= { }} { 6 8+9= { }} { 7 8+ + 6 8+ + 7 9+8= { }} { 7 9+9= { }} { 8 9+ + 7 9+ + 8 4 5 0 + 8 + +9 0 + 6 + +7 0 + 5 + +7 4 5 0 + 7 + +9 0 + 6 + +9 0 + 5 + +6 4 5 0 + 7 + +8 0 + 6 + +8 0 + 5 + +8 50 Scherlein Hajdu Köves Novák: Matematika. Program
6 7 8 9 0 + 4 + +5 0 + + +5 0 + + +4 0 + + + 6 7 8 9 0 + 4 + 5 +9 0 + + 5 +8 0 + + 6 +8 0 + + 4 +5 5 5 6 4 6 7 8 9 0 + 4 + 4 +8 0 + + 6 +9 0 + + 7 +9 0 + + 8 +9 Gy. 07/. feladat: Egy adott számhoz különböző számokat adva az összeg változásait figyeltethetjük meg. 4 6 7 8 + 8 = 0 + 0 = + 7 = 0 + = 5 +9= +5=7 +9= +8= 4 + 6 = 0 4 + 0 = 4 5 + 5 = 0 5 + = 6 4+8= 4+9= 5+8= 5+7= 4+7= 4+4=8 5+6= 5+9=4 6 + 4 = 0 6 + = 8 7 + = 0 7 + = 9 6+8=4 6+7= 7+5= 7+8=5 6+5= 6+6= 7+7=4 7+6= 6+9=5 6+4=0 7+9=6 7+4= 8+=0 8+7=5 9+=0 9+9=8 8+6=4 8+= 9+4= 9+= 8+5= 8+4= 9+6=5 9+= 8+8=6 8+0=8 9+7=6 9+5=4 8 + 9 = 7 8 + = 0 9 + 8 = 7 9 + 0 = 9 Scherlein Hajdu Köves Novák: Matematika. Program 5
Gy. 07/. feladat: A két szöveges feladat megoldása után hasonlítsuk össze az eredményeket. Itt is az összeg változását figyeltetjük meg. 6 Ft-ot ki kell színezni. 9+6=5 5 forintja lett. 4 Ft-ot ki kell színezni. 9+4= forintja lett. Gy. 08/. feladat: Azt figyelhetjük meg, hogy két azonos tag összege mindig páros szám, két szomszédos egész szám összege páratlan szám. Gy. 08/. megoldása: Gy. 08/. megoldása: Gy. 08/. feladat: Két egyenlő tag összegéből kiindulva alkalmazhatjuk az összeg változásairól tanultakat. 5 + 5 = 0 + 4 + + + 5 + 9 = 4 5 + 6 = 5 + 8 = 5 + 7 = 6 + 6 = + + + 8 + 6 = 4 5 + 6 = 7 + 6 = 9 + 6 = 5 7 + 7 = 4 + + 7 + 8 = 5 5 + 7 = 7 + 6 = 9 + 7 = 6 5 Scherlein Hajdu Köves Novák: Matematika. Program
8 + 8 = 6 + 4 8 + 9 = 7 8 + 7 = 5 6 + 8 = 4 8 + 4 = 0 + 0 = 0 4 6 8 9 + 9 = 8 8 + 8 = 6 7 + 7 = 4 6 + 6 = Kivonás a 0 átlépésével Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 8 84. 0 05. Tk. 00/., 0/. feladat: Ezekben a feladatokban megfigyeltethetjük a kisebbítendő és a kivonandó változását. Tk. 00/. megoldása: 0-ből, -ből, -ből, -ból -t veszünk el. 0 =8 =9 =0 = Tk. 00/. megoldása: 0-ből, -ből, -ből, -ból -at veszünk el. 0 =7 =8 =9 =0 Tk. 00/. megoldása: 0-ből, -ből, -ből, -ból 4-et veszünk el. 0 4=6 4=7 4=8 4=9 Tk. 0/. feladat: 0-ből, -ből, -ből, -ból, 4-ből, 5-ből 5-öt veszünk el. 0 5=5 5=6 5=7 5=8 4 5=9 5 5=0 Scherlein Hajdu Köves Novák: Matematika. Program 5
Tk. 0/. feladat: 0-ből, -ből, -ből, -ból, 4-ből, 5-ből, 6-ból 6-ot veszünk el. 0 6 = 4 6 = 5 6 = 6 6 = 7 4 6 = 8 5 6 = 9 6 6 = 0 Tk. 0/. feladat: 0-ből, -ből, -ből, -ból, 4-ből, 5-ből, 6-ból, 7-ből 7-et veszünk el. 0 7 = 7 = 4 7 = 5 7 = 6 4 7 = 7 5 7 = 8 6 7 = 9 7 7 = 0 Tk. 0/. feladat: 0-nál kisebb kétjegyű számokból 8-at elvéve a különbség változását figyelhetjük meg. A számolás során a tízesátlépést gyakoroltathatjuk. Például 5-8 esetében a 8-at olyan kéttagú összegre bontjuk, amelynek egyik tagja 5, ezt elvéve 5-ből 0-et kapunk, ebből -at elvéve kapjuk a 5-8 eredményét, a 7-et. Tk. 0/. feladat: 0-nál kisebb kétjegyű számokból 9-et elvéve a különbség változását figyelhetjük meg. 0 9 = 9 = 9 = 9 = 4 4 9 = 5 5 9 = 6 6 9 = 7 7 9 = 8 8 9 = 9 9 9 = 0 54 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 04/. feladat: A kivonás gyakorlása a tízesátlépés algoritmusának alkalmazásával. Tk. 04/. feladat: A számegyenesen történő lépegetéssel a tízesátlépés menetét figyeltethetjük meg. Először eljutunk 0-ig, majd innen lépünk tovább. Tk. 05/. feladat: Szöveges feladatok megoldása során az összeg, illetve különbség változásait figyelhetjük meg. Tk. 05/. megoldása: 6 csontot rajzolni kell. 6 + 6 = csontja lett. 7 csontot rajzolni kell. 6 + 7 = csontja lett. 7 csontot rajzolni kell. 7 + 7 = 4 4 csontja lett. Tk. 05/. megoldása: 0 répát át kell húzni. 6 0 = 6 6 répája maradt. Scherlein Hajdu Köves Novák: Matematika. Program 55
9 répát át kell húzni. 6 9 = 7 7 répája maradt. 8 répát át kell húzni. 6 8 = 8 8 répája maradt. Tk. 05/. megoldása: 0 = 9 9 Ft-ba került az alma. 5 9 = 6 6 Ft-ja maradt. Gy. 09/. feladat: Először egészítsék ki a képet a tanulók, majd csak ezután írjanak kivonást róla. 0 9= 6 5= = 8 7= 0 =9 6 =5 = 8 =7 Gy. 09/. feladat: A kivonásnál a tízesátlépés algoritmusának gyakorlására szánt feladatsorok. Gy. 09/. feladat: A kisebbítendő és a különbség változását figyeltethetjük meg. Gy. 0/. feladat: A kivonás gyakorlása a 0 átlépésével, a tízesátlépés algoritmusának alkalmazásával. 56 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. /. feladat: A kivonás gyakorlására, a számolási rutin fejlesztésére készült feladatsor. Gy. /. megoldása: 0 4 6 7 9 0 8 5 Gy. /. megoldása: 4 6 7 8 6 7 8 9 5 7 8 4 5 6 7 5 6 8 9 Scherlein Hajdu Köves Novák: Matematika. Program 57
Gy. /. feladat: A felismert szabály leírása többféle alakban, majd a függvénytáblázat kitöltése. Szabály: a b = c a c = b b + c = a c + b = a a 0 0 6 4 5 7 7 8 b 8 8 9 8 9 6 6 9 8 9 c 7 9 9 4 7 5 4 8 9 8 9 9 Gy. /4. feladat: A két szöveges feladat megoldása után hasonlítsuk össze a különbséget. Itt is a kisebbítendő és a különbség változását figyeltetjük meg. 6 répát át kell húzni. 6 = 6 6 répája maradt. répát rajzolni kell és 6 répát át kell húzni. 6 = 7 7 répája maradt. T U Gy. /. feladat: Az összeadás, kivonás gyakorlása láncszámolással. 8 +6 8 +6 8 +6 7 9 5 7 5 8 +6 8 +6 8 +6 5 7 5 9 6 +8 6 +8 6 +8 7 5 9 7 9 Gy. /. feladat: Az összetett számfeladatok megoldása során jó, ha a részeredményeket a műveleti jel fölé írják a tanulók, így akinek gyengébb a rövidtávú memóriája, ő is boldogulhat a feladattal. 5 8 9 4 8 6 5 Gy. /. feladat: A számolási rutint fejlesztő játékos feladat. A műveletek eredményét kell a nyíllal jelölt megfelelő négyzetbe írni. 0 5+5 7+5 4 5+5 9+5 0 0+5 6+5 5 6 8+5 0+5 4+6 6+6 7+6 0 5+6 4 5 0+6 8+6 9+6 7 +6 6 +7 0 9+7 7 6 +7 5+7 0+7 8 7+7 4 5 8+7 4+7 Gy. /4. feladat: Először számolják ki a tanulók a műveletsorok eredményét, ezután tudják összekötni a műveletek eredményét az ábrában. 58 Scherlein Hajdu Köves Novák: Matematika. Program
Mit mivel mérünk? Kompetenciák, fejlesztési feladatok: rendszerezés, mennyiségi következtetés, becslés, mérés, mértékegységváltás, szövegértés, szövegértelmezés, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, deduktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, feladattartás, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, csoportos, páros, egyéni munkavégzések. Óra: 85. 06 07. Tk. 06/ 4., Gy. /. feladat: A gyermekek szerezzenek tapasztalatokat és ismereteket konkrét mennyiségekről, mérőeszközökről. A feladatokhoz kapcsolódóan mutassunk is be mérőeszközöket. Beszéljük meg, hogy ezekkel az eszközökkel mit mérhetünk. Gy. /. megoldása: Scherlein Hajdu Köves Novák: Matematika. Program 59
Gy. /. megoldása: Gy. /. megoldása: Hosszúságmérés Kompetenciák, fejlesztési feladatok: rendszerezés, mennyiségi következtetés, becslés, mérés, mértékegységváltás, szövegértés, szövegértelmezés, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, deduktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, feladattartás, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, csoportos, páros, egyéni munkavégzések. Óra: 86 88. 08. A hosszúságméréssel kapcsolatos tevékenységek: hosszúságok összehasonlítása, becslése, megmérése, kimérése alkalmi és szabványos mértékegységekkel. Tk. 07/. feladat: A feladatok megoldását előzze meg konkrét távolságok összehasonlítása, megmérése különböző (nem szabvány) egységekkel. Mértékegységként bármelyik színes rudat is használhatjuk. Szerezzenek tapasztalatot a gyermekek például a következőkről: A mérés során azt vizsgáljuk, hogy hányszor helyezhető el a megmérendő távolság mentén az egység. 60 Scherlein Hajdu Köves Novák: Matematika. Program
Ugyanaz az egység nagyobb távolság mentén többször, kisebb távolság mentén kevesebbszer fér el. Ugyanazt a távolságot különböző egységekkel mérve más-más eredményt kapunk. Nagyobb egység kevesebbszer, kisebb egység többször fér el a mérendő távolság mentén. A mérést sokszor nem tudjuk pontosan elvégezni. Az egységek megválasztása függhet attól, hogy mit kívánunk megmérni. Például a terem hosszát inkább lépéssel, a pad hosszúságát inkább arasszal célszerű mérni. Tk. 07/. megoldása: Mackó: lépés Nyuszi: 8 lépés A mackó nagyobbat lép, a nyuszi többet lép. Tk. 07/. megoldása: Egyénileg minden tanuló mérje meg a saját padjának a hosszúságát. Tk. 07/. megoldása: zöldrúd fehér 6 rózsaszín 4 világoskék piros lila Tk. 08/. feladat: Javasoljuk a centiméter és a deciméter fogalmának a bevezetését és alkalmazását. Fontosnak tartjuk, hogy a gyermek úgy is végezzen mérést, hogy a távolságot egy mérőszalag vagy vonalzó skálájához viszonyítsa. A mérőszalag használata, a centiméter és deciméter közti kapcsolat tudatosítása a számfogalmat is elmélyíti. Később elvárjuk, hogy a mérést előzze meg a becslés. Ugyanakkor az elfogadható becslés megtanulásához sok-sok méréses tapasztalatra van szükség. cm cm 9 cm dm=0cm Tk. 08/. feladat: A távolságadatok összeadása, kivonása egyrészt erősíti a számfogalmat és a műveletfogalmat, másrészt a távolságról mint mennyiségről szereznek tapasztalatokat a gyermekek. Megsejthetik a távolságok additivitását, két pont távolságának fogalmát, a háromszög-egyenlőtlenséget stb. A távolságadatok összeadását, illetve kivonását vonalzó vagy mérőszalag segítségével is szemléltethetjük, gyakorolva a mérés technikáját. Zöld út hosszúsága: 9 cm + 5 cm = 4 cm Kék út hosszúsága: cm Piros út hosszúsága: 7 cm + cm + 6 cm = 5 cm A kék út a legrövidebb. Scherlein Hajdu Köves Novák: Matematika. Program 6
Tk. 08/. feladat: A távolságok kimérése előtt a tanulók jelöljék ki a kezdőpontot, ahonnan a mérést kezdik. Figyeljünk a vonalzó helyes használatára. A tanulónak bármely irányban ki kell tudnia mérni a távolságot (nem csak balról jobbra). Ez kezdetben néhány tanulónak gondot okozhat. Tk. 09/ 4. feladat: A mérést minden esetben előzze meg a becslés. Nagyobb távolságok mérésére ajánljuk a méter bevezetését (az ismerkedés szintjén). A gyermekek sokszor lássanak, mutassanak méter, decimétert, centiméter hosszúságokat. A méter és a deciméter egymáshoz való viszonyának elmélyítése egyben a számolási rutin fejlesztése is. Tk. 09/. megoldása: A padod hossza > m. A padod szélessége < m. A lépésed hossza < m. Magasságod > m. GRAFIKA Füzeted hossza < m. Tk. 09/. megoldása: Csoportmunkában lehetőleg minden tanuló gyakorolja a mérést. Tk. 09/4. megoldása: A narancssárga rúd hosszúsága dm. A pad hosszúsága dm = m dm. Gy. 4/. feladat: Hosszúságok becslése, mérése alkalmi egységekkel. Minden tanuló végezzen méréseket, majd hasonlítsuk össze a mért adatokat. Gy. 4/4. feladat: Mérés gyakorlása adott egységgel. Figyeljük meg a mérőszám és mértékegység közti kapcsolatot. Kukori 7-et lép. Hápi 4-et lép. Gy. 4/5. feladat: A mérések során szerzett tapasztalatok alapján fel tudják ismerni a mérőszám és mértékegység közti kapcsolatot. Édesapa nagyobbat lép Petinél. 6 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 5/., 6/., 8/. feladat: Távolságok megmérése, a vonalzó használatának gyakorlása. A mérési adatok összegzése alkalmat ad a számolási rutin elmélyítésére. Gy. 5/. megoldása: a virágtól a fűszál: 5 cm a fűszáltól a gomba: 0 cm a gombától a fűszál: 0 cm a gombától a virág: 7 cm Gy. 6/. megoldása: A kerület fogalmának előkészítése. 5cm+4cm+cm=cm 4cm+4cm+4cm+4cm=6cm cm+5cm+cm+5cm=6cm Gy. 8/. megoldása:. hangya útja: cm+cm+4cm+cm+cm+cm+cm=8cm. hangya útja: cm+5cm+cm+4cm+4cm+cm=8cm. hangya útja: 8cm+cm+cm+4cm+cm=9cm Gy. 5/ 4., 7/., 8/. feladat: Távolságok kimérése, a vonalzó használatának gyakorlása. Sok olyan feladatot adjunk a tanulóknak, amelyben bármely irányban ki kell tudniuk mérni adott távolságot. Hívjuk fel a tanulók figyelmét, hogy ügyeljenek a mérés pontosságára. Gy. 5/. megoldása: cm = dm cm Gy. 5/. megoldása: cm+cm+6cm+4cm=5cm 0 cm-t repült volna egyenesen a kiindulástól a fűszálig. Gy. 5/4. megoldása: Gy. 7/. megoldása: a) 4 cm + 7 cm = cm cm = dm cm b) dm = 0 cm 0 cm cm = 7 cm c) 5 cm 6 cm 7 cm = cm Gy. 8/. megoldása: Az a) és b) feladatnál jobbra is és balra is mérhetünk a gombától. Gy. 6/. feladat: Mértékváltások gyakorlása a deciméter és centiméter közti kapcsolat alkalmazásával. Scherlein Hajdu Köves Novák: Matematika. Program 6
dm=0cm dmcm= cm dm 8 cm = 8 cm dm4cm= 4 cm dm 6 cm = 6 cm dmcm= cm dm 9 cm = 9 cm dm5cm= 5 cm dm 7 cm = 7 cm cm = dm cm 9 cm = dm 9 cm 4 cm = dm 4 cm 7 cm = dm 7 cm cm = dm cm 8 cm = dm 8 cm 5 cm = dm 5 cm 0 cm = dm 0 cm Gy. 7/. feladat: Nagyon sok hasonló feladatot adjunk a tanulóknak, hogy a tanulók egyre biztosabban tudjanak becsülni, össze tudják hasonlítani a becsült, illetve mért értékeket, és a becsült érték egyre jobban megközelítse a mért értéket. Gy. 7/. feladat: A képi gondolkodás fejlesztése, a kerület és a terület fogalmának az előkészítése a feladat. Pálcika: 4 0 6 Lap: 8 4 6 7 Gy. 9/. feladat: Mérések gyakorlása alkalmilag választott egységekkel, majd a mért adatok összehasonlítása a szabványegységekkel. Gy. 9/ 4. feladat: A méter és a deciméter egymáshoz való viszonyáról tanultak elmélyítése. Becslések végzése. Mekkorák lehetnek az egyes növények, állatok, emberek a valóságban. Gy. 9/. megoldása: Nyúl < m malac = m tehén > m Gy. 9/. megoldása: Csecsemő < 0 dm. osztályos > dm felnőtt > 4 dm. osztályos = dm (az osztály tanulóinak adatait vegyük figyelembe) Gy. 9/4. megoldása: Gy. 0/. feladat: Az élőlények, tárgyak méretét kell eldönteni a lehetőségek közül a legmegfelelőbb kiválasztásával. Ezzel elmélyíthetjük a mértékegységekről tanultakat. 64 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 0/. megoldása: Zsiráf: 6 m Malac: 6 dm Béka: 6 cm Gy. 0/. megoldása: Autó: m Kapocs: cm Táska: dm Pad: m Csavar: cm Gy. 0/. feladat: Elevenítsük fel a centiméterről, deciméterről tanultakat. 4 cm = dm 4 cm cm = dm cm Gy. 0/4. feladat: Mértékváltások gyakorlása a méter, deciméter közti kapcsolt alkalmazásával. m= 0 dm 0 dm = m mdm= dm 7dm+dm=m m9dm= 9 dm 5dm+8dm= m dm m5dm= 5 dm 6dm+6dm= m dm dm = m dm dm + 9 dm = m dm dm = m dm dm + 8 dm = m dm 7 dm = m 7 dm dm 4 dm = 9 dm -hez kapcsolódó feladatok Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 89 9. 6. A számfogalom mélyítését és a számolási eljárások gyakorlását az elkövetkező hetekben úgy szervezzük meg, hogy egyenként sorra vesszük -től 0-ig a természetes számokat. Az első három-négy órán a számítások valamilyen módon a -hez kapcsolódnak: A természetes szám fogalmának mélyítése, a helye a számsorban, a összegre bontott alakjai, a mint műveleti eredmény, számok pótlása -re, számok elvétele -ből, -nél valamennyivel nagyobb, illetve valamennyivel kisebb számok meghatározása. Tk. 0/. feladat: Visszatérő feladattípus a számfogalom megszilárdítására. A szám (itt ) helyének megkeresése a számegyenesen, számszomszédainak, páros, illetve páratlan szomszédainak meghatározása. 0 < < 0 < < 9 < < Scherlein Hajdu Köves Novák: Matematika. Program 65
Tk. 0/. feladat: Az összeadás fogalmának kiterjesztése, a tízesátlépés algoritmusának gyakorlása. A szám felbontása több tag összegére. Tk. 0/. megoldása: Tk. 0/. megoldása: Tk. /. feladat: Visszatérő feladattípus a számfogalom megszilárdítására. A kivonás fogalmának kiterjesztése, a tízesátlépés algoritmusának gyakorlása. 66 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. /. feladat: Egy képről két kivonást kérünk. Figyeltessük meg, hogy a kivonandó változásával hogyan változik a különbség, ha a kisebbítendő mindig. =9 9= =8 8= 4=7 7=4 5=6 6=5 Tk. /. feladat: A bontását kérjük két szám összegére, s a megoldásokat táblázatba foglaljuk. kék virág 0 4 5 6 7 8 9 0 piros virág 0 9 8 7 6 5 4 0 Tk. /. feladat: A szöveges feladatok megoldása során figyeljük meg, mennyire képesek a tanulók egyre önállóbban értelmezni a szöveget, a szöveg alapján a rajzokat kiegészíteni, a megfelelő számításokat elvégezni, ellenőrzést végezni és szöveges választ adni. 5 túrást kell rajzolni. 6 + 5 = túrást csinált összesen. túrásra virágot kell rajzolni. = 8 8 túrásra nem tűzött virágot. Tk. /. feladat: Összekapcsoltuk a művelteket a számegyenesen történő lépegetéssel. Így szemléletessé tehetjük a mozgást, s ez segíthet a feladat megoldásában. 7 = 4 7 lépéssel lépett kevesebbet. + 7 = 8 7 lépéssel lépett többet. Tk. /4. feladat: Elevenítsük fel a hosszúságmérésről tanultakat. A mért adatok összegzésével gyakoroltathatjuk a műveletvégzést. Tk. /. tanulók. feladat: Egy-egy képhez két összeadást és két kivonást rendelhetnek a Tk. /. feladat: Indirekt differenciálásra készült, a rugalmas, problémamegoldó képi gondolkodást fejlesztő feladatsor. Figyeljük meg, ki hányféle egyenletet írt föl. Az Scherlein Hajdu Köves Novák: Matematika. Program 67
ellenőrzéskor indokolják a tanulók, hogy milyen csoportosítás alapján írták a képről a kérdéses egyenleteket. Például: 5+6= 5+6= 5+6= 6+5= 6+5= 6+5= 5+5+= 4++6= 5++4= 5=6 5=6 5=6 6=5 6=5 6=5 Tk. /. feladat: Visszatérő feladattípus a páros és páratlan, illetve egyjegyű és kétjegyű szám fogalmának elmélyítéséhez. Először számítsák ki és írják be a háztetőbe az eredményt a tanulók. Ezután az összegek figyelembevételével két szempont szerint színezzék ki a házakat. Figyeltessük meg, hogy két páratlan szám vagy két páros szám összege páros, illetve egy páratlan és egy páros szám összege páratlan szám. 9+ 0 5+5 6 + 5+6 8 7+ +8 9 5+4 +9 4+7 8 +6 0 +7 6+5 0 6+4 7 +6 6 4+ 9 6+ Tk. /4. feladat: A -et tízféleképpen kell öt szám összegére bontani. Kiindulás: 7 + S + S + S + S =, S =. A kapott eredményt mindig mindenhova beírva a többi szín értéke könnyen meghatározható. Például: +++R + R =, R =4; ++K + K + K =, K =; +Z + Z + Z + Z =, Z =; ++++P =, P =5. Gy. /. feladat: -re kell kiegészíteni a rajzokat, s ez alapján összeadást írni a képről. Ismét figyeltessük meg a tagok felcserélhetőségét. 5+6= 4+7= +9= +8= 6+5= 7+4= 9+= 8+= Gy. /. feladat: Úgy kell kiegészíteni a rajzot, hogy Ft maradjon. Figyeltessük meg a kivonás és az összeadás közti kapcsolatot. 5 4= 7 6= 4 = 9 8= + 4 = 5 + 6 = 7 + = 4 + 8 = 9 68 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. /., /. feladat: Az összeadás gyakorlására szánt feladatsor. Gy. /. megoldása: 0 9 0 0 8 0 Gy. /. megoldása: 0 0 9 6 5 7 4 5 0 Gy. /4., /. feladat: A kivonás gyakorlására szánt feladatsor. Gy. /4. megoldása: 0 4 6 7 9 0 8 5 Gy. /. megoldása: 7 5 0 8 4 4 0 Gy. /5. feladat: bontása két tagra. Először egészítsék ki a tanulók a rajzot, majd két összeadást, két kivonást kérjünk a rajzról. Újra figyeltessük meg a tagok felcserélhetőségét, az összeadás, kivonás kapcsolatát. 8+= 6+5= 7+4= 9+= +8= 5+6= 4+7= +9= 8= 6=5 7=4 9= =8 5=6 4=7 =9 Gy. /. feladat: Visszatérő feladattípus: a tízesátlépés algoritmusának gyakorlása, az összeadás, és a kivonás közti kapcsolat megfigyeltetése. 9 + = = 9 + 9 = 9 = 8 + = = 8 + 8 = 8 = 5 + 6 = 6 = 5 6 + 5 = 5 = 6 4 + 7 = 7 = 4 7 + 4 = 4 = 7 Scherlein Hajdu Köves Novák: Matematika. Program 69
Gy. /4. feladat: Visszatérő feladattípus az összeadás és a kivonás közti kapcsolat megfigyeltetésére, alkalmazására. +5 + 8 5 +4 9 7 5 + 9 5 6 + 5 + +5 9 0 6 + 9 5 Gy. /. feladat: A számolási rutint fejlesztő, fokozatosan nehezedő feladatsor. Megfigyeltethetjük a műveletek közti kapcsolatokat, az összeadásban a tagok felcserélhetőségét, az összeg, illetve a különbség változásait. 5+6= 5=6 +8= =8 6+5= 6=5 8+= 8= 5+6 = 6 =5 +8 = 8 = 6+5 = 5=6 8+ = =8 +9= =9 4+7= 4=7 9+= 9= 7+4= 7=4 +9 = 9 = 4+7 = 7 =4 9+ = =9 7+4 = 4=7 Gy. /. feladat: Visszatérő feladattípus: a számnál (itt -nél) valamennyivel nagyobb, illetve valamennyivel kisebb számok megismerése a számegyenes bejárásával. Ebből a feladattípusból célszerű minél több, a tankönyvi feladatokhoz hasonló feladatot feladni, hogy a számolási rutin fejlesztése mellett a tanuló sok-sok tapasztalatot szerezzen a kérdéses szám (itt a ) elhelyezkedéséről a számsorban. Gy. /. feladat: Visszatérő feladattípus az összeg és a különbség változásának megfigyeltetésére. Az egyik tag változásával hogyan változik az összeg. A kisebbítendő, illetve a kivonandó változásával hogyan változik a különbség. 70 Scherlein Hajdu Köves Novák: Matematika. Program
Gy. 4/. feladat: Feltétlenül feldolgozásra javasoljuk ezeket a szöveges feladatokat, hogy a tanulók egyre önállóbban tudják a szöveget értelmezni, a szöveg alapján a rajzokat kiegészíteni, a megfelelő számításokat elvégezni, ellenőrzést végezni és szöveges választ adni. A bal oldali zacskóba, a jobb oldali zacskóba 4 almát kell rajzolni. + 9 = almát tett a zacskókba. 5 répát át kell húzni. 5 = 6 6 répája maradt. 4 matricát rajzolni kell, matricát át kell húzni. 7 + 4 = 8 8 matricája van. Gy. 4/. feladat: Függvényre vezető szöveges feladat. A jobb képességű tanulóktól a szabály leírását is kérhetjük többféle alakban. Először az első feltételnek megfelelően töltsék ki a táblázatot a tanulók, majd a kitöltött táblázat megfelelő oszlopát megkeresve (4 + 7) válaszolhatnak a második kérdésre. Szabály: l = p p = l + l =4Ft p =7Ft Gy. 4/. feladat: Mindkét feladatnak nagyon sok megoldása van. Ezek közül néhány: 0 0 0 0 = = 0 0 = Scherlein Hajdu Köves Novák: Matematika. Program 7
0 0 0 0 0 0 0 0 = 0 0 0 0 = 0 0 0 = 0 0 0 0 = 0 0 0 = 0 0 0 0 = 0 Tovább nő a megoldások száma, ha nem kötjük ki, hogy végig kell menni a labirintuson. -höz kapcsolódó feladatok Kompetenciák, fejlesztési feladatok: számlálás, számolás, rendszerezés, relációszókincs fejlesztése, szövegértés, szövegértelmezés, szövegesfeladat-megoldás, rész-egész észlelése, térbeli viszonyok megfigyelése, induktív következtetések, problémaérzékenység, problémamegoldás, emlékezet, figyelem, megfigyelőképesség, kezdeményezőképesség, összefüggéslátás, pontosság, kooperatív és önálló munkavégzés. Óra: 9 96. 7. természetes szám fogalmának mélyítése, a helye a számsorban, a összegre bontott alakjai, a mint műveleti eredmény, számok pótlása -re, számok elvétele -ből, -nél valamennyivel nagyobb, illetve valamennyivel kisebb számok meghatározása. Tk. 4/. feladat: Visszatérő feladattípus: a szám (itt ) helyének megkeresése a számegyenesen, számszomszédai, páros, illetve páratlan szomszédainak meghatározása, a számfogalom szilárdítása. < < 0 < < 4 < < Tk. 4/. feladat: Az összeadás fogalmának kiterjesztése a -es számkörre, a tízesátlépés algoritmusának gyakorlása. Tk. 4/. megoldása: 0 + = + = 6 + 6 = 5 + 7 = + 9 = 8 + 4 = 7 + 5 = 9 + = 4 + 8 = 7 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 4/. megoldása: Tk. 5/. feladat: A kivonás fogalmának kiterjesztése a -es számkörre, a tízesátlépés algoritmusának gyakorlása. Tk. 5/. feladat: Vannak olyan összegek, amelyeket nem egyenlőek -vel -gyel, vagy 0-el. Ezeket nem kell kiszínezni. Tk. 5/. feladat: Először a képekről írjanak egyenleteket a tanulók. Vetessük észre, hogy az a gyerek vette el a legtöbb pálcát, akinek a legkevesebb pálcája maradt. (Ho- Scherlein Hajdu Köves Novák: Matematika. Program 7
gyan változik a különbség, ha a kivonandót változtatjuk, a kisebbítendőt változatlanul hagyjuk?) 6=6 7=5 8=4 7=5 Tk. 6/. feladat: a bontása két szám összegére, az értékpárok táblázatba rendezése. Tk. 6/. feladat: A szöveges feladatok megoldása során egyre önállóbban dolgozzanak a tanulók. Tk. 6/. megoldása: 4 banánt kell rajzolni. 8+4= banánja lett. 6 banánt át kell húzni. 6 = 6 6 banánja maradt. Tk. 6/. megoldása: pipacsot pirosra kell színezni, 5 tulipánt sárgára. 7 5 7 + 5 = sárga virág van a kertben. virágot kékre kell színezni. 4 8 4=8 8 kék virág van. Tk. 6/4. feladat: Elevenítsük fel a hosszúságmérésről tanultakat. A tulipántól a pipacs cm távolságra van. A pipacs és a búzavirág távolsága 6 cm. A tulipán és a búzavirág távolsága 6 cm. Tk. 7/. feladat: A kreatív gondolkodást fejlesztő feladatsor. A két ábra független egymástól. Könnyítésként kössük ki, hogy a 0 nem szerepelhet. Az első feladatban a kiindulás lehet: R + R + R =, R = 4. Ezt mindenhová beírva: B +9+Z = egyenlet alapján: Z = vagy Z =. A kapott eredményeket összehasonlítva a Z + Z + P = egyenlettel, Z =, B =, P =8. A második feladatban a kiindulás lehet: Z +9+Z + Z =, Z =; P + P + P + P =, P =. 74 Scherlein Hajdu Köves Novák: Matematika. Program
Tk. 7/. feladat: A számolási rutin fejlesztésére szánt feladatsor, közben gyakoroltathatjuk a páros páratlan, egyjegyű kétjegyű számokról tanultakat. Tk. 7/. feladat: Függvényre vezető szöveges feladat, amelyben két egyenlő tag összegét kell -re pótolni. Vetessük észre, hogy valamelyik tag 0 is lehet. P 0 4 5 6 K 0 4 5 6 S 0 8 6 4 0 Tk. 7/4. feladat: Kreatív gondolkodás fejlesztésére szánt feladatsor. Tk. 7/5. feladat: Indirekt differenciálásra készült, a kreativitást fejlesztő feladatsor. Tudatosítsuk, hogy minél több megoldást várunk. Az ellenőrzéskor indokolják a tanulók, hogy milyen csoportosítás alapján írták a képről az egyenleteket. Külön figyeltessük meg, hogy hányféleképpen bontható a egyenlő tagok összegére. Például: 6+6= 4+4+4= +4+6= +++= +++++= 6+6= Gy. 5/. feladat: -re kell kiegészíteni a rajzokat, s ez alapján összeadást írni a képről. Ismét figyeltessük meg a tagok felcserélhetőségét. 7+5= 9+= 6+6= 8+4= 5+7= +9= 6+6= 4+8= Gy. 5/. feladat: Úgy kell kiegészíteni a rajzot, hogy Ft legyen. 6=6 4=8 =9 5=7 Scherlein Hajdu Köves Novák: Matematika. Program 75
Gy. 5/. feladat: Az összeadás gyakorlására szánt feladatsor. 0 5 0 0 7 Gy. 5/4. feladatsor: A kivonás gyakorlására szánt feladatsor. 6 6 9 0 8 8 7 4 0 5 9 9 7 Gy. 6/. feladat: Visszatérő feladattípus: a tízesátlépés algoritmusának gyakorlása, az összeadás, és a kivonás közti kapcsolat elmélyítése. 6+6= 6=6 +0= 0= 0+= =0 +9= 9= 9+= =9 4+8= 8=4 8+4= 4=8 5+7= 7=5 7+5= 5=7 Gy. 6/. feladat: A számolási rutint fejlesztő, fokozatosan nehezedő feladatsor. 0 0 8 8 0 9 5 0 6 8 Gy. 6/. feladat: Az összeadás és a kivonás közti kapcsolat megfigyeltetése a tanultak alkalmazásával. +5 + 9 5 4 + 4 +7 9 5 7 6 6 + 6 4 + 4 8 0 5 + 8 + 76 Scherlein Hajdu Köves Novák: Matematika. Program