Fehérjék kimutatása litium-dodecil-szulfát poliakrilamid-gélelektroforézissel (LDS-PAGE)



Hasonló dokumentumok
(β-merkaptoetanol), a polipeptid láncok közötti diszulfid hidak (-S-S-) felbomlanak (1. ábra).

Gyakorlati Forduló Válaszlap Fizika, Kémia, Biológia

3/11/2015 SZEDIMENTÁCIÓ ELEKTROFORÉZIS. Szedimentáció, elektroforézis. Alkalmazások hematológia - vér frakcionálása

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Vg = fv. = 2r2 ( ρ ρ 0 )g. v sed. 3 r3 πg = 6πη 0. V = 4 3 r3 π

Fehérje meghatározás Western blottal

ELEKTROFORÉZIS TECHNIKÁK

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

Szedimentáció, Biofizika szeminárium 2. szemeszter

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

10. Hét. Műszeres analitika Elektroforetikus analitikai technikák. Dr. Kállay Csilla (Dr. Andrási Melinda)

Szedimentáció, elektroforézis. Biofizika előadás Talián Csaba Gábor

Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz

Elektromos áram. Vezetési jelenségek

Fehérjék elválasztására alkalmazható mikrofludikai rendszerek Bioanalyzer, LabChip rendszerek. A készülékek működési elve, felépítésük, alkalmazásuk.

Sav bázis egyensúlyok vizes oldatban

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Elektroforézis technikák

Elektromos ellenállás, az áram hatásai, teljesítmény

Western blot technika

AZ EGYENÁRAM HATÁSAI

Biofizika szeminárium

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

SZABVÁNYMŰVELETI ELŐÍRÁS. A tejsavdehidrogenáz enzim izoenzimeinek vizsgálata című gyakorlat előkészítése

Szedimentáció, Elektroforézis. Kollár Veronika

Elektromos áram, áramkör

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Elektromos ellenállás, az áram hatásai, teljesítmény

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

KAPILLÁRIS ELEKTROFORÉZIS. dolgozat az Elválasztási műveletek a biotechnológiai iparokban c. tárgyhoz

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

Számítások ph-val kombinálva

5. Laboratóriumi gyakorlat

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Vg = fv. = 2r2 ( ρ ρ 0 )g. v sed. 3 r3 πg = 6πη 0. V = 4 3 r3 π

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

13 Elektrokémia. Elektrokémia Dia 1 /52

Biofizika szeminárium. Diffúzió, ozmózis

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

Közös elektronpár létrehozása

KÉMIA FELVÉTELI DOLGOZAT

Gyakorlati Forduló Fizika, Kémia, Biológia

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

ELEKTROFORÉZIS (1)

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Kémiai alapismeretek 6. hét

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv: oldal) 1. Részletezze az atom felépítését!

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Immundiagnosztikai módszerek

Klasszikus analitikai módszerek:

Az élethez szükséges elemek

Elektroforetikus mikrochip

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.

7. osztály Hevesy verseny, megyei forduló, 2003.

Oldódás, mint egyensúly

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.

Ecetsav koncentrációjának meghatározása titrálással

Szedimentáció, elektroforézis

Általános Kémia, 2008 tavasz

Kémia fogorvostan hallgatóknak Munkafüzet 9. hét

DNS munka a gyakorlatban Természetvédelmi genetika

Ni 2+ Reakciósebesség mol. A mérés sorszáma

Szerkesztette: Vizkievicz András

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Elektromos áram, egyenáram

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Többértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni.

Kémiai energia - elektromos energia

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

Elektromos töltés, áram, áramkör

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Az atommag összetétele, radioaktivitás

1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10

8. osztály 2 Hevesy verseny, megyei forduló, 2009.

SZABVÁNYMŰVELETI ELŐÍRÁS

1. Kolorimetriás mérések A sav-bázis indikátorok olyan "festékek", melyek színüket a ph függvényében

A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai

KONDUKTOMETRIÁS MÉRÉSEK

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

Oldódás, mint egyensúly

Átírás:

Fehérjék kimutatása litium-dodecil-szulfát poliakrilamid-gélelektroforézissel (LDS-PAGE) Elektroforézis vizsgálatok során anyagkeveréket folyadékba vagy gél egyik oldalára helyezünk, az edény két végére elektródot téve feszültséget kapcsolunk a rendszerre, az elektromos térerősség hatására a keverékben levő töltéssel rendelkező részecskék (fehérjék, nukleinsavak) a töltésük nagyságának és a részecskék méretének függvényében különböző sebességgel vándorolnak a pólusok felé, így egymástól szétválnak. Megkülönböztetünk szabadfolyású elektroforézist, géleletroforézist, kapilláriselektroforézist, izoelektromos fókuszálást. Ezen a gyakorlaton gélelektroforézist végzünk. A gél mindkét vége pufferbe ér, ahová egyegy fémeletród merül. Tápegység biztosítja a feszültségkülönbséget. A gélben a minták ionjai és a puffer ionjai vezetik az áramot, a drótokban az anódtól áramlanak az elektronok a műszer felé, a műszertől a katódhoz, így záródik az áramkör. Az elektroforézis inkomplett elektrolízis, vagyis nem várjuk meg, amíg a minták részecskéi elérik az elektródokat, hanem az oldószer, a víz bomlása történik elektromos áram hatására. Az anódnál mindig oxidáció zajlik, a vízből oxigéngáz keletkezik, a -2 oxidációs számú elem oxidációs száma 0-ra nő. A katódnál mindig redukció történik, a víz +1 oxidációs számú H-je H 2 gázzá redukálódik elektron felvétellel. A töltéssel rendelkező részecskékre az előre mozgató elektromos, pontosabban elektrosztatikus erő hat, melynek nagysága egyenesen arányos a részecske töltésével és az elektromos térerővel. Az elektromos térerő az egységnyi távolságban levő elektródok közötti feszültségkülönbséget jelenti. F e = q E

A hátráltató közegellenállási erő (F k ) a közegellenállási együtthatóval, más néven súrlódási faktorral (f), és a részecske egyenletes haladási sebességével (v) egyenesen arányos, miután stabilizálódtak az elektromos paraméterek. F k = f v Az elektroforézis során a részecskék addig gyorsulnak fel, amíg a két erő egyenlővé válik, és innentől a részecskék egyenletes sebességgel haladnak: F e = F k vagyis qe = fv Átrendezve az egyenletet:

PAGE készítése Akrilamid és N,N -metilén-biszakrilamid vizes oldatának megfelelő arányú elegyét perszulfát iniciátor és TEMED katalizátor kis mennyiségének jelenlétében öntik két üveglap vagy plexilap közé, ha lapgélt öntenek, ill. egy-egy üveghengerbe, ha diszk-gélt (henger alakú gélt) készítenek. A bomlékony peroxidiszulfátból keletkező szulfátgyök a TEMED molekulával reagálva TEMED-gyököt hoz létre, ami katalizálja a gyökös polimerizációt, térháló keletkezik, melynek pórusátmérője az összetevők arányától függ. Mivel az N,N -metilén-biszakrilamid képezi a keresztkötéseket, mennyiségét növelve a pórusok nyilvánvalóan kisebbek lesznek. A gél rendszerint 4-20% akrilamidot tartalmaz, a keresztkötő biszakrilamid mennyisége mintegy 1-3%-a az akrilamid monomernek. A gélkészítéshez használt anyagok veszélyesek, a perszulfát táplálja az égést, a TEMED gyúlékony, az akrilamid egészségre veszélyes, vélhetőleg rákkeltő. A készítés veszélyei miatt laboratóriumokban népszerűbb a vásárolt gél. Létezik homogén gél, melyben a pórusok átmérője mindenhol közel azonos, van gradiens gél, ahol a pórusátmérő folyamatosan változik, de általánosabban használt fehérjék elválasztására a kétféle gélből készített, ú.n. discontinuus gél. A felső gyűjtőgél, más néven koncentrálógél (stacking gel) nagy pórusátmérőjű, ph-ja 6,8 és nem jelent jelentős akadályt a minta részecskéi számára. A nagyobbik a futtatógél (elválasztógél = szeparálógél = runnig gel = separating gel), melynek pórusmérete kisebb, a gél szűrőhatása fogja megszabni a vándorlás sebességét, benne a ph 8,8-9 közötti. A mintákat a gél öntésekor fésű behelyezésével létrehozott zsebekbe visszük fel (a fésűt eltávolítjuk a gélből). A színtelen mintákhoz brómfenolkék festéket adunk, amely kis molekula és erősen negatív töltésű, így gyorsabban vándorol minden elválasztandó részecskénél, a kialakuló színes frontvonal mutatja a vándorlás sebességét. A puffer

A ph beállítása általában TRIS-klorid pufferrel történik, trisz-hidroximetil-aminometán és annak sósavas sója az alkotórészek. A kloridion mindig negatív töltésű, hiszen a sósav erős sav, oldatban minden ph-n és töménységben teljesen disszociál, az ionok küzül mindig a leggyorsabban vándorol. A másik változó töltésű anyag a pufferben rendszerint a glicin aminosav. A karboxil-csoport pk értéke 2,34, az aminocsoporté 9,6. Amikor ph = pk1, a teljesen protonált +1 töltésű és az ikerionos forma van 50-50 %-ban jelen. Amikor a ph = pk2, a nettó semleges ikerionos forma és a -1 töltésű teljesen deprotonált anion van azonos mennyiségben. Az izoeletromos pont a két pk érték számtani közepe, vagyis 5,87, ezen a phn az ikerionos semleges forma dominál. A gyűjtőgél kémhatása a glicin izoelektromos pontjához közel van, kevés a glicinát- anion, megnő az elektromos térerősségnek a mintafehérjékre jutó vonzó hatása, hisz a rendszerre kapcsolt feszültség állandó, a pufferben levő anionok számának csökkenése helyileg ellenállás növekedést jelent. Ez gyors vándorlásra készteti a mintafehérjéket, egyszerre, egy csíkban lépnek be az elválasztógélbe. Itt az alkalikus kémhatás miatt a glicin disszociációja felgyorsul, a sok glicinát, mely 1 negatív töltéssel bír, gyorsan vándorol az anód felé, míg a mintafehérjék lemaradnak, töltésük és méretük szerint különböző sebességgel tudnak átjutni a pórusokon. 3. kevés glicinát anion v. MOPS anion 2. mintafehérjék 1. Cl - 4. mintafehérjék 3. jelzőfesték (brómfenolkék) 2. sok neg. glicinát vagy MOPS anion 1. Cl - A mai kísérletben TRIS-t a futtatópufferben, helyette a gélben bis-tris puffert, a glicin helyett MOPS követő iont használnak a futtatópufferben, de az elv azonos a fentiekkel. A mindig negatív kloridion a vezető, leggyorsabban vándorló ion, a MOPS [3-(N-morpholino)propanesulfonic acid] töltése a ph-tól függ, csak részben disszociál, pk-ja 7,2. A gélpuffer ph-ja 6,4 és a futtató pufferé 7,5 körüli, így az elektroforézis során a kétféle ph eredőjeként kb. semleges ph-n történik a fehérjék elválasztása. Ez enyhe körülményeket jelent, a módszer alkalmas érzékeny fehérjék elválasztására. TRIS és kloridja Bis-tris és ennek sósavas sója HOH 2 C HOCH 2 C NH 2 (H + Cl - ) HOH 2 C HOH 2 C CH 2 CH 2 OH HOCH 2 C N (H + Cl - ) HOH 2 C CH 2 CH 2 OH

Natív PAGE A fehérjék aminosav-oldalláncai között vannak protonálhatók-deprotonálhatók, melyek közül a Glu és Asp karboxilcsoportjai savas karakterűek, a His, Lys, Arg bázikusak, a Cys SHcsoportja és Tyr fenolcsoportja gyenge savak. A fehérjék össztöltése a közeg ph-jának függvénye. Enyhén alkalikus közegben a legtöbb fehérje nettó negatív, ezért a katód felé vándorol. Amikor enyhe körülmények között történik az elektroforézis, a nem túlságosan érzékeny fehérjék megtartják természetes térszerkezetüket. A dimerek, multimerek nem válnak szét, tehát a negyedleges térszerkezet is megmarad a nem denaturáló közegben, alacsony hőmérsékleten és megfelelő pufferben. Elválasztás után a gélben helyben (in situ) kimutathatók a fehérjék, enzim esetén katalizálhat egy színes terméket adó reakciót. Az egyik biokémia gyakorlat a II. félévben az LDH izoenzimek elválasztása, ahol a laktát oxidációja során keletkező NADH az elektronját fenazin-metaszulfát közvetítő segítségével tetrazólium-kék festéknek adja, a megjelenő kék csík jelzi a laktát-dehidrogenáz tetramer enzim elhelyezkedését a gélben. Fehérjék tisztítása során PAGE módszerrel ellenőrizni lehet, hogy csak egy komponens vane jelen, (bár a fehérjék aggregációja megtévesztő lehet), vagy több csík jelzi a szennyeződéseket, vagy esetleg az alegységek szétesését a nem megfelelő körülmények között. Jellemzően ezen elválasztás során az enzim együtt marad az inhibitorával, a receptor a ligandjával stb. SDS-PAGE, LDS-PAGE A másik fajta gélelektroforézis során SDS vagy LDS anionos detergens, merkaptoetanol SHreagens és hő együttes alkalmazásával történik a fehérjék denaturációja. Az amfipatikus detergens molekulában térben elkülönülnek a hidrofil és hidrofób részek. S S + + HO-CH 2 -CH 2 -SH + hő A lauril-szulfát Na vagy Li sója a fehérje belsejében levő London-féle diszperziós kötéseket bontja, a másod-, harmad- és negyedleges szerkezet megbomlik, a detergens hosszú apoláros szénlánca kötődik a kitekeredett fehérjelánchoz, körülbelül egy SDS vagy LDS két aminosavhoz. Így a fehérje saját töltése elhanyagolhatóvá válik, egységesen erősen negatív töltésű komplex keletkezik, és oldatban is marad a denaturált fehérje a töltéstaszítás és

hidrátburok képződése miatt. A detergens a fehérjét a membránokból is képes kioldani. Minél hosszabb a fehérje, annál több detergens kötődik hozzá, annál több negatív töltése lesz, ami a pozitív elektródhoz vonzza, ugyanakkor a nagyobb méretű komplexre jobban hat a gél szűrő hatása. A visszatartó erő fogja meghatározni a vándorlás sebességét. A merkaptoetanol a ciszteinek közötti diszulfidhidakat redukálja, az eredetileg háromdimenziós fehérjemolekula kiegyenesedik, a több alegységből álló fehérjék szétesnek. A magas hőmérséklet gyorsítja a denaturációt. A mai kísérletben használt gél előnye, hogy mivel a ph futtatás során 7 körüli, a ciszteinek nem képeznek diszulfidhidakat (cisztein SH pk = 8-9), ezt csak a hagyományos gél enyhén alkalikus ph-ján tennék, és mert a gyorsan vándorló nátrium-biszulfit biztosítja a redukáló közeget a gélben, míg a merkaptoetanol vándorlása lassabb a fehérjéknél. Semleges ph-n az akrilamid gél is stabilabb. A mintákat a vertikális gél tetején levő gélzsebekbe visszük fel. A kisebb részecskék tudnak gyorsabban vándorolni a gél szűrő hatása miatt, a molekulák molekulatömegének logaritmusa fordítottan arányos a megtett úttal, a futási távolsággal. Ismert molekulasúlyú anyagok keverékét egy gélen futtatva a mintákkal, az ismeretlen molekulatömegű fehérje (alegységeinek) molekulatömege leolvasható, meghatározható a standard létrához való hasonlítással. A módszer jól használható fehérjék tisztaságának vizsgálatakor is. A minták láthatóvá tétele, festése A fehérje és nukleinsav minták egyaránt színtelenek. Láthatóvá tételük különböző módszerekkel történhet. Aspecifikusan minden fehérjéhez kötődő festékeket gyakran alkamaznak. Ilyenek a Coomassie Brilliant Blue (C. ragyogó kék), Acidic Fast Green (savanyú gyors zöld), Amido Black (amidofekete), ezüst-bromid. Ellenanyag köthető a fehérjéhez, mely egy másik ellenanyaggal reagálhat, amihez egy enzim van kötve (pl. torma-peroxidáz), annak szubsztrátját hozzáadva színes, fluoreszkáló, leggyakrabban luminescens termékké alakul (különböző szubsztrátot használva). Ez utóbbi festésmód jellemzően a gélelektroforézis után

végzett blottolás eredményének kimutatására használatos, neve immunoblot. (A blottolás a gélről másik hordozóra, pl. nitrocellullóz membránra pufferben, elektromos térerő hatására történő anyagátvitelt jelenti. A módszer neve Southern-blot, ha DNS-t, Northern-blot, ha RNS-t, és Western-blot, ha fehérjét transzferálnak. A gélben kialakult mintázat megmarad a nitrocellulóz membránon.) Léteznek fluoreszcens festékek is. A nukleinsavak kimutatására használt etidium-bromid poliaromás vegyület, interkaláló festék (ezért mutagén, carcinogén, teratogen), UV-fénnyel megvilágítva a látható tartományban bocsájt ki fényt. Ha radioaktív elem van beépítve a fehérjébe vagy nukleinsavba ( 32 P), akkor fényérzékeny röntgenfilmen sötét csík keletkezik. A kísérlet kivitelezése Összeszereljük a készüléket az elektroforézishez, belehelyezzük a gélt. Feltétlenül használjunk kesztyűt, mert a gél anyagai veszélyesek, a monomer akrilamid feltehetőleg rákkeltő, neurotoxikus és a fertilitást gátolja férfiakban. Az előre gyártott gélről le kell tépni a papírcsíkot, ezen keresztül fog érintkezni a pufferrel. Az alacsonyabb plexilap a belső tér felé nézzen, ide fogjuk felvinni a mintákat a fésű eltávolítása után. A NuPAGE MOPS feliratú puffer összetétele: 50 mm MOPS [3-(N-morpholino)- propanesulfonic acid], 50 mm Tris Base, 0.1% SDS, 1 mm EDTA, ph 7.7 A futtatópuffert felhigítjuk 20-szorosra, vagyis 50 ml pufferhez 950 ml desztillált vizet öntünk mérőhengerben. A vizet óvatosan adagoljuk, hogy ne túlságosan habozzon. Az alsó futtatókádba kb. 600 ml, a felsőbe kb. 200 ml puffer elegendő. A gél tetején puffernek kell lennie, de a két puffer felül nem folyhat össze. Ez a gél (NuPAGE Bis-Tris Gel) és puffer a kis és közepes, 14-200 kda molekulasúlyú fehérjék elválasztásához megfelelő. A minták előkészítése számozott Eppendorf-csövekbe a gyakorlatvezető által: 1 2 3 4 marha szérumalbumin (BSA) μl 2 szénsav-anhidráz (CA) μl 7 citokróm c (cyt c) μl 10 alkohol-dehidrogenáz (ADH) μl 4 LDS puffer, benne LiDS és festék 5 5 5 5 μl NuPAGE redukálószer ( SH-reag.) 2 2 2 2 μl deszt. víz 11 6 3 9 Az Eppendorf-csöveket 10 percig 70 ⁰C vízfürdőben inkubáljuk, a mintafehérjéket denaturáljuk.

A gélzsebekbe pipettázzuk a 20 μl-nyi mintákat, melyek kb. 20 μg fehérjét tartalmaznak, és 10 μl molekulasúly-standardot. A készülék fedelét rátesszük, az elektródokat illesztjük. A futtatás 175 V állandó feszültségen és 30-40 ma áramerősséggel történik 1 órán át. Az áramerősség csökken a futás során. A futtatási idő letelte után a készüléket kikapcsoljuk, a fedelet levesszük, az elektródokat eltávolítjuk, a gélt kivesszük, a gél műanyag burkát a két oldalánál a gélvágó késsel szétfeszítjük (egyszer használatos, eldobandó). A gélről a zsebeket levágjuk a késsel. Óvatosan fellazítva a gélt a hordozóanyagról átemeljük a festőtálkába. A gél mosása, a nem polimerizálódott anyagmaradékok és a puffer anyagai egy részének eltávolítása 3-szori mosással történik a következőképpen (kesztyűt használva): vízzel leöntjük a gélt, hogy eléggé ellepje a víz mikrohullámú sütőben 1 percig 1000 W teljesítménnyel forraljuk, majd 1 percig libegtetjük lassan Mini Rocker készülékkel leöntjük a vizet a mosogatóba, a gél maradjon a tálkában. A fehérjék festése SimplyBlueSafeStain oldat Coomassie Brillant Blue G250 nevű festéket tartalmaz, 25 ml festékkel 25 másodpercig nem tovább 1000 W-on főzzük a mikrohullámú sütőben a gélt. A festéket leöntjük. Ezt desztillált vizes mosás követi 10 percig libegtetve, hogy a nem kötődött festéket kimossuk. Molekulasúly leolvasása a standard létráról: A mintafehérjék molekulasúlyai: BSA: 66 kda, szénsav-anhidráz: 29 kda, citokróm c: 12,4 kda, alkohol-dehidrogenáz: 150 kda.