Towards a Unied Description of Meson Production off Nucleons

Hasonló dokumentumok
On The Number Of Slim Semimodular Lattices

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Hogyan lehet ezzel a fényképpel Nobel-díjat nyerni?

Nonrelativistic, non-newtonian gravity

Superconformal symmetry in many appearances

Unification of functional renormalization group equations

Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter

Cluster Analysis. Potyó László

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

Construction of a cube given with its centre and a sideline

Statistical Inference

EN United in diversity EN A8-0206/419. Amendment

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Correlation & Linear Regression in SPSS

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Using the CW-Net in a user defined IP network

EN United in diversity EN A8-0206/473. Amendment

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

EXKLUZÍV AJÁNDÉKANYAGOD A Phrasal Verb hadsereg! 2. rész

T W z àöä á TÜtÇç{tÄ á t [öüéå ^ äöçáöz

Cloud computing Dr. Bakonyi Péter.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Választási modellek 3

Genome 373: Hidden Markov Models I. Doug Fowler

Correlation & Linear Regression in SPSS

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

Intézményi IKI Gazdasági Nyelvi Vizsga

Dependency preservation

Cashback 2015 Deposit Promotion teljes szabályzat

MATEMATIKA ANGOL NYELVEN MATHEMATICS

DANS és Narcis. Burmeister Erzsébet. HUNOR találkozó, Budapest március 13.

Mapping Sequencing Reads to a Reference Genome

NEVEZÉSI LAP / ENTRY FORM MARATON - váltó / MARATHON - relay

Performance Modeling of Intelligent Car Parking Systems

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Supporting Information

A logaritmikus legkisebb négyzetek módszerének karakterizációi

Utasítások. Üzembe helyezés

Contact us Toll free (800) fax (800)

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

7 th Iron Smelting Symposium 2010, Holland

EN United in diversity EN A8-0206/445. Amendment

Local fluctuations of critical Mandelbrot cascades. Konrad Kolesko

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

NEVEZÉSI LAP I ENTRY FORM MARATON - váltó MARATHON - relay

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV

USER MANUAL Guest user

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

A évi fizikai Nobel-díj


A Karatbars marketingterve

TÉRGAZDÁLKODÁS - A TÉR MINT VÉGES KÖZÖSSÉGI ERŐFORRÁS INGATLAN NYILVÁNTARTÁS - KÜLFÖLDI PÉLDÁK H.NAGY RÓBERT, HUNAGI

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Travel Getting Around

r tr r r t s t s② t t ① t r ② tr s r

A Lean Beszállító fejlesztés tapasztalatai a Knorr Bremse-nél

General information for the participants of the GTG Budapest, 2017 meeting

Választási modellek 2

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

THS710A, THS720A, THS730A & THS720P TekScope Reference

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

Nemzetközi Kenguru Matematikatábor

Felnőttképzés Európában

Computer Architecture

FELELETVÁLASZTÓS TESZT

FOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

A golyók felállítása a Pool-biliárd 8-as játékának felel meg. A golyók átmérıje 57.2 mm. 15 számozott és egy fehér golyó. Az elsı 7 egyszínő, 9-15-ig

Széchenyi István Egyetem

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Discussion of The Blessings of Multiple Causes by Wang and Blei

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Business Opening. Very formal, recipient has a special title that must be used in place of their name

Statistical Dependence

EN United in diversity EN A8-0206/482. Amendment

Előszó.2. Starter exercises. 3. Exercises for kids.. 9. Our comic...17

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

bab.la Cümle Kalıpları: İş Sipariş İngilizce-Macarca

bab.la Cümle Kalıpları: İş Sipariş Macarca-İngilizce

SQL/PSM kurzorok rész

IPSC Level 2.9 pisztoly versenykiírás IPSC Level 2.9 match

INTELLIGENT ENERGY EUROPE PROGRAMME BUILD UP SKILLS TRAINBUD. Quality label system

Bevezetés a részecske fizikába

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ

OLYMPICS! SUMMER CAMP

Proxer 7 Manager szoftver felhasználói leírás

MATEMATIKA ANGOL NYELVEN

u u IR n n = 2 3 t 0 <t T

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Átírás:

Towards a Unied Description of Meson Production off ucleons Helmut Haberzettl, Department of Physics The George Washington University, Washington, DC Collaborators: Kanzo akayama, UGA Siegfried Krewald, FZJ ongseok Oh, UGA 01 H. Haberzettl * JLab, 05ov06 Master file: hhstarjlab06.tex Compiled: 05ov2006

What means unified? Consistent treatment of hadronic and electromagnetic sectors Consistent treatment of competing reaction channels Consistency between resonant and non-resonant contributions Requirements: Lorentz covariance Gauge invariance Hadronic final-state interaction 02 H. Haberzettl * JLab, 05ov06 unified.tex

What means unified? Consistent treatment of hadronic and electromagnetic sectors Consistent treatment of competing reaction channels Consistency between resonant and non-resonant contributions Requirements: Lorentz covariance Gauge invariance Hadronic final-state interaction Jülich 03 H. Haberzettl * JLab, 05ov06 unified.tex

Gauge Invariance k p 1 p 1 p 2 p m 1 M µ p 2 pn 1 p m Time p n Physical condition: Current Conservation: k µ M µ = 0 all hadrons on-shell 04 H. Haberzettl * JLab, 05ov06 gauge1.tex

Gauge Invariance k p 1 p 1 p 2 p m 1 M µ p 2 pn 1 p m Time p n Physical condition: Current Conservation: k µ M µ = 0 all hadrons on-shell Recipe for Phenomenological Currents: M µ = M µ a µ k M k a (a µ arbitrary) 05 H. Haberzettl * JLab, 05ov06 gauge2.tex

Gauge Invariance k p 1 p 1 p 2 p m 1 M µ p 2 pn 1 p m Time p n Physical condition: Current Conservation: k µ M µ = 0 all hadrons on-shell Recipe for Phenomenological Currents: M µ = M µ a µ k M k a (a µ arbitrary) ot good enough for microscopic approaches! 06 H. Haberzettl * JLab, 05ov06 gauge3.tex

Gauge Invariance for the ucleon: consider γ(k) (p) (p ) Simple nucleon current: Γ µ (p, p) = γ µ Q 07 H. Haberzettl * JLab, 05ov06 gaugenucleon.tex

Gauge Invariance for the ucleon: consider γ(k) (p) (p ) Simple nucleon current: Four-divergence: Γ µ (p, p) = γ µ Q k µ Γ µ (p, p) = (p/ p/)q = (p/ m)q Q (p/ m) on-shell 0 k = p p 0 H. Haberzettl * JLab, 05ov06 gaugenucleon.tex

Gauge Invariance for the ucleon: consider γ(k) (p) (p ) Simple nucleon current: Four-divergence: Γ µ (p, p) = γ µ Q k µ Γ µ (p, p) = (p/ p/)q = (p/ m)q Q (p/ m) on-shell 0 k = p p Ward Takahashi Identity: k µ Γ µ (p, p) = S 1 (p )Q Q S 1 (p) [General result] S(p): nucleon propagator Full electromagnetic information on the LHS Only hadronic information on the RHS 09 H. Haberzettl * JLab, 05ov06 gaugenucleon.tex

Gauge Invariance for the ucleon: consider γ(k) (p) (p ) Simple nucleon current: Four-divergence: Γ µ (p, p) = γ µ Q k µ Γ µ (p, p) = (p/ p/)q = (p/ m)q Q (p/ m) on-shell 0 k = p p Ward Takahashi Identity: k µ Γ µ (p, p) = S 1 (p )Q Q S 1 (p) [General result] S(p): nucleon propagator Full electromagnetic information on the LHS Only hadronic information on the RHS Consistency! 10 H. Haberzettl * JLab, 05ov06 gaugenucleon.tex

γ π 11 H. Haberzettl * JLab, 05ov06 examplepi.tex

Attaching a Photon to the π Vertex π s u t G M µ s M µ u M µ t M µ int s-channel u-channel t-channel Interaction current Total photoproduction amplitude M µ = M µ s M µ u M µ t M µ int 12 H. Haberzettl * JLab, 05ov06 sgampinn.tex

Generalized Ward Takahashi Identity for the Pion-Production Current k µ M µ = [F s τ]s pk Q S 1 p S 1 p Q S p k[f u τ] 1 p p k Q π p p [F t τ] s u t G Equivalently: k µ M µ int = [F sτ]q Q [F u τ] Q π [F t τ] ote: Charge conservation: τq Q τ Q π τ = 0 13 H. Haberzettl * JLab, 05ov06 WTI1.tex

Strategy Start from eld theory Cook it down to something manageable Be aware where the approximations are made, what physics they destroy, and make sure that you can live with it! 14 H. Haberzettl * JLab, 05ov06 strategypi.tex

Pions, ucleons, and Photons Hadronic scattering: π π = X Photoproduction: γ π Amplitude: = 0 time X = U U X s-channel u-channel t-channel M µ int T = X M = Theory: PRC 56, 2041 (1997) = U X U I Interaction Current M µ int 15 H. Haberzettl * JLab, 05ov06 sfieldth0.tex

Hadronic Driving Terms π σ,ρ σ,ρ π Electromagnetic Couplings to Driving Terms Dressed ucleon Current E 16 H. Haberzettl * JLab, 05ov06 fieldth2.tex

Ward Takahashi Identities for the ucleon and the Pion Currents p',m' k p,m k µ Γ µ (p, p) = S 1 (p )Q Q S 1 (p) nucleon Form factors: [ ] [ ] Γ ν (p, p) = γ ν Q t ν f1 00 iσνµ k µ 2m f 2 00 p/ m t ν f1 10 iσνµ k µ 2m 2m f 2 10 f ij n = f ij n (p 2, p 2 k 2 ) [ ] [ ] t ν f1 01 iσνµ k µ p/ m 2m f 2 01 2m p/ m t ν f1 11 iσνµ k µ p/ m 2m 2m f 2 11 2m t ν = γ ν k 2 k ν k/ k q, µ q, µ k µ Γ µ π(q, q) = 1 π (q )Q π Q π 1 π (q) pion [ ] Γ ν π(q, q) = (q q) ν Q π (q q) ν k 2 k ν k (q q) Q π f(q 2, q 2 k 2 ) 17 H. Haberzettl * JLab, 05ov06 WTI.tex

Lowest-Order Strategy M = = U X U Replace U is satisfied. U by phenomenological contact term such that WTI for interaction current 1 H. Haberzettl * JLab, 05ov06 strategy.tex

Lowest-Order Strategy M = = U X U Replace U is satisfied. U Result by phenomenological contact term such that WTI for interaction current M µ [ int = M c µ T µ XG 0 (M u µ m µ }{{ u) (M µ t m µ t } ) T µ] }{{} transverse transverse T µ : undetermined transverse current with k µ M µ c = F s e i F u e f F t e π. 19 H. Haberzettl * JLab, 05ov06 result1.tex

Phenomenological Choice for M µ c M µ c { [ ] q/ βk/ = g π γ 5 λ (1 λ) m C µ γ µ [ (1 λ) m m e π f t β k ρ C ρ]} m λ, β: free parameters on-singular auxiliary current: with C µ = e π (2q k) µ t q 2 (f t ˆF ) e f (2p k) µ u p 2 (f u ˆF ) e i (2p k) µ s p 2 (f s ˆF ), k µ C µ = e π f t e f f u e i f s Subtraction function: ˆF = 1 ĥ ( 1 δ s f s )( 1 δu f u )( 1 δt f t ) δ x = 0, 1 The function ĥ = ĥ(s, u) is free fit function. [Ohta: ĥ = 0, X = 0, T µ = 0] 20 H. Haberzettl * JLab, 05ov06 choice1.tex

First Application (straight out of the box not optimized) H.H., K. akayama, S. Krewald, nucl-th/06051059 dσ/dω (µb/sr) 30 20 10 0 20 10 0 20 10 0 20 10 γp-->π o p γp-->π n γn-->π - -p T γ =390 MeV T γ =340 MeV T γ =220 MeV T γ =10 MeV 0 0 60 120 0 60 120 θ (deg) 0 60 120 10 σ (µb) 300 200 100 γp > π o p Born FSI total 0 140 190 240 290 340 390 T γ (MeV) Includes ρ, ω, and a 1 exchanges in the t-channel in s- and u-chanels FSI with Jülich π T -matrix. 21 H. Haberzettl * JLab, 05ov06 application.tex

ext, two mesons: γ M 1 M 2 22 H. Haberzettl * JLab, 05ov06 next2pions.tex

Producing Two Mesons Start from underlying hadronic processes: M 2 M 1 2 1 R M 1 M V M 2 23 H. Haberzettl * JLab, 05ov06 twopion0.tex

Producing Two Mesons Start from underlying hadronic processes: M 2 M 1 2 1 R M 1 M V M 2 = X = X = U U X time T = X 24 H. Haberzettl * JLab, 05ov06 twopion0a.tex

Basic Two-meson Production Mechanisms q q p 2 s u 1 q q p s k t 2 t t 1 u u 2 C C 1 C C 2 1 time time µ µ 2 1 2 1 M M 2 1 (a) M (b) 25 H. Haberzettl * JLab, 05ov06 twopion1.tex

Application: γ KKΞ (w/o hadronic FSI) K. akayama,. Oh, H.H., hep-ph/0605169 Total cross-sections: 20 γp Κ Κ Ξ 20 γp Κ Κ Ξ 10 10 0 0 γp Κ Κ 0 Ξ 0 0 0 γp Κ Κ 0 Ξ 0 40 40 σ (nb) 0 0 γn Κ Κ 0 Ξ σ (nb) 0 0 γn Κ Κ 0 Ξ 40 40 0 0 γn Κ 0 Κ 0 Ξ 0 0 0 γn Κ 0 Κ 0 Ξ 0 40 40 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 T γ (GeV) 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 T γ (GeV) λ = 1 (pv) 26 H. Haberzettl * JLab, 05ov06 twomesonapplication.tex λ = 0 (ps)

Summary Gauge invariance is a fundamental symmetry without it results become arbitrary. Current conservation k µ M µ = 0 necessary, but not sufficient, for gauge invariance of microscopic theories. Generalized Ward Takahashi identities are necessary and sufficient. Real-world calculations require truncations of dynamical mechanisms that destroy gauge invariance. Prescriptions required to restore gauge invariance. Formalism allows inclusion of final-state interaction. FSI dynamics can be refined step-bystep in controlled manner. ext application: More complete calculation of pseudoscalar meson production with FSI. Application to γ KKΞ production provides good agreement with the data already at the (dressed) tree level. Applying formalism to two-pion production is underway (FSI necessary: DWA). Application to electroproduction possible (manpower required!!). 27 H. Haberzettl * JLab, 05ov06 summary.tex

Transition Currents γ Gauge invariance demands that transition currents be transverse. B 2 B1 Outline of proof: M Coupling the photon to MB 1 B 2 vertex, B1 B 2, produces First line produces correct off-shell relation. Terms in second line must vanish individually. QED In a consistent microscopic approach, this should be ensured dynamically. There should be no need to adjust the transversality manually. 2 H. Haberzettl * JLab, 05ov06 transition.tex

Example: γ γ = Transversality of this current is ensured by the fact that is not possible as a physical process, i.e. = = = 0. With consistent dynamics, this current satisfies ) ( ) Γ βµ = G 1 γ 5 (k β γ µ g βµ k/ G 2 γ 5 k β P µ g βµ k P G 3 γ 5 (k β k µ g βµ k 2) as a matter of course, where P = (p p )/2 = (2p k)/2. There is no need for subtractions. 29 H. Haberzettl * JLab, 05ov06 transition.tex

ext Order M = = U X U = = Instead of replacing all of U X U, take into account explicitly. } {{ } =E µ exchange current 30 H. Haberzettl * JLab, 05ov06 strategy1.tex

ext Order M = = U X U = = Instead of replacing all of U X U General gauge-invariance condition for U µ, take into account explicitly. } {{ } =E µ exchange current k µ U µ (p, q, p, q) = Q πu(p, q k, p, q) Q U(p k, q, p, q) U(p, q, p, q k)q π U(p, q, p k, q)q Holds also true for every subset of U µ that originates from attaching a photon in all possible ways to a single two-body irreducible hadron graph = also true for E µ 31 H. Haberzettl * JLab, 05ov06 strategy1a.tex

ext-order Result M = = U X U Previously M µ [ int = M c µ T µ XG 0 (M u µ m µ }{{ u) (M µ t m µ t } ) T µ] }{{} transverse transverse T µ : undetermined transverse current ow: T µ is replaced by T µ = [ E µ Ẽµ] G 0 [F τ] T µ T µ : undetermined transverse current 32 H. Haberzettl * JLab, 05ov06 result2.tex

Phenomenological Subtraction Current [ Ẽ µ = gπγ 2 q/ q/ 5 [λ (1 λ) ]S ] m γ 5 λ (1 λ) D µ m m m (1 λ)gπf 2 γ 5 γ µ [ q/ ] π f 1 e π m S γ 5 λ (1 λ) m m m ] (1 λ)gπf 2 q/ 2 f π γ 5 [λ (1 λ) m S e γ 5 γ µ π m m m on-singular auxiliary current: D µ = e (2q k) µ π (q k) 2 q 2 (f 2f π Ĝ) (2p k) µ e (p k) 2 p 2 (f f 1 Ĝ) (2q k) µ e π (q k) 2 q 2 (f πf 1 Ĝ) e (2p k) µ (p k) 2 p 2 (f 2f Ĝ), with Ĝ = 1 ĝ ( )( )( )( ) 1 f π f 1 1 f2 f 1 f2 f π 1 f f 1 ĝ: free fit function ote: k µ D µ = e π f π f 1 e f 2 f e πf 2 f π e f f 1 33 H. Haberzettl * JLab, 05ov06 sgampinn.tex