>> x1 = linspace( ); plot(x1,sin(x1),'linewidth',1,'color',[1 0 0]);



Hasonló dokumentumok
MÁTRIXFÜGGVÉNYEK, SAJÁT FÜGGVÉNYEK, GRAFIKA

FÜGGVÉNYVIZSGÁLAT, LINEÁRIS EGYENLETRENDSZEREK

MÁTRIXFÜGGVÉNYEK, SAJÁT FÜGGVÉNYEK, GRAFIKA

MÁTRIXFÜGGVÉNYEK, SAJÁT FÜGGVÉNYEK, GRAFIKA 1.

Széchenyi István Egyetem. Műszaki számítások. Matlab 4. előadás. Elemi függvények és saját függvények. Dr. Szörényi Miklós, Dr.

Széchenyi István Egyetem. Műszaki számítások. Matlab 5. előadás. Grafika, függvényábrázolás. Dr. Szörényi Miklós, Dr. Kallós Gábor

Széchenyi István Egyetem. Műszaki számítások. Matlab 5a. előadás. Numerikus deriválás és integrálás. Dr. Szörényi Miklós, Dr.

Baran Ágnes. Gyakorlat Függvények, Matlab alapok

Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Grafika. Egyváltozós függvény grafikonja

9 10. előadás. Matlab 4 5. (Függvények, függvényábrázolás) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

2. Hatványozás, gyökvonás

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Mikrohullámok vizsgálata. x o

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATLAB alapismeretek II.

6. előadás. Matlab 1. (Ismerkedés, környezet, adattípusok) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás

Készítette:

Valószín ségelmélet házi feladatok

Matematika POKLICNA MATURA

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

PRÓBAÉRETTSÉGI MATEMATIKA május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

Bevezetés a MATLAB használatába

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

1. előadás. Függvények ábrázolása. Dr. Szörényi Miklós, Dr. Kallós Gábor

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Bolyai János Matematikai Társulat

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Komputer statisztika gyakorlatok

2. Interpolációs görbetervezés

Oktatáskutató és Fejlesztő Intézet TÁMOP / XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Maple: Grafikonok rajzolása

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás

Függvények Megoldások

A továbbhaladás feltételei fizikából és matematikából

Osztályozóvizsga követelményei

1. Feladatlap. Függvények. Mőveletek Matlab nyelvben. Példa inverz osztásra >>d=2\1 d= Információkérési lehetıségek help utasítás

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

MATLAB alapismeretek IV. Eredmények grafikus megjelenítése: vonalgrafikonok

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

A MATLAB programozása. Féléves házifeladat. RGBdialog

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

4_Gnuplot1. October 11, Jegyzetben az 3. fejezet (36-től 52.-ig oldalig).

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

A DERIVE kezelése. 1. A DERIVE ablaka. Amikor elindítod a DERIVE-ot ez az ablak jelenik meg:

Lineáris algebra bevezető

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Árvainé Libor Ildikó Murátiné Szél Edit. Tanítói kézikönyv. tanmenetjavaslattal. Sokszínû matematika. 4

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Spike Trade napló_1.1 használati útmutató

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Analízisfeladat-gyűjtemény IV.

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

A Surfer for Windows használata (8. verzió)

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT I.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

Matematika. Specializáció évfolyam

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Prezentáció használata

First Prev Next Last Go Back Full Screen Close Quit

Matematika emelt szint a évfolyam számára

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Robotszerkezetek animációja

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

Bevezetés a MATLAB programba

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc

Matematikai modellalkotás

Felületábrázolás és alkalmazásai Maple-ben

Matematika tanmenet/4. osztály

NT Matematika 9. (Heuréka) Tanmenetjavaslat

edia 2.2 Kézikönyv feladatfelvitelhez Diagnosztikus mérések fejlesztése Készítette: Molnár Gyöngyvér Papp Zoltán Makay Géza Ancsin Gábor

Az ablakos problémához

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model

Függvények ábrázolása

MATEMATIKA ÉRETTSÉGI október 21. KÖZÉPSZINT I.

Matlab alapok. Vektorok. Baran Ágnes

ÉRTÉKELÉS: VIZSGÁZTATÓ ALÁÍRÁSA:... VIZSGÁZÓ NEVE:

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

Átírás:

1 5. GYAKORLAT SAJÁT FÜGGVÉNYEK, GRAFIKA, FÜGGVÉNYVIZSGÁLAT A PLOT UTASÍTÁS A plot utasítás a legegyszerűbb esetben (x, y) pontpárok összekötött megjelenítésére szolgál (a pontok koordinátáit vektorok tartalmazzák). A szintaktika: plot(x, y). Ábrázoljuk a [0, 0] és [1, 1] pontok által meghatározott szakaszt! Először az alapértelmezett színt használjuk, utána legyen zöld, majd fekete a vonal. Függvényábra készítésénél úgy indulunk el, hogy egy vektorba legyártjuk az alappontokat (linspace parancs vagy : operátor), majd erre húzzuk rá a függvényt. Példa Rajzoljuk ki a sin(x) függvény grafikonjának pontjait a [ 2π, 2π] intervallumban 1001 pont segítségével! >> x = linspace(-2*pi, 2*pi, 1001); plot(x,sin(x)) Az alappontok megfelelően sűrű előállítása kulcslépés, anélkül a grafikonunk nem lesz korrekt. F: Nézzük meg, hogy mi történik, ha az x sorozat csak 11 elemű! Több rajz egy ábrán a hold on/off parancsokkal jeleníthető meg. A hold on kiadása után minden ábra egymásra kerül mindaddig, amíg a hold off parancsot ki nem adjuk. Ismételjük meg az előző két grafikon kirajzolását, de most már egy közös ábrán! A vonalak színe legyen különböző (pl. piros és kék)! (Próbáljuk ki a vonalstílus megváltoztatását is.)

2 Tipp: hold on és hold off között gyártsuk le a megfelelő x vektorokat (pl. x1 és x2 néven), és adjuk ki a rajzoló utasításokat. Ismételjük meg az előző kirajzoltató utasításokat úgy, hogy a vonalvastagságot is változtatjuk, és a vonalszínt az RGB skálán állítjuk be. >> x1 = linspace( ); plot(x1,sin(x1),'linewidth',1,'color',[1 0 0]); Ha a plot parancs megadásánál az x és az y sorozatot felcseréljük, akkor ily módon az inverz függvényt tudjuk direkt módon kirajzoltatni. A szintaktika ekkor tehát plot(y, x). Rajzoltassuk ki a sin(x) függvény inverzét a [ 1, 1] intervallumban! Kétféle módon is oldjuk meg a feladatot: a plot(y, x) szintaktikával, és az asin inverz függvény felhasználásával! Tegyünk az ábrára feliratot! Ezután oldjuk meg a feladatot úgy is, hogy egy ábrán helyezzük el a szinusz függvényt (megfelelő szakasz) és inverzét! (Készítsünk ehhez scriptet script M-fájlt.) Megoldás (részlet) >> x = linspace(-pi/2, pi/2, 101); y = sin(x); plot(y, x); title('szinusz függvény inverze') % plot(y, x) szintaktika vagy >> x = linspace(-1, 1, 101); plot(x, asin(x)) % inverz függvény (forgatómátrix) Készítsük el az origó körüli alfa fokos forgatást megvalósító mátrixot, és a felhasználásával forgassunk el egy adott háromszöget! Legyen például alfa = 80, a háromszög pontjai pedig rendre A(1, 1), B(4, 0) és C(3, 4). Mutassuk be megfelelő ábrán az eredeti és az elforgatott háromszöget! (Rakjunk ki feliratot is.) Tipp: Az alfa fokos forgatást megvalósító mátrix alakja: A = [cos(alfa) sin(alfa); sin(alfa) cos(alfa)], ahol az alfa szög értéke radiánban adott. Ennek megfelelően a os megvalósításban a cosd és a sind függvényeket használjuk. A háromszög pontjait vegyük fel koordinátánként egy megfelelő vektorban, majd szorozzuk össze a transzformációs mátrixot a vektorkoordinátákkal. Az ábrázolásnál figyeljünk arra, hogy az alakzat záródjon, azaz a harmadik pontot is kössük össze az elsővel! (További segítségként érdemes felidézni az előadáson szereplő dot2dot és forgat eljárást.)

3 SAJÁT FÜGGVÉNY LÉTREHOZÁSA, FPLOT Ábrázoljuk az f: x sin(x)/(x 2 + 1) függvényt a [ 10, 10] intervallumon úgy, hogy ehhez saját függvényt (function M-fájlt) hozunk létre! Tipp: A File/New menüponttal hozzunk létre egy új function m-fájlt, ennek neve legyen f.m. Alakítsuk ki a fejlécet és függvény törzsét megfelelő módon (pl. y = ). Vigyázzunk arra, hogy egyes helyeken pontozott műveleteket kell használni! Mentsük el az f.m fájlt a d: meghajtó megfelelő könyvtárába. A kirajzoláshoz hozzunk létre egy x vektort 10-től +10-ig, 0,1-es lépésközzel. Az ábrázolás ezek után egyszerűen a plot(x, f(x)) paranccsal történhet. A saját (és a beépített) függvények ábrázolása az fplot utasítással is végrehajtható. Ekkor a automatikusan generál osztáspontokat, az x vektort tehát nem kell nekünk létrehozni. Az utasítás szintaktikája: fplot('függvényképlet', [intervallum határok], 'megjelenés-vezérlő') Ábrázoljuk az fplot paranccsal a szinusz függvényt a [0, 2π] intervallumban! Ábrázoljuk az előző f: x sin(x)/(x 2 + 1) függvényt a [ 10, 10] intervallumon az fplot utasítással! Fontos: az fplot parancs elfogadja az olyan függvénydefiníciót is, ahol nem pontozott műveleteket írtunk! (Próbáljuk ki!) F: Az előző feladatot oldjuk meg közvetlen függvénydefinícióval (anonymus megadás) és inline megadással is!

4 Próbáljuk ki, hogy az inline és az anonymus megadásnál is elhagyható a pont a megfelelő műveletek elől, ha az fplot utasítást használjuk. Mintafeladat Próbáljuk ki az 1,2x 2 e 0,5x függvény különböző megadásait is a következők szerint. >> f = @(x) 1.2*x^2*exp(-.5*x), fplot(f,[0 20]) % itt csak a függvénynév kell aposztrófok nélkül >> fp = inline('1.2*x^2*exp(-.5*x)'); fplot(fp, [0 20]) % ekkor sem kell fp-t aposztrófok közé tenni! >> fplot('f2', [0 20]) % a függvény máshol definiált (saját függvény), aposztrófok közé! Írjuk át az előző feladatban szereplő saját függvényt úgy, hogy az 1,2, a 2 és a 0,5 érték paraméterként legyen megadható! Ábrázoljuk így is a függvényt! Pl. x=0:0.1:20; plot(x, f1(1.2,2,-.5, x)). Írjunk saját függvényt az y = amplitúdó e csillapítás t sin(2π/t t + fázisszög) szabállyal adott csillapított rezgőmozgást leíró képlet megvalósítására, majd ábrázoljuk a függvényünket! A paramétereket a következők szerint válasszuk: amplitúdó A (értéke: 5), csillapítás b (értéke: 0,2), t idő (változó vektor, előállítását lásd lent), T periódusidő (értéke: 10), fázisszög fi0 (értéke: π/4). A függvény és az m-fájl neve legyen rezgo. A hívás eszerint a következő: >> A=5; b=0.2; T=10; fi0=pi/4; >> t = linspace(0, 2*T, 181); >> plot(t,rezgo(a,b,t,fi0,t)); >> grid on

5 FÜGGVÉNYVIZSGÁLAT, NEVEZETES PONTOK, HATÁROZOTT INTEGRÁL Mintafeladat Ábrázoljuk az f: x 12 cos(0,07x) sin(1,2x) + 1 függvényt a [20, 27] intervallumban, majd határozzuk meg a nevezetes pontjait! (Zérushelyek, minimum- és maximumhelyek.) Először a d:\munka könyvtárban hozzuk létre a megszokott módon az f3.m szöveges fájlt (saját függvény), majd ábrázoljuk a függvényünket. function y = f3(x) y=12*cos(0.07*x).*sin(1.2*x) + 1; end >> fplot('f3', [20 27]), grid on A következő lépés az adatok egérrel történő leolvasása, majd a kapott közelítő értékek pontosítása a megfelelő függvénnyel (fzero, fminbnd). Létező grafikon esetén a [p q] = ginput utasítás után az ábránkon egérrel egy pontra kattinthatunk, majd ezt a pozíciót Enterrel nyugtázhatjuk. A két koordináta a p és q változókhoz rendelődik. Ha a ginput(n) alakot használjuk, akkor a p és q vektorok n eleműek lesznek, azaz folyamatosan n darab pont érzékelését végezhetjük el. Az előbbi ábráról olvastassuk be a következő pontok közelítő értékeit ilyen sorrendben: a két zérushely a két lokális maximumpont az egy lokális minimumpont! Ellenőrizzük, hogy a p és q vektorok (nagyjából) megfelelő értékeket kaptak-e! A letapogatott pontok koordinátáit a következők szerint pontosítjuk. A zérushelyek keresését az fzero('függvény', hol) paranccsal végezhetjük el. >> zhx = [fzero('f3', p(1)) fzero('f3', p(2))], zhy = [0 0] A minimumhely kereséséhez az fminbnd('függvény', alsó határ, felső h.) parancsot használjuk. >> minx = fminbnd('f3', p(5)-0.5, p(5)+0.5), miny = f3(minx) Maximumhely kereséshez az fminbnd keresést a f(x) függvényre alkalmazzuk.

6 >> maxx(1)=fminbnd('-f3(x)',p(3)-0.5,p(3)+0.5), maxy(1)=f3(maxx(1)) >> maxx(2)=fminbnd('-f3(x)',p(4)-0.5,p(4)+0.5), maxy(2)=f3(maxx(2)) A pontokat feltesszük fekete, piros és zöld körökkel a grafikonra. >> hold on >> plot(zhx,zhy,'ko'), plot(maxx, maxy,'ro'), plot(minx, miny,'go') Tegyünk fel az ábrára jelmagyarázatot! (A megadási sorrend az ábraelemek sorrendje.) Adjunk az ábrának címet is! >> title('f(x) = 12*cos(0.07*x)*sin(1.2*x) + 1') A határozott integrál (függvény alatti terület) kiszámítására numerikusan a quad('függvény', alsó határ, felső határ, pontosság) parancs szolgál. >> integral = quad('f3', zhx(1), zhx(2), eps) Ezt is kiírjuk az ábrára a text(x, y, 'szöveg') parancs segítségével. >> text(20.5, -2.5, ['Zérushelyek közötti határozott integrál: ' num2str(integral)]) % Itt a karakterláncot egy sorvektorban adtuk meg szeletenként. Végül mentsük el az ábránkat abra1.jpg néven. >> print -djpeg90 -r300 abra1 % az aktuális könyvtárba A print utasítás paraméterei (lásd help print): -d után a típus jön (ps, psc, eps, epsc, jpeg<nn>, tiff, png, ) -r után a dot/inch IMPLICIT MEGADÁSÚ FÜGGVÉNYEK Mintafeladat Rajzoljuk ki az x 2 + y 2 = 1 síkegyenlettel adott kört az ezplot utasítással úgy, hogy a tengelyeket 1,1-től +1,1-ig skálázzuk! >> f = inline('x^2+y^2=1'), argnames(f) >> k=1.1; ezplot(f, [-k k -k k]), axis square % inline megadás >> k=1.1; ezplot('x^2+y^2=1', [-k k -k k]), axis square % sztringes megadás

7 Mintapélda Rajzoljuk ki az x 3 + y 3 =3a x y implicit egyenlettel adott Descartes-levelet! >> a = 2; % ekkor 3*a értéke 6 lesz >> f = inline('x^3+y^3=6*x*y'), argnames(f), ezplot(f, [-2*a 3*a -2*a 3*a]), axis square OTTHONI MUNKA Próbáljuk ki, hogy a plot parancsnál megismert megjelenést módosító vezérlők (szín, vonalstílus) az fplotnál is működnek. A hold utasítás nélkül is lehet több grafikont egy ábrára tenni. A szintaktika: plot(x1, y1, string1, x2, y2, string2, ), ahol a string1 pl. 'r' lehet. Próbáljuk ki! A csillapított rezgőmozgás függvényére is végezzük el a nevezetes pontok meghatározását, és rakjuk fel a pontokat az ábrára! Keressünk a súgóban/interneten példákat a kétváltozós függvények ábrázolására (többdimenziós grafika)! Próbáljuk ki őket, és módosítsunk egyes paramétereket! (Pl. fk = @(x,y) x.^2+y.^2, ezcontourf(fk), axis square) Dr. Szörényi Miklós, dr. Kallós Gábor (Széchenyi István Egyetem), 2014. Minden jog fenntartva