lexsolar-smartgrid Professional ÓL K K IL HL H

Hasonló dokumentumok
Construction of a cube given with its centre and a sideline

MAKING MODERN LIVING POSSIBLE. Danfoss Heating Solutions

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

Ültetési és öntözési javaslatok. Planting and watering instructions

Széchenyi István Egyetem

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

Using the CW-Net in a user defined IP network

Correlation & Linear Regression in SPSS

Utasítások. Üzembe helyezés

Performance Modeling of Intelligent Car Parking Systems

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

HAMBURG Használati útmutató Vezérlőmodul UKSM 24VDC Cikkszám:

4-42 ELECTRONICS WX210 - WX240

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Outlook - SmartGrid; SmartMetering

Computer Architecture

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN :2014

Pro sensors Measurement sensors to IP Thermo Professional network

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

16F628A megszakítás kezelése

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

USER MANUAL Guest user

THS710A, THS720A, THS730A & THS720P TekScope Reference

A évi fizikai Nobel-díj

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Contact us Toll free (800) fax (800)

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

Correlation & Linear Regression in SPSS

On The Number Of Slim Semimodular Lattices

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS

Vállalati kockázatkezelés jelentősége

(Asking for permission) (-hatok/-hetek?; Szabad ni? Lehet ni?) Az engedélykérés kifejezésére a következő segédigéket használhatjuk: vagy vagy vagy

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

EnergiaOtthon. Energy Home. Coal-burning. Széntüzelésű. Elektromos

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

MELLÉKLET / ANNEX. EU MEGFELELŐSÉGI NYILATKOZAT-hoz for EU DECLARATION OF CONFORMITY

2. Local communities involved in landscape architecture in Óbuda

Cashback 2015 Deposit Promotion teljes szabályzat

Szundikáló macska Sleeping kitty

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Genome 373: Hidden Markov Models I. Doug Fowler

Energia automatizálás

Statistical Inference

FÖLDRAJZ ANGOL NYELVEN

T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.

Create & validate a signature

INSTALLATION MANUAL For authorized service personnel only.

GEOGRAPHICAL ECONOMICS B

MINO V2 ÁLLVÁNY CSERÉJE V4-RE

1.1. EGYETLEN KÉSZÜLÉK ÜZEMBE HELYEZÉSE KÉT KÉSZÜLÉK ÜZEMBE HELYEZÉSE BEKAPCSOLT/KÉSZENLÉTI ÁLLAPOT

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Cluster Analysis. Potyó László

LED UTCAI LÁMPATESTEK STREET LIGHTING

1.oldal Budapest, Alsóerdősor u. 32 Tel.: / Mobil: / web:

Website review acci.hu

Csatlakozás a BME eduroam hálózatához Setting up the BUTE eduroam network

Travel Getting Around

Dependency preservation

A vitorlázás versenyszabályai a évekre angol-magyar nyelvű kiadásának változási és hibajegyzéke

BALÁZS HORVÁTH. Escalator

ASUS GX800 lézeres játékegér

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

Eladni könnyedén? Oracle Sales Cloud. Horváth Tünde Principal Sales Consultant március 23.

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

PIACI HIRDETMÉNY / MARKET NOTICE

7 th Iron Smelting Symposium 2010, Holland

Presenter SNP6000. Register your product and get support at HU Felhasználói kézikönyv

Abigail Norfleet James, Ph.D.

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

INTELLIGENT ENERGY EUROPE PROGRAMME BUILD UP SKILLS TRAINBUD. Quality label system

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV

A MUTATÓNÉVMÁSOK. A mutatónévmások az angolban is (mint a magyarban) betölthetik a mondatban

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Unit 10: In Context 55. In Context. What's the Exam Task? Mediation Task B 2: Translation of an informal letter from Hungarian to English.

Léptetőmotorok. Előnyök: Hátrányok:

Bird species status and trends reporting format for the period (Annex 2)

EN United in diversity EN A8-0206/419. Amendment

OLYMPICS! SUMMER CAMP

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

FÖLDRAJZ ANGOL NYELVEN

Affinium LED string lp w6300 P10

A teszt a következő diával indul! The test begins with the next slide!

FÖLDRAJZ ANGOL NYELVEN

OLED technology. OLED-technológia

2-5 játékos részére, 10 éves kortól

Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter

HAIR CLIPPER SET Instruction manual VC-1469

Átírás:

lexsolar-smartgrid Professional ÓL K K IL HL H

Layout diagram lexsolar-smartgrid Professional Item-No.1607 Bestückungsplan lexsolar-smartgrid Professional Art.-Nr.1607 1 2 3 4 5 5 6 7 8 9 5 10 5 14 11 12 5 15 1 1118-05 Diode module Pro 1118-05 Diodenmodul Pro 2 1118-11 Capacitor module Pro 1118-11 Kondensatormodul Pro 3 2x1607-01 Grid module Pro 2x1607-01 Stromnetzmodul Pro Version number Versionsnummer L3-03-171_20.11.2015 2 13 16 17 18 1800-08 Battery module holder 1xAAA Pro with 1801-06 LiFePo-battery AAA 1800-08 Akkuhalterungsmodul 1xAAA Pro mit 1801-06 LiFePo-Akku AAA 1800-12 Fuel cell holder Pro with 18 1800-12 Halterung Brennstoffzelle Pro mit 18 13 1118-02 Motor module with L2-02-017 Yellow propeller 1118-02 Motor module mit L2-02-017 Luftschraube (Propeller) gelb 14 6 2x9100-05 PowerModule with 14 2x9100-05 PowerModule mit 14 2xPower supply for 6 2xStromversorgung für 6 15 7 1118-13 MPP-Tracker Pro 1118-13 MPP-Tracker Pro 8 1118-03 Wind turbine module with 25 12 25 1118-03 Windturbinenmodul Pro mit 12 9 9100-03 AV-Module 9100-03 AV-Module 5xL2-04-066 Safety test lead 25 cm, red 4xL2-04-067 Safety test lead 25 cm, black 4xL2-04-059 Safety test lead 50cm, red 4xL2-04-060 Safety test lead 50 cm, black 5xL2-04-066 Sicherheitsmessleitung 25 cm, rot 4xL2-04-067 Sicherheitsmessleitung 25 cm, schw. 4xL2-04-059 Sicherheitsmessleitung 50 cm, rot 4xL2-04-060 Sicherheitsmessleitung 50 cm, schw 10 1100-62 Potentiometer module 110 Ohm Pro 1100-62 Potentiometermodul 110 Ohm Pro 16 1400-12 lexsolar-wind rotor set 1400-12 lexsolar-windrotoren 11 2x9100-04 SmartMeter 2x9100-04 SmartMeter 17 6xL2-05-068 Safety short-circuit plug 6xL2-05-068 Sicherheits-Kurzschlussstecker 12 2x1118-01 Light bulb module Pro 2x1118-01 Glühlampenmodul Pro 18 L2-06-067 Reversible Fuel cell L2-06-067 Reversible Brennstoffzelle 4 5 www.lexsolar.com

Layout diagram lexsolar-smartgrid Professional Item-No.1607 Bestückungsplan lexsolar-smartgrid Professional Art.-Nr.1607 19 20 21 22 24 25 26 23 19 2x1400-13 lexsolar-base unit Pro 2x1400-13 lexsolar-grundeinheit Professional 20 L3-03-176 Azimuth angle scale L3-03-176 Azimutwinkelskala 21 1118-17 Base for solar panel 1118-17 Standfuß Solarmodul 22 1400-19 lexsolar-wind machine 1400-19 lexsolar-winderzeuger 23 1100-04 Solar panel 5.22 V, 380 ma 1100-04 Solarmodul 5.22 V, 380 ma 24 L2-04-080 Lamp housing with L2-04-116 Illuminant 120W L2-04-080 Lampengehäuse mit L2-04-116 Leuchtmittel 120W 25 Wind turbine module with 8 Windturbinenmodul Pro mit 8 26 L3-03-081 lexsolar-dvd Pro L3-03-081 lexsolar-dvd Pro 2 www.lexsolar.com

Index Chapter 1: Description of the experimental components of lexsolar SmartGrid Professional... 2 Chapter 2: Protocols... 14 1. Basic experiments about photovoltaic... 15 1.1 The I-V-characteristic of a solar module... 15 1.2 The I-V-characteristic of a solar module depending on the illuminance... 18 1.3 The I-V-characteristic of a solar module depending on the temperature... 21 1.4 The I-V-characteristic of a solar module with MPP-tracker... 24 1.3 The functionality of the MPP-tracker... 27 2. Basic experiments about wind power... 30 2.1 The dependence of the power on the pitch angle and the blade design... 30 2.2 The dependence of the power on the number of blades... 33 2.3 The dependence of the power on the wind direction... 36 3. Basic experiments about energy storage technologies... 40 3.1 The I-V-characteristic of an electrolyzer... 40 3.2 Behavior of the voltage and the current during charging of an electrolyzer... 44 3.3 The I-V-characteristic of a fuel cell... 46 3.4 Behavior of the voltage and the current during discharging a fuel cell... 49 3.5 The t-v- and t-i-characteristic of a capacitor during charging... 51 3.6 The t-v- and t-i-characteristic of a capacitor during discharging... 54 3.7 The I-V-characteristic of a LiFePo-battery during discharging... 58 4.1 The power fluctuations of a photovoltaic station... 60 4.2 The power fluctuations of a wind turbine... 64 4.3 Energy supply of a building by a power plant... 69 4.4 Energy supply of a building by a power plant and a photovoltaic station... 73 4.5 Energy supply of a building by a power plant, a photovoltaic station and an energy storage... 77 4.6 The behavior of the voltage in a conventional line grid... 82 4.7 The behavior of the voltage in a line grid with photovoltaic station... 85 4.8 The behavior of the voltage in a line grid with photovoltaic station depending on the consumption... 89 4.9 The behavior of the voltage in a line grid with photovoltaic station depending on the distance to the transformer... 91 4.10 The behavior of the voltage in a line grid with photovoltaic station and an intelligent transformer station... 94 4.11 The behavior of the voltage in a line grid with photovoltaic station and an energy storage (fuel cell / E-Mobility)... 98 4.12 The behavior of the voltage in a line grid with photovoltaic station and load management... 102 4.13Power line monitoring... 105 4.14 Scenario experiment: Smart Grid... 108 L3-03-120_24.11.2015

Wind rotor set 1400-12 With the available components, rotors with 2, 3 or 4 blades and with a flat or an optimized profile can be created. There is a hub for 4 blades with a pitch angle of 25 and hubs for 3 blades with pitch angles of 20, 25, 30, 50 and 90. To assemble you should proceed in the following way: First, a hub with the desired rotor blade pitch and the number of blades should be selected. (The hubs are labelled on the back.) The Two-blade rotor and the Four-blade rotor can both be constructed with the Four-blade hub. After that, the rotor blades are installed. During the insertion of the blades, make sure that they are installed with the rounded side up. After installation of the rotor blades, the hub-cap will be mounted and lightly pressed against the hub. To replace the blades, a small nose is located on the head of the hub. If the nose is pressed lightly on a hard surface, the hub-cap can be removed easily. 3

With the azimuth angle scale it is possible to set up the azimuth angle between the solar module and the lamp. On one page there are rectangles arranged in a circle and labelled with corresponding times of day. If the solar module is placed in a certain rectangle, the azimuth angle is set up for the chosen time of day. For example, in the alongside figure the solar module is arranged in the 10 o clock position. Solar module in 10 o clock position Solar module in 8 o clock position The second page can be used for a more exact configuration of a specific azimuth angle. The angle is set up, when the leading edge of the solar module is located at the corresponding line. In the alongside figure the solar module is arranged in an azimuth angle of 300. On both scales the position of the lamp is marked. The distance between the lamp and the center of the solar module has to amount to at least 50 cm. The center of the solar module has to be located at the center of the angle scale. Advice: The azimuth angle scale does not name the deviation angle of the solar module concerning the south, but name the azimuth angle of the sun in the astronomic meaning! In the experiment is assumed that the solar module is aligned to south (optimal direction). Therefore the used azimuth angle is not the term used in solar engineering, where 0 describe an aligned solar module to the south (-90 to the east, +90 to the west). 6

Potentiometer module 1100-62 The potentiometer module holds a 0-10-Ω-potentiometer and a 0-100-Ω-potentiometer. Both are serially conneted, so that the potentiometer can attain resistances between 0 Ω bis 110 Ω. The measuring error amounts to 0.5 Ω for the small resistor and 5 Ω at other one. Light bulb module 1118-01 The light bulb module acts as a consumer in SmartGrid experiments. Specifications: Light bulb P typ = 200 mw (at 3.5 V) Fuses work up to maximum voltage of 6 V Diode module 1118-05 The diode module is used to avoid a return current to the wind turbine in SmartGrid experiments with many voltages sources. Without the diode the turbine could act as a motor. 10

Measure the I-V-characteristic of the solar module. Base unit Lamp Solar module AV-Module Potentiometer Cables and short circuit plugs 1. Set up the experiment according to the circuit diagram. Set the maximum resistance on the potentiometer. Arrange the solar module vertically in front of the lamp in a distance of 50 cm so that it will be illuminated entirely. The lamp should be aligned horizontally. 2. Switch on the lamp and measure voltage and current. Decrease the resistance of the potentiometer and measure further voltage and current values. You will measure useful values, if you note the values after a variation of 20 ma of current or a variation of 0.5 V of voltage. Measure the open circuit voltage and the short circuit current as well. 3. Calculate the power of the module for each measuring point. 15

V in V I in ma P in mw V in V I in ma P in mw 1. Plot your measuring points in the I-V- and V-P-diagram and draw the according curves. 16

2. Describe the behavior of the curves. 3. Draw the I-V-characteristic of a 10 Ω- and a 100 Ω-resistance into your diagram. Explain the meaning of the intersection points between the characteristic curves of the solar module and the resistances. 4. Evaluate the voltage and energy output of the solar module depending on the connection of a certain consumer. 5. Calculate the resistance, which generates the highest power of the solar module. 17

Measure the I-V-characteristic of the solar module with a lower illuminance as in experiment 1.1. Base unit Lamp Solar module AV-Module Potentiometer Cables and short circuit plugs 1. Set up the experiment according to the circuit diagram. Set the maximum resistance on the potentiometer. Arrange the solar module vertically in front of the lamp in a distance of 100 cm so that it will be illuminated entirely. The lamp should be aligned horizontally. 2. Switch on the lamp and measure voltage and current. Decrease the resistance of the potentiometer and measure further voltage and current values. You will measure useful values, if you note the values after a variation of 20 ma of current or a variation of 0.5 V of voltage. Measure the open circuit voltage and the short circuit current as well. 3. Calculate the power of the module for each measuring point. Calculate the power of the solar module for each measuring point. 18

V in V I in ma P in mw V in V I in ma P in mw 1. Plot your measuring points in the I-V-diagram and the V-P-diagram. Add the measuring points of experiment 1.1. 19

Measure the power graph of a photovoltaic station (of the solar module) during a simulated day. In this simulation the solar module represents a photovoltaic station and the lamp simulates the sun. In reality the sun is moving in the sky and permanently changes the angle of incidence respective to the photovoltaic station. In this simulation we are not going to move the lamp. Instead we are going to rotate the solar module by using the azimuth angle scale. In this way we get a better measurement accuracy. Take care, that you do not stand to close to the light beam. Shadings and reflections can affect the results. Lamp (sun) Solar module with base 0 (photovoltaic station) MPP-tracker AV-Module Potentiometer module 20 Ω (consumer) Cables and short circuit plugs Azimuth angle scale 60

1. Set up the experiment according to the circuit diagram. Stick the solar module into the base with an angle of 0 and adjust it with an angle of 270 on the azimuth angle scale. Arrange the lamp vertically in front of the solar module in a distance of 50 cm. The lamp should be aligned horizontally. Set a resistance of 20 Ω on the potentiometer. 2. Switch on the lamp. Use the MPP-search -mode of the MPP-tracker and wait until the LED stops blinking. Measure both voltage and current for the different given azimuth angles. For very low irradiances, MPP search mode might not work properly. In this case try to find the maximum power by using the control knob. Take care that the MPP-tracker is switched back to MPP-search -mode for the next measurement. 3. Calculate the power of the solar module by using the voltage and current measurement values. α in 270 285 300 315 330 345 0 time 6:00 7:00 8:00 9:00 10:00 11:00 12:00 V in V I in ma P in mw α in 15 30 45 60 75 90 Time 13:00 14:00 15:00 16:00 17:00 18:00 V in V I in ma P in mw 61

2. Name factors, which influence the power of photovoltaic stations in reality. 3. Evaluate the reliability and the predictability of the energy generation of photovoltaic stations. Compare them with fossil fuel power plants. 63

Measure voltage and current on and in an electric cable (grid module). This experiment simulates a high-voltage line with a high energy flow. Take care that there are no objects near the wind turbine to avoid injury and falsifying the measurement. In reality, the high-voltage lines are located between the wind turbines and the consumer. Because of the voltage metering, the electric cable is located behind the consumer. Base unit PowerModule Wind machine Wind turbine (wind farm) Optimized profile with 25 and 3 blades AV-Module Grid module (high-voltage line) Potentiometer module (Supply center) Cables and short circuit plugs Clock 1. Set up the experiment according to the circuit diagram. There should be a distance of 10 cm between the wind machine and the rotor. The turbine should directly face the wind machine. Set the minimum resistance on the potentiometer to simulate high energy demand. 2. Switch on the PowerModule at a voltage of 6 V. Measure voltage and current of the grid module after 30 s and 60 s. Afterwards, incrase the voltage by 1 V. 3. Repeat the measurement until you reach a voltage of 12 V. 4. Calculate the resistance and the power drain of the grid module. V Power in V 6 7 8 9 v wind in 4 4.7 5.3 6 30s 1min 30s 1min 30s 1min 30s 1min V grid in mv I grid in ma P in mw R in Ω 105

1. With the help of your observations, describe the real processes during the scenarios. Also include excess voltage. 111

lexsolar GmbH Strehlener Straße 12-14 01069 Dresden / Germany Telefon: +49 (0) 351-47 96 56 0 Fax: +49 (0) 351-47 96 56-111 E-Mail: info@lexsolar.de Web: www.lexsolar.de