9. HÍRADÁSTECHNIKA I. Dr.Varga Péter János
2 Jelátalakítók
Jelátalakítók 3 Az információt továbbító jeleket Pl.: hanghullámok vizuálisan értékelhető események stb. ahhoz, hogy tárolni, továbbítani tudjuk, elektromos jelekké kell konvertálnunk. Azokat az eszközöket, melyek különböző fizikai jeleket elektromos jelekké alakítanak, ill. visszaalakítanak jelátalakítóknak nevezzük.
Híradástechnikában alkalmazott 4 legfontosabb jelátalakítók Akusztikai jelátalakítók: Mikrofonok Hangszórók Vizuális jelátalakítók: Kamerák, képfelvevő csövek, CCD-k Képcsövek, LCD-k, Plazma megjelenítők
Mikrofonok 5 Hangfrekvenciás tartományban a levegő nyomásváltozását érzékelő eszköz Hanghullámokat elektromos jellé alakítja Típusai (legfontosabb): Szénmikrofon Dinamikus mikrofon Kondenzátor mikrofon Elektrét mikrofon Piezoelektromos
Szénmikrofon 6 A gerjesztő hangnyomás mozgásra készteti a fém membránt. A fém kosár felé elmozduló membrán zömíti a kitöltő szén töltőanyagot, míg a távolodó csökkenti annak zömítettségét -> ellenállás változás
Dinamikus mikrofon 7 A membrán elmozdulása hatására a lengő tekercs elmozdul az állandó mágnes által gerjesztett mágneses térben. A lengőtekercsben (mint erőkarokat metsző vezetőben) áram indukálódik. Az indukált áram arányos a gerjesztő hangnyomással.
Kondenzátor mikrofon 8 A hangnyomás hatására az egyik fegyverzet elmozdul, így közelebb, illetve távolabb kerül a másiktól (vagyis változik a d ). A változás kapacitásváltozást jelent. Q=U C A kapacitás változás nem más, mint a töltés tároló képesség változás, vagyis az R ellenálláson töltő vagy kisütő áram indul meg. Ez az áram arányos a gerjesztő hangnyomással.
Kondenzátor mikrofon 9 Kapacitás : C = ε A d
Piezoelektromos mikrofon 10 Egy megfelelő kristálysík mentén elvágott kvarc kristály korongból alakítják ki. A működés alapelve a piezoelektromos hatásbon alapul. A kristály a deformáció esetén polarizációs töltöttséget jelenít meg. A töltések elvezetéséhez a kristályra fémgőzöléssel (vákuumgőzölés) két érintkezőt gőzölnek (pl. aranyréteg)
Hangszórók 11 Elektromos jeleket hangnyomássá konvertáló eszközök. Legfontosabb típusai: Dinamikus hangszóró Piezo v. kristályhangszóró Kondenzátor hangszóró
Dinamikus hangszóró 12 Tartó kosár Dinamikus mikrofon inverz működése Lengő tekercs Állandó mágnes
13
Piezoelektromos hangszóró 14 Elektrosztrikció jelenségét használja ki, miszerint: bizonyos kristályok alakja megváltozik, ha bizonyos pontjaira elektromos feszültséget vezetünk.
Kondenzátor hangszóró 15 A mozgó fegyverzet fémréteggel bevont vékony dielektrikum (általában műanyag), míg az álló fegyverzet egy perforált lemez.
Vizuális jelátalakítók 16 Kamerák CCD CMOS
CCD 17 Charge coupled device Magyarul: töltéscsatlakozású képalkotó eszköz Félvezető lapkán képpontoknak megfelelő szigeteket alakítanak ki, melyeken a pillanatnyilag tárolt töltés arányos a képpontra jutó fény intenzitással. A színes kép érzékelését színszűrőkkel oldják meg.
18 CCD
CCD 19 Elkülönített fotószenzorok szabályos elrendezésben Töltés csatolt eszköz (CCDs) Terület CCD-k és lineáris CCD-k 2 terület típus: interline transfer és frame transfer fotóérzékeny tárolás
20 CCD
21
CMOS 22 Ugyanolyan szenzorelemek, mint CCD-nél Minden fotószenzornak saját erősítője van Több zaj esetén (redukálás fekete kép kivonásával) Alacsonyabb érzékenység Standard CMOS technológiát használ Más komponensek is lehetnek a chipen Smart pixels
23 CMOS
CCD és CMOS 24 Régebbi technológia Különleges technológia Magas gyártási költség Magasabb teljesítményfelvétel Magasabb kitöltési tényező Soros kiolvasás Aktuális technológia Standard IC technológia Olcsó Alacsonyabb fogyasztás Kevésbé érzékeny Pixelenkénti erősítés Véletlen pixel hozzáférés Chip-en integrált más komponensekkel
25
26 Megjelenítés
27
Megjelenítés - paraméterek 28 Üzemmód: karakteres (karakterhelyek), grafikus (pixelek) Képátló: pl. 17, 19,21, 15,4, stb ( látható képátló) Képarány: 4:3, 16:9 Felbontás: pl. 800x600, 1027x768 Képpont-távolság: pl. 0,12-0,28mm Képpont-sűrűség (Pixel Per Inch): pl. 80-105PPI Kontraszt: a legvilágosabb és legsötétebb szín fényességének aránya (pl. 250:1, 1000:1) Fényerő: az elektronok felvillanásának (CRT), vagy a háttérvilágítás (LCD, LED) fényessége (pl. 250cd/m2); Látószög: A monitor képe milyen szögből látható (pl. H:160 / V:150 )
29
Képmegjelenítés - CRT 30 CRT (Cathode Ray Tube): szabad elektronok gyártása, fókuszálás, gyorsítás, eltérítés, a becsapódó elektron az elektro lumineszcens anyag típusától függően generál fehér, piros, zöld, kék fényt. Fekete-fehér CRT: ezüsttel aktivált cinkoxid a luminofor anyag, fehér fény Színes CRT: minden képpontot három különböző (R,G,B) színű fénypont hoz létre, a három elektronágyúból kiinduló elektronsugár intenzitását külön-külön vezérelve jön létre a színes kép.
31 CRT - Cathode Ray Tube
Képmegjelenítés - CRT 32 Előnye Színhű megjelenítés Viszonylag olcsó Hátránya Nagy méret Nagy súly Egészségre káros
Képmegjelenítés - LCD 33 LCD: Liquid Crystal Display A LC-ra adott feszültséggel arányosan változtatja a polarizáció szögét, a feszültség növelésével egyre több fény jut át a kimeneti (2) polárszűrőn. Színes LCD: minden képpontot három (RGB) LCD egység alkot, az egyes LCD-k előtt színszűrő van Háttérvilágítás, polárszűrő1, LC, polárszűrő2
34
Képmegjelenítés - LCD 35 Előnye Kis helyigény Alacsony energiafelhasználás Hátránya Magasabb ár Kevésbé telt színek Pixelhiba-lehetőség
Képmegjelenítés PDP 36 PDP -Plazma Display Panel Működési elve: A cél az, hogy a három alapszínnek megfelelő képpont fényerejét szabályozni lehessen. Ebben az esetben a neon és xenon gázok keverékének nagy UV-sugárzással kísért ionizációs kisülése készteti a képpont anyagát színes fény sugárzására, pont úgy, mint a neoncsövekben. Mivel minden egyes képpont egymástól függetlenül, akár folyamatos üzemben vezérelhető, a monitor villódzástól mentes, akár 10 000:1 kontrasztarányú, tökéletes színekkel rendelkező képet is adhat, bármely szögből nézve.
37
38 Képmegjelenítés PDP
Képmegjelenítés - PDP 39 Előnye Villódzástól mentes Tökéletes színeket ad bármely szögből nézve Hátránya Fogyasztása a CRT- hez hasonló Gázszivárgás lehetősége
Képmegjelenítés OLED 40 Az OLED kijelző (Organic Light Emitting Diodes) Ezen kijelzők alapanyaga egy szerves anyag, mely elektromos potenciál különbség hatására fényt bocsájt ki, ugyanis a negatív és pozitív töltéshordozók találkozásakor a felszabaduló energia fénnyé alakul. Az OLED kijelzőnél is RGB szubpixelek adják a színes képinformációt, mint az LCD vagy PDP esetében, ezek egyedi elektromos vezérlésével hozható létre a színes kép
41 Képmegjelenítés OLED
TV technológiák 42 PAL 572I 420kpixel SD 572I 420kpixel HD 1080I, 1080P 2Mpixel 4K UHD 2160p 8K UHD 4320p 8Mpixel 33Mpixel
HDTV 43 A HDTV (High Definition TV) rendszerének kialakulása két okra vezethető vissza: Az SDTV (Standard Definition TV) gyártók félelme a piac telítődésétől, ez a tény új utakra vezérelte őket A TV szeretett volna konkurenciája lenni a filmnek, a régi versenytársnak E két motivációból indult ki a HDTV műszaki tartalmának megfogalmazása: a függőleges felbontás legyen kb. kétszer nagyobb, mint az SDTV-nél a kép oldalaránya legyen 16:9, igazodva az emberi látás térszögéhez a hangrendszer legyen a legkorszerűbb., 5.1
A HDTV rendszer jellemzői 44 Azonos képmagasság mellett a HDTV-hez kétszer közelebb ülhetünk, a sorokat így sem látjuk, de a vízszintes látószög megnövekszik!
45 Képfelbontások
8K TV 46 98 az 248.92 cm
Projektorok - DLP 47 DLP projektor:működésének kulcsa egy félvezető chip, amely több millió apró tükör mozgatásával éri el a megfelelő színélményt. Mivel a DLP teljes egészében digitális technológia, ezért teljes egészében kiküszöböli a kép torzulását és kristálytiszta képet biztosít. Hátránya főleg a régebbi eszközök esetében, hogy hosszabb ideig nézve az általa vetített képet egy idő után szemfájást okozhat a színtárcsa állandó mozgása miatt. (Szaggatott kép-stroboszkóp hatás)
48 Projektorok DLP
Projektorok LCD 49 LCD projektor: Az LCD egy újabb technológia a projektorok területén. Élesebb, színgazdagabb képek vetítésére alkalmas, mint a DLP projektorok, mindezt a szemet fárasztó technológia nélkül.
50 Projektorok LCD
51
52 TV technológiák és szolgáltatások fejlődése PAL SDTV MPEG-2 DVB-C (SD) MPEG-4 IPTV (SD, HD) DVB-S2 (SD, HD) DVB-C (HD) } HDTV 3D TV
TV megjelenítő technológiák fejlődése 53 Penetráció Színes TV HD képes TV Fekete-fehér TV 15 év kell a 80% penetrációhoz 21 év kellett a 80% penetrációhoz 25 év kellett a 80% penetrációhoz
54 3DTV vevőkészülékek
3DTV bevezetése 55 Értéklánc: Műsorkészítő Műsorszolgáltató Néző Ma kb.13.000 moziban van 3D filmvetítés
3DTV az előfizetőnél 56 TV megjelenítők elérhetőek Side by Side üzemmód- HD sávszélesség Felbontás felére csökken Szemüveg alkalmazása Aktív vagy passzív szemüveg Előfizetői szokások? TV kép méret Nézési távolság
Megjelenítési technológiák 57 Anaglif Polarizációs Képváltásos (sztereoszkópikus) Interferencia szűrős Pszeudo-sztereoszkópikus Autosztereoszkópikus Holografikus Volumetrikus
Anaglif (Anaglyph) 58 Csatornakódolás komplementer színekkel Csatornák szétválasztása színszűrőkkel Rengeteg anyag elérhető hozzá pl.: Anaglif filmek Képek és képregények, játékok
59 Anaglif (Anaglyph)
Anaglif (Anaglyph) 60 Előnye Legolcsóbb technológia Olcsó passzív szemüveg Széles látószög Bármilyen megjelenítő Kis sávszélesség Hátránya Színveszteség Részletvesztés Szellemképes Nem terjed el Retinális rivalizálás Szemüveg kell
Polarizációs 61 Alapelv: a szem nem észleli a fény polarizációs tulajdonságát Sztereoszkópikus: 2 képcsatorna választható szét Polárszűrőkkel különítik el a képcsatornákat Lineáris Cirkuláris A technológia jelen van, IMAX és RealDmozikban használják manapság
Polarizációs 62 Felhasználható polarizációk: Jobbra forgó cirkuláris Balra forgó cirkuláris Horizontális lineáris Vertikális lineáris
63 Polarizációs
Polarizációs 64 Előnye Azonos a két kép minősége Olcsó passzív szemüveg Széles látószög Bármilyen megjelenítő 2D kompatibilitás Hátránya Drága speciális vászon LCD-n fele felbontás LCD-n polárszűrő Szemüveg kell Fényintenzitás csökkenés Fejmozgatás problémás lehet
Műsorszórás Anaglif 3D Polarizációs Aktív shutteres Autosztereoszkóp 65 3D megjelenítés módja Színszűrőkkel szétválasztják a képcsatornákat Polarizációban szétválasztják a képcsatornákat Dupla képfrekvencia mindkét perspektívára Lencsesorral vagy akadállyal választják szét a képcsatornákat Első használat 1853 1936 1922 1903 Fejlesztés ára Olcsó Drága Drága Nagyon drága Fő előny Kompatibilitás Olcsó szemüveg Minőség, fullhd Nincs szemüveg Fő hátrány Szellemképes Fele felbontás Szemüveg 3D látási zónák Kép minőség Rossz Átlagos Kiváló Alacsony felb. Szemüveg ára Nagyon olcsó Olcsó Drágább 0 Kompatibilis a mai TV-kel? Igen Nem, polárszűrő kell hozzá Nem, új TV kell min. 120Hz Nem
66 TV-s szokásaink most és
67
Forrás 68 Csányi Kinga: A TV működése Putz József: 3DTV megvalósítása Gonda Attila: Számítógépes képmegjelenítők