CSURGALÉKVÍZ ÉS TISZTÍTÁSA



Hasonló dokumentumok
Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék

MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFOM

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

SZENNYVÍZ ISZAP KELETKEZÉSE,

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

Szennyvíztisztítás III.

Magyar-szerb határon átnyúló szakmai együttműködés az arzénmentes ivóvízért (IPA projekt)

Szennyvíztisztítás III.

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE

Mikrobiális folyamatok energetikai hasznosítása a depóniagáz formájában

Technológiai szennyvizek kezelése

Szennyvíztisztítás. Harmadlagos tisztítás

Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Fordított ozmózis. Az ozmózis. A fordított ozmózis. Idézet a Wikipédiából, a szabad lexikonból:

MMK Szakmai továbbk SZERVESANYAG ELTÁVOLÍTÁS

AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE

Korszerű eleveniszapos szennyvízkezelési eljárások, a nitrifikáció hatékonyságának kémiai, mikrobiológiai vizsgálata

Környezetmérnöki alapok (AJNB_KMTM013) 7. A vízvédelem alapjai. A vízkezelés technológiai alapfolyamatai.

MASZESZ. Vízipari újdonságok, fejlesztések, innovációk. ReWater konténeres ivóvíztisztító rendszer. Lajosmizse,

Általános és szervetlen kémia Laborelıkészítı elıadás I.

VÍZTISZTÍTÁS, ÜZEMELTETÉS

Környezetvédelmi

A Kis méretű szennyvíztisztító és víz. Shenzen projekt keretén belül

IPARI ÉS KOMMUNÁLIS SZENNYVIZEK TISZTÍTÁSA

Kérdőjelek a víztisztítás kapcsán

Iszapkezelés, biogáz előállítás és tisztítás

Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet. Dr. Takács János, Nagy Sándor egyetemi docens, tanszéki mérnök

A kisméretű szennyvíztisztító továbbfejlesztése a megújuló energiaforrás előállítása és hasznosítása révén

A kommunális hulladéklerakók csurgalékvizének tisztítása fordított ozmózis elvén működő víztisztító rendszerekkel

Az extrakció. Az extrakció oldószerszükségletének meghatározása

Nagyhatékonyságú oxidációs eljárás alkalmazása a szennyvízkezelésben

Biológiai szennyvíztisztítás

TCE-el szennyezett földtani közeg és felszín alatti víz kármentesítése bioszénnel

Milyen biológiai okai vannak a biológiai fölösiszap csökkentésnek? Horváth Gábor Szennyvíztechnológus

Szakmai ismeret A V Í Z

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Települési szennyvíz tisztítás alapsémája

Norit Filtrix LineGuard

Települési szennyvíz tisztítás alapsémája

Környezetvédelmi műveletek és technológiák 5. Előadás

Környezetvédelmi

2. Junior szimpózium december 9. Budapesti Műszaki és Gazdaságtudományi Egyetem. A pápai szennyvíztisztító telep szabályozásának sajátosságai

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

VÍZTISZTÍTÁS BIOLÓGIAI MÓDSZEREKKEL. Készítette: Kozma Lujza és Tóth Ádám

Laky Dóra, Licskó István. Ivóvizek arzénmentesítése

A nitrogén körforgalma. A környezetvédelem alapjai május 3.

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Szennyvíztisztítás. oldott anyagok + finom lebegő szilárd anyagok + mikroorganizmusok + szerves anyagok lebontása, eltávolítása

Innovatív szennyvíztisztítási és iszapkezelési technológiai fejlesztések a KISS cégcsoportnál

Hol tisztul a víz? Tények tőmondatokban:

Környezetvédelmi műveletek és technológiák 4. EA. Víz fertőtlenítése Bodáné Kendrovics Rita Óbudai Egyetem RKK KMI 2010

Mélységi víz tisztítására alkalmas komplex technológia kidolgozása biológiai ammónium- mentesítés alkalmazásával

MELLÉKLET. a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE

A tisztítandó szennyvíz jellemző paraméterei

MAGYARORSZÁGI HULLADÉKLERAKÓKBAN KELETKEZŐ DEPÓNIAGÁZOK MENNYISÉGE, ENERGIATARTALMA ÉS A KIBOCSÁTOTT GÁZOK ÜVEGHÁZ HATÁSA

Az Ivóvízminőség-javító program technológiai vonatkozásai. Licskó István Laky Dóra és László Balázs BME VKKT

PANNON Egyetem. A szennyvíztisztítás fajlagos térfogati teljesítményének növelése. Dr. Kárpáti Árpád március 28.

Művelettan 3 fejezete

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam

A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE. Környezetmérnök BSc

SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz


Vízminőségi problémák megoldása felszíni vízműben ÉRV ZRt - Lázbérc Kulcsár László Divízióvezető

Ivóvíz arzéntartalmának eltávolítása membrántechnológiával

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű

VÍZGAZDÁLKODÁS ÉS SZENNYVIZEK

BIM környezetmérnök M.Sc. Biológiai szennyvíztisztítás

az Észak-pesti Szennyvíztisztító Telepen Telek Fanni környezetvédelmi előadó

Klórozott szénhidrogénekkel szennyezett talajok és talajvizek kezelésére alkalmazható módszerek

Szennyvíziszapból trágya előállítása. sewage sludge becomes fertiliser

ELEKTRO-KÉMIAI VÍZTISZTITÓ RENDSZEREK KOMMUNÁLIS SZENNYVIZEK KEZELÉSÉRE, SZENNYVÍZ ISZAPOT HASZNASÍTÓ REAKTOR MODULLAL ENERGIANYALÁBOK ALKALMAZÁSÁVAL

Vízminőség, vízvédelem. Felszín alatti vizek

Előadás címe: A vörösiszappal szennyezett felszíni vizek kárenyhítése. Mihelyt tudjátok, hogy mi a kérdés érteni fogjátok a választ is Douglas Adams

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezeti elemek védelme II. Talajvédelem

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató

Vízvédelem KM011_1. Szennyvíziszapok. A keletkezett szennyvíziszap kezelése. Az iszapkezelés lépései. Iszapsűrítés

Információtartalom vázlata: Mezőgazdasági hulladékok definíciója. Folyékony, szilárd, iszapszerű mezőgazdasági hulladékok ismertetése

Mikroszennyezők az ivóvízben és az Ivóvízminőség-javító Program

Vízvédelem. Szennyvíz. A szennyvíztisztítás feladata. A szennyvizek minőségi paraméterei

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

KÖRNYEZETVÉDELEM-VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

A ferrát-technológia klórozással szembeni előnyei a kommunális szennyvizek utókezelésekor

A veresegyházi szennyvíztisztító telep fejlesztése membrántechnológia alkalmazásával. Prókai Péter

Ferrát-technológia alkalmazása biológiailag tisztított szennyvizek kezelésére

MSc - Környezettechnika Levegőtisztaság-védelem dr. Örvös Mária

Zn-tartalmú szennyvíz membránszűrése. Dr. Cséfalvay Edit, egyetemi tanársegéd BME Kémiai és Környezeti Folyamatmérnöki Tanszék

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL

Az Európai Unió Tanácsa Brüsszel, február 1. (OR. en)

Tüzeléstan előadás Dr. Palotás Árpád Bence

MEMBRÁNTECHNOLÓGIAI SZAKMAI NAP MASZESZ - Budapest

A hagyományos és természetközeli szennyvíztisztítási rendszerek. Zöld Zsófia, Környezeti mikrobiológia és biotechnológia

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola

Hulladék-e a szennyvíziszap? ISZAPHASZNOSÍTÁS EGY ÚJSZERŰ ELJÁRÁSSAL

A VÍZ. Évenként elfogyasztott víz (köbkilométer) Néhány vízhiányos ország, 1992, előrejelzés 2010-re

Nemzeti Akkreditáló Hatóság. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (2) a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Dioxin/furán leválasztás (PCDD/PCDF) dr. Örvös Mária

A Kis méretű szennyvíztisztító és víz

Úszó fedlapok hatásának vizsgálata nem levegőztetett eleveniszapos medencék működésére nagyüzemi helyszíni mérésekkel és matematikai szimulációval

Átírás:

A Miskolci Egyetem Közleménye, A sorozat, Bányászat, 81. kötet (2011) CSURGALÉKVÍZ ÉS TISZTÍTÁSA Dr. Takács János Miskolci Egyetem Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet A depóniában lejátszódó kémiai folyamatok, a csapadék, a hulladéklerakók esetében szennyvíz keletkezéséhez vezetnek. Ennek mennyisége és összetétele a lerakó tulajdonságaitól (lerakott hulladék összetétele, a depónia építésekor megvalósított szigetelés, kora, stb.), nagyságától függ. A csapadék átszivárog a depónián és közben elszennyeződik. Az így keletkezett szennyvizet a szakirodalom csurgalék, vagy szivárgó víznek nevezi. Egy jól megépített hulladéklerakóban ezt a vizet összegyűjtik (csak így kerülhető el a talaj, talajvíz elszennyeződése), és ártalmatlanítják. A települési szilárd hulladéklerakóban végbemenő folyamatokat az 1. és 2. ábra szemlélteti. 1. ábra. Hulladékdepónia vízforgalma. A települési hulladéklerakóban az idő folyamán lényegében öt leépülési fázis jelentkezik a lerakás után egy rövid anaerob fázisban a hulladék szerves alkotói a még jelenlévő oxigénnel széndioxiddá és vízzé alakulnak át, 343

Dr. Takács János az első anaerob fázisban az erjesztő és ecetsavképző baktériumok aktivitása megnő, folyékony zsírsavak, széndioxid, hidrogén keletkezik, a savas reakció felszabadítja a nehézfémeket, az anaerob folyamat további lefolyása során megnő a metánképző baktériumok aktivitása. 2. ábra. A hulladéktestben végbemenő folyamatok. a metánképződés stabilizálódik, a folyékony zsírsavak részarány továbbnő, a folyamat végén csak a nehezen leépülő szerves anyagok maradnak vissza, fokozatosan ismét nitrogén és oxigén diffundál az atmoszférából a depóniatestbe. Bár a bomlás kezdeti szakasza aerob később már egyértelműen az anaerob folyamatok dominálnak ehhez feltétlen szükséges a szemét 50 60%-os nedvességtartalma. A bomlási folyamat egyik terméke a csurgalékvíz. A csurgalékvíz mennyisége számos tényező függvénye: befolyásolja a depónia kialakítása, a lerakási technológia jellege és hatásfoka (tömörítés), a lerakott hulladék jellege (szemét, szennyvíziszap együttes lerakás), az adott terület csapadékviszonyai, az adott terület párolgási viszonyai. A hazai párolgási és csapadékviszonyokat elemezve az átlagos csurgalékvíz hozam 150 300 m 3 /ha/hónap (5 10 m 3 /ha/nap) értéknek lehet tekinteni. (Ez 1 mm/nap beszivárgás és k = 10-8 m/s szivárgási tényező mellett.) A csurgalékvíz tehát olyan hulladékvíz, a hulladéktesten átszivárgó csapadékvíz, amelyet a hulladékban lejátszódó biokémiai folyamatok 344

Csurgalékvíz és tisztítása eredményeként keletkező víz, valamint a hulladékban eredetileg jelenlévő víz alkot. Jelentős mennyiségű szerves anyagot tartalmazhat, ezen belül fontosak a humusz jellegű alkotórészek, valamint az ammónia- nitrogén, nehézfémek, klórozott szerves és szervetlen sók. A szerves anyag eltávolításának során a KOI, BOI mérések (KOI = az oldott szerves anyagok kémiai oxidálásához szükséges oxigén mennyisége, a BOI = az oldott szervesanyag biológiai lebontásához szükséges oxigén mennyiség) az irányadók. A csurgalékvíz minőségét számos tényező befolyásolja, úgymint a csapadék, az évszakok miatti időjárás változások, a hulladék típusa és összetétele és a lerakó kora. A fiatal lerakókban, amelyekben nagy menyiségű bomló szerves anyag van jelen, nagyon gyors anaerob fermentáció jellemző, mely folyamat során illékony szírsavak keletkeznek. A savas fermentációt fokozza a hulladék magas nedvességtartalma. A hulladéklerakó életének eme korai szakaszát acidogén fázisnak nevezzük, melynek során nagy menniységű szabad zsírsav sazbadul fel, a szerves anyag tartalom majd 95%-a ebben a formában van jelen. A lerakó érésével a metanogén fázis kerül előtérbe. A metanogén mikroorganizmusok a hulladékban fejlődnek ki, majd a zsírsavakból biogázt konvertálnak. A csurgalékvíz tulajdonságait főként az alapvető paraméterekkel jellemzzük, mint a KOI k, BOI 5, KOI k /BOI 5 arány, ph, szuszpendált szilárd tartalom, ammónium nitrogén tartalom, nehézfém tartalom. A csurgalékvíz összetétele széleskörűen változhat a fokozatos aerob, acetogén, metanogén stabilizációs folyamatok során. A hulladéklerakó korától függően három típusát különböztetjük meg (1.táblázat). 1. táblázat. csurgalékvizek kor alapján történő osztályozása. friss/jelenlegi átmeneti érett kor <5 5-10 >10 ph 6,5 6,5-7,5 >7,5 KOI (mg/l) >10000 4000-10000 <4000 BOI 5 /KOI >0,3 0,1-0,3 <0,1 szerves 80% illékony 5-30% zsírsavak + huminsavak és komponens biológiai bonthatóság zsírsavak huminsavak és fulvosavak fulvosavak jelentős közepes alacsony A szemét-testen átszivárgó csapadékvíz (csurgalék vagy szivárgó-víz) a depónia anyagát oldja és különböző szerves és szervetlen bomlástermékekkel dúsul (3. ábra). 345

Dr. Takács János 3. ábra. A csurgalékvíz átlagos szennyezettségi mutatói. Az 4. ábra egy tömörített lerakón átszivárgó csurgalék-víz minőségének összes oldott anyag valamint KOI, BOI értékek szerinti időbeli változását, míg az 5. ábra a ph alakulását szemlélteti. 4. ábra. Tömörített hulladékon átszivárgó csurgalékvíz minőségének időbeli változása. 346 5. ábra. Tömörített hulladékon átszivárgó csurgalékvíz minőségének időbeli változása.

Csurgalékvíz és tisztítása A csurgalékvíz, a szennyeződés típusától függően, különböző tisztítási eljárások segítségével összeállított technológia szerint tisztíthatók. Ezek célja, hogy a tisztított csurgalékvíz megfeleljen a 22/2001.(X.10.) KÖM rendeletnek, amely a hulladéklerakók kialakításának követelményeivel, illetve a 20/2006.(IV.5) KvVM rendeletnek (A hulladéklerakással, valamint a hulladéklerakóval kapcsolatos egyes szabályokról és feltételekről). Az alkalmazható eljárások, módszerek (amelyek különböző szilárd, oldott, és gáznemű szennyeződés eltávolítására, ártalmatlanítására, lebontására szolgálnak) fogalma, alapja, elvei röviden a következőkben foglalhatók össze. 1. Adszorpció: A vízben lévő szennyező anyagok szilárd anyag (adszorbens, szemcsés vagy por jellegű aktív szén, aktív koksz, kazánkoksz, szén, bentonit stb.) felületén történő megfogását jelenti. Nem jelenti a szennyező anyag ártalmatlanítását, mert regenerálás után egy kisebb térfogatban nagyobb koncentrációban jelenik meg, ami további kezelést igényel. Alkalmazása elsősorban biológiailag rezisztens, toxikus anyagok, szerves szén-hidrogének eltávolításánál ajánlott. Szükséges lehet többlépcsős kialakítás is. 2. Pelyhesítés (flokkulálás, koagulálás): A vízben lévő vagy kicsapatás közben keletkezett szerves és szervetlen kolloid részecskék pelyhesítését, összetapasztását jelenti a szilárd halmazállapotú anyag szemcseméretének növelése céljából. Ennek érdekében fémsó- elektrolit Fe(II), Fe(III) Al(III) sók oldatait és/vagy polielektrolitot kell szakszerűen a szennyvízhez adagolni, megfelelő ideig keverni, hogy a szükséges kémiai, fizikai folyamatok végbemenjenek. 3. Kicsapatás: A vízben lévő oldott szennyezők, különböző paraméterek megváltoztatása után, vegyszerek hozzáadását követő kémiai reakciók eredményeként, kisméretű szilárd halmazállapotú anyaggá válnak, így tehát a korábban oldott szennyezőanyag fázisszétválasztással a víztől elkülöníthető. 4. Fázisszétválasztás: A vizek szennyvizek tisztításánál elsősorban a szilárd és folyékony fázisok szétválasztását jelenti, melynek két alapvető formája van. Az ülepítés (a sűrűség szerinti szegregáció) különböző módjainak alapja a szilárd anyagokra jellemző szemcseméretéből, alakjából, sűrűségéből adódó ülepedési végsebesség. Az ülepedési végsebesség levegő buborék hozzáadásával növelhető (flotálás). A különböző porozitású közeggel való szűrést (szilárdanyag visszatartást) pedig a porózus közegen történő visszatartás határozza meg. 5. Flotáció: A vízből, szennyvízből a finom szilárd vagy folyékony cseppek (pl. olaj) leválasztásának egyik lehetséges módja. Lényege, hogy a finom részecskék a felületükre tapadt légbuborékokkal (a közös sűrűségük lényegesen kisebbé válik, mint a víz sűrűsége) kisebb, nagyobb sebességgel a 347

Dr. Takács János folyadék felszínére emelkednek, ahonnan lefölözhetők. A légbuborék képzése lehetséges a szennyvízbe való megelőző nyomás alatti légbeoldással, vagy szabad levegő bevezetéssel. A flotálás előtt szükség lehet a részecskék felületi tulajdonságainak módosítására vegyszeres kezeléssel, illetve a nagyon finom részecskék koagulálására, flokkulálására. Szennyvizek esetén több alkalommal nincs szükség vegyszeres kezelésre. A lefölözött termék további kezelést igényel. 6. Ülepítés: Folyadék/szilárd rendszerek fázisszétválasztási módja, amely a gravitációs erőtérben a folyadék szilárd anyag sűrűségének, a szilárd részecske szemcseméretének függvényében kialakuló, úgynevezett ülepedési végsebesség következménye. Az ülepítés hatásossága koagulálás, flokkulálás alkalmazásával (szemcseméret növelés), illetve centrifugális erőtér alkalmazásával növelhető. 7. Szűrés (hagyományos): Folyadék/szilárd rendszerek fázisszétválasztásának módja, amely egy szűrőközeg és az annak két oldalán kialakuló nyomáskülönbség hatására jön létre. A szűrőközeg lehet egy szemcsés anyag halmaz, (pl. homok), ez a szűrés a mélységi szűrés (a leválasztott szilárd részecskék a halmaz szemcséi közötti térben visszamaradnak.), illetve egy lap /szűrőszövet, amely a szilárd részecskéket, mint egy lepény visszatartja. Az alkalmazott nyomáskülönbség szerint megkülönböztethetünk gravitációs, vákuum, nyomó vagy présszűrést. A szűrés hatásfoka pelyhesítéssel (koagulálással) illetve szilárd szűrési segédanyag hozzáadásával növelhető. 8-11. Mikroszűrés, ultraszűrés, nanoszűrés, fordított ozmózis: Ezek a szétválasztási műveletek a membrán szűrés lehetséges módjai. A szűrőközeg egy membrán, és ennek porozitása különbözteti meg a szűrési típusokat. A mikroszűrés 1-0,1 µm-es membrán porozitással a szilárd részecskék, mikroorganizmusok leválasztására szolgál. Az ultraszűrésnél a membrán pórusai 0,2-0,001 µm közötti mérettel jellemezhetők; kolloidok, nagy molekulatömegű vegyületek leválasztására alkalmas. A nanoszűrésre szolgáló membrán már 0,001-0,0001 µm pórusméretekkel már két vegyértékű ionokat is visszatartja. A nanoszűrés alatti tartományban van a fordított ozmózis, melynél a szűrőközeg egy félig áteresztő hártya, ezzel már teljes sótalanítás lehetséges. Azt, hogy melyik membránszűrés alkalmazására van szükség, a szennyezőanyag mérete, illetve molekulatömege határozza meg. Az alkalmazott nyomáskülönbség a szűrőközeg porozitásának függvénye. Szerves és szervetlen szennyezők leválasztására egyaránt alkalmas. 348

Csurgalékvíz és tisztítása 12. Elektrodialízis: Membránszeparációs eljárás. Elektródák (katód, anód) között elhelyezett membránok segítségével az egyenáram hatására következik be a membránon keresztül történő ion vándorlás/diffúzió, Eredményeképpen nagyon kis sótartalmú tisztított vízet, és kationokban valamint anionokban dús koncentrátumot nyerhetünk. Ez a koncentrátum további kezelést igényel. 13. Extrakció: Szétválasztási művelt, amelynél egy vagy több komponens eltávolítását, kioldását egy szilárd (kilúgzás), folyékony (szolvens extrakció) fázisból szelektív oldószer alkalmazásával valósítjuk meg. A szilárd-folyadék extrakció egy oldószerben történő oldás, fázisszétválasztás valamit az oldott anyag továbbkezelését jelenti. A folyadék-folyadék extrakció olyan művelet, amelyben a kétkomponensű elegyből az egyiket egy harmadik folyadékkomponens (szelektív oldószer) segítségével választjuk le. A leválasztás után az oldószer desztillációjával a szennyező anyag leválasztható. 14. Ioncsere: Kémiai folyamat, amikor is a vízben, szennyvízben lévő szennyező ionokat aktív csoportokat tartalmazó szilárd anyaggal (zeolit, bentonit, műgyanták) hozunk érintkezésbe és az oldatban lévő ionok, valamint a velük egyenértékű ionok cseréje jön létre. Beszélhetünk kation és anion cserélésről egyaránt. A folyamat közben az ioncserélő szilárd anyag kimerül, regenerálni kell. A regenerátumot veszélyességének megfelelően kezelni, ártalmatlanítani kell. 15. Transzmembrán desztilláció: Vizek kezelésének termikus membrán eljárása: termék, hulladék oldatok koncentrálására; teljesen só mentes víz előállítására; kazán tápvíz előállítására; ivóvíz előállítására sós vizekből. Az eljárás lényege, hogy vékony, mikro-porozitású hidrofób membrán (PTFEpolytetrafluoretán) segítségével választjuk el a vizet a nem kívánatos oldott anyagtól. A hidrofób jelleg miatt a membrán csak a vízgőz számára áteresztő, a víz és az oldott só számára nem. Ezáltal termikus kezelés után a vízgőz áthalad a membránon, majd kondenzálódik. A végeredmény só-mentes víz és egy nagy só koncentrációjú oldat. 16. Elgőzölögtetés: Az anyag folyadékformából gáz formájú halmazállapotba való átvitele hő hozzáadásával. Két formája van. Az egyik az elpárologtatás (forrásponti hőmérséklet alatti átmenet), a másik a forralás, amikor forrási hőmérsékleten történik a halmazállapot-változás. 17. Szárítás: Egy anyag nedvességtartalmának csökkentése elpárologtatással, szárító anyag hozzáadásával, vagy más technikák (mechanikus víztelenítés, hő, kémiai kezelés, légszárítás) alkalmazásával. Technikai szárítás módjai: fagyasztás, mikrohullámú szárítás, kondenzációs szárítás, vákuumszárítás, 349

Dr. Takács János adszorpciós szárítás, Peltier-szárítás, granulátummal történő szárítás, légszárítás. 18. Kiűzés levegővel, sztrippelés: Oldott gázok vízből való eltávolításának módszere. A Henry-törvény szerint a gázok oldódása az alábbi egyenlettel írható le: C v =P g *H (C v : vízben oldott gáz koncentrációja, Pg: a gáz parciális nyomása, H a gázra jellemző Henry-konstans.) Eszerint a Pg parciális nyomást csökkentve, annak mértékében az oldott gázmolekula gáz állapotba kerül, amely egy kiűző közeggel (levegő, gőz) a víz fajlagos felületét növelve (pl. cseppesítéssel) jó hatásfokkal eltávolítható. A sztrippelés történhet nyitott vagy zárt rendszerben, a két rendszer közti választást elsősorban a gáz veszélyessége határozza meg. 19. Abszorpció: Fizikai-kémiai jelenség, melynek során gázok gőzök atomjai, molekulái folyadékkal vagy szilárd testtel érintkezve abban elnyelődnek. Az atomok, molekulák diffúzióval jutnak az elnyelő anyag (abszorbens) belsejébe, molekulák közé vagy kristály szerkezetbe. Az abszorbció mértéke alacsonyabb hőmérsékleten, hatásosabb. 20. Biológiai eljárások: A természetes tápanyagláncban is nagyon fontos szerepe van. A vízben lévő oldott szennyező anyagok mikroorganizmusok illetve magasabb rendű élő szervezetek általi célzott átalakítása ártalmatlan ionná, molekulává, biomaszzává. Alapvetően két módját különböztetjük meg, úgy mint aerob (szabad oxigén melletti) és anaerob (szabad oxigén nélküli) eljárások, de sok esetben ezek kombinációja is alkalmazható. A szerves vegyületek bio-kémiai ártalmatlanítása megfelelő feltételek mellett optimális. Alkalmazható a vízben lévő oldott szerves vegyületek lebontására, nitrifikációra, denitrifikációra, foszfáttartalom csökkentésére. 21. Kémiai oxidáció: Minden olyan kémiai folyamatot, amelyben az atomok, molekulák, vagy ionok elektront adnak le, oxidációnak nevezzük. Oxidáció csak akkor megy végbe, ha egy másik anyag (atom, molekula, ion) az elektronokat felveszi, redukálódik. A reakciónak a víz-szennyvíztisztításban nagy a jelentősége, mert több eltávolítandó komponens a felszín alatti víztartókban, talajban redukált állapotú. Ezek legtöbb esetben, vízben nagyon jól oldódnak, míg oxidált állapotú vegyületük általában rosszul. Ezt kihasználva oxidációt követően a szennyező komponensek csapadék formájában eltávolíthatók. A fertőtlenítés nagy részben oxidációval oldható meg. 350

Csurgalékvíz és tisztítása A biológiailag nehezen, vagy nem bontható toxikus szerves vegyületek molekulái szintén oxidáció segítségével alakíthatók ártalmatlan, egyszerű vegyületekké, gyökökké. A leginkább használt oxidálószerek: O 3, H 2 O 2, UV-sugárzás (OHradikál), illetve ezek kombinált alkalmazása. 22. Nedves oxidáció: A szerves vegyületek folyékony fázisban történő nagy nyomás és hőmérséklet melletti oxidációja. A szennyvizek szerves anyag tartalma a levegő oxigénjének jelenlétében 240-290 o C-on kb. 120 bar nyomáson oxidálódik. Előzőleg a víz semlegesítése szükséges. Exoterm folyamat, meghatározott feltételek mellett alkalmazható. 23. Termikus oxidáció: A szerves szennyezők magas hőmérsékleten (800-1000 o C) oxigén (levegő) hozzáadásával történő lebontása, ártalmatlanítása (égetése), nagy turbulencia és megfelelő tartózkodási idő mellett. A szerves vegyületekből CO 2 és H 2 O keletkezik, de természetesen más gyökök, egyszerű vegyületek is keletkezhetnek, amelyek a vízben maradnak, vagy a füstgázba kerülnek. Szükség esetén a füstgázt tisztítani kell. Az égetési hőmérséklet katalizátor alkalmazásával csökkenthető (350-550 o C-ra). Az ismertetett eljárások sok esetben önállóan nem elegendőek a csurgalékvizek tisztítására, hanem ezek kombinációja, megfelelő sorrendbe kapcsolásával vezetnek eredményre, a hatósági előírásoknak megfelelő tisztítás magvalósítására. A 6. ábrában vázolt tisztítási technológia szerint a csurgalékvíz első lépésben a biológiai fokozatra kerül, ahol a bontható oldott szerves vegyületek ártalmatlanítása, az ammónia nitrifikációja (aerob körülmények között), valamint a nitrát denitrifikációja (anaerob vagy anox körülmények mellett) következik be. A lebontó mikroorganizmusok iszap formájában történő leválasztása után a biológiailag nem bontható oldott szerves anyagok adszorpciója (aktívszén por bekeverés) következik. A kimerült aktívszén por leválasztására vegyszeres előkezelés után egy ülepítő szolgál. A kezelt víz ph-ját szükség szerint módosítani lehet. A tisztítás közben keletkezett iszapok sűrítés után, térfogatát gépi víztelenítéssel minimális mértékre csökkentve deponálhatók, elégethetők. 351

Dr. Takács János 352 6. ábra. Csurgalékvíz tisztítási technológia variáció; (biológiai lebontás; adszorpció; kicsapatás; koagulálás/flokkulálás; iszapvíztelenítés). A következő, 7. ábrában vázolt technológia első szakasza az előző technológiához hasonló, azaz a biológiailag bontható szerves szennyezők ártalmatlanítása, a nitrifikáció, denitrifikáció a biológiai kezeléssel történik, viszont a biológiailag nem bontható szerves vegyületek ártalmatlanítását kémiai oxidáció biztosítja. Oxidálószer lehet az oxigén, ózon, H 2 O 2, illetve alkalmazható az UV segítségével történő fotokémiai oxidáció. A technológiában keletkező iszap kezelése, ártalmatlanítása az előző technológiai sornak megfelelően történhet. A 8. ábrában vázolt technológia az előzőektől szintén a biológiailag nem bontható, maradék oldott szerves anyagok ártalmatlanításában tér el, ugyan is ebben a technológiában, ezek membrán eljárással, fordított ozmózis segítségével kerülnek leválasztásra. Mivel a fordított ozmózis közben a leválasztott szennyezők koncentrátumként keletkeznek, ezt a koncentrátumot bepárlással illetve szárítással hozhatjuk könnyen kezelhető formába. A 9. ábrában vázolt technológiában a csurgalékvízben levő szennyezőanyagok leválasztása kétfokozatú fordított ozmózissal történik. Ennek feltétele, hogy a csurgalékvíz csak oldott szennyezőket tartalmaz. A membránok védelme miatt a víz ph-ját minimum 6,5 alá kell csökkenteni. Célszerű olyan membrán modult választani, amelyben a nagyobb áramlási sebesség biztosítani

Csurgalékvíz és tisztítása tudja a membrán öntisztulását (pl.: csőmodul). A két fokozatban nem feltétlenül szükséges azonos modul. 7. ábra. Csurgalékvíz tisztítási technológia variáció; (biológiai lebontás; kémiai oxidáció; iszapvíztelenítés). Tápanyag C, P ph módosító Levegő (O2) Szennyezett levegő Koaguláló szerek csurgalékvíz Biológiai lebontás Ülepítés Túlfolyás Iszapstabilizálás, sűrítés Recirkulációs iszap Fölös iszap Az iszap sűrítés és gépi víztelenítés vize H2SO4 Fordított ozmózis I Retentát Permeát 1 Fordított ozmózis II Iszap gépi víztelenítés Bepárlás Szárítás Tisztított csurgalékvíz (Permeát 2) Inertgáz Szilárd maradékanyag Szűrőlepény 8. ábra. Csurgalékvíz tisztítási technológia variáció; (biológiai lebontás; fordított ozmózis; bepárlás; szárítás; iszapvíztelenítés). Koncentrátum elvétel az I jelű modulról van, amit bepárlással még szivattyúzható mértékűvé sűrítenek. A sűrítményt termikusan tovább szárítják. A keletkező maradék szárazanyag deponálható. A Bepárlás desztillátuma nagy ammónia tartalmú, amit a nitrogénmentesítési fokozatban választanak le. Ennek desztillátuma visszakerül a II fordított ozmózis fokozatba, míg az ammónia értékes vegyületformába vihető és értékesíthető. 353

Dr. Takács János 9. ábra. Csurgalékvíz tisztítási technológia variáció;(fordított ozmózis I; bepárlás; szárítás; nitrogénmentesítés; fordítottozmózis II). 10. ábra. Csurgalékvíz tisztítási technológia variáció; (bepárlás; szárítás; nitrogénmentesítés; fordítottozmózis). A 10. ábrában látható séma szerint a csurgalékvíz savas jelleggel kerül a bepárlóba. Innen kijutó desztillátum könnyen illanó nitrogénkomponenst, és szerves anyagot tartalmaz. A desztillátum nitrogénmentesítés után kondenzálódik, majd egy fordított ozmózis berendezés segítségével nyeri el a várt végső tisztaságot. A bepárlási kondenzátum szárításával nyerhetők ki a szennyező komponensek szilárd, jól kezelhető formában. A 11. ábrában vázolt séma szerinti tisztítási technológia akkor alkalmazható, ha a csurgalékvíz csak nagyon csekély mértékben tartalmaz nitrogén vegyületet, illetve azt nem gazdaságos értékes anyagként kinyerni. 354

Csurgalékvíz és tisztítása 11. ábra. Csurgalékvíz tisztítási technológia variáció; (savas bepárlás, ph<3; szárítás; fordítottozmózis). A csurgalékvíz ph-ját kénsavval 3 érték alá csökkentve kerül a bepárló készülékbe. A bepárlóban keletkező koncentrátum tartalmazza a különböző sókat, így az ammónia-nitrogén só-vegyületét is. Szárítás után ezek szilárd formában deponálhatók. A bepárló desztillátumát amely még tartalmazhat könnyen illanó szerves vegyületeket, fordított ozmózissal lehet a kívánt mértékben megtisztítani. Az itt keletkező koncentrátumot a nyers csurgalékvízhez vezetik vissza. Természetes, hogy még számos más technológiai sort is össze lehet állítani az csurgalékvízben levő szennyezők leválasztására, alkalmazására a vízjellemzők és lehetőségek függvényében, és alkalmazhatók olyan természetközeli technológiák is (amennyiben nem jár a környezet elszennyeződésével), melyek során a vázolt tisztítási folyamatok játszódnak le, csak kisebb intenzitással, esetleg kisebb hatásfokkal. Akármilyen technológiai sort választunk a tisztításnak biztosítani kell a kellő tisztaságú vizet, amely befogadóba bocsátható, illetve egy könnyen kezelhető tárolható, bizonyos esetekben értékesíthető szennyezőanyag koncentrátumot. 7. Köszönetnyilvánítás A tanulmány a TÁMOP-4.2.1.B-10/2/KONV-2010-0001 jelű projekt részeként az Új Magyarország Fejlesztési Terv keretében az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg. 355

Dr. Takács János Felhasznált irodalom [1] Deponiesickerwasserreinigung und Fachbeitraege aus der Idustrie, Tagung München, 16.April 1991; Herausgeber: enviro Consult Ingenieurgesellschaftvfür Umwelt- und Verfahrenstechnik GmbH, Ingenieurbüro für Abfallwirtschaft W. P. Bauer, 1991. [2] M. El-Fadel, E-Bou Zeid, W. Chahine? B. Alayli: Temporal variation of leachate quality from pre-sorted and baled municipal solid Waste with high organic and moiustire content; Waste Management 22 (2002) 269-282. [3] Handbuch Altlasten, Band3, Teil.6.: Ermittlung von Schadstofffrachten im Grund- und Sickerwasser; ISBN 978-3-89026-812-5, Hessischesdesamt für Umwelt und Geologie; Wiesbaden, 2008. [4] W. Huber, S. Schatz, A. Qentin: Statistische Auswertung des Sickerwasseranfalls auf bayerischen Deponien; Endbericht, Projekt 3260; Nov. 2002. [5] Dr.-Ing. Jochen St. Kollbach: Deponiesickerwasser-reinigungsverfahren Stand 1991, zukünftige Entwicklungen; Deponiesickerwasserreinigung, Tagung München, 16.April 1991 [6] Dr. Szabó I.: Hulladékelhelyezés; Egyetemi Kiadó, Miskolc, 1999. [7] Vízgazdálkodás és vízminőségvédelem II. Szennyvíztisztítás; Egyetemi jegyzet környezetmérnök szakos hallgatóknak; Debreceni Egyetem, 2010.; szennyviztisztitas.tananyag.debrecen.pdf. [8]Víztisztítás; Egyetemi jegyzet, Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Vízi Közmű és Környezetmérnöki Tanszék; Budapest, 2007, víztisztítás_jegyzet.pdf. [9] Szűcs P, Sallai F, Zákányi B, Madarász T (szerkesztők). Szerzők: Jolánkai G, Kovács G, Madarász T, Mádlné Szőnyi J, Mándoki Mónika, Muránszkiné Mojoróczki Mária, Sallai F, Szűcs P, Takács J, Virág M, Zákányi B. Vízkészletvédelem. A vízminőségvédelem aktuális kérdései. Bíbor Kiadó, 2009., ISBN 978-963-9988-00-2, pp. 1-418 [10] P. Szucs, T. Madarasz, A. Toth, Zs. Nyari, B. Neducza and Sz. Halmoczki: Combination of Hydrogeophysical Methods and Transport Modeling to Assess Special Subsurface Contaminants at a Hungarian Test Site. Geophysical Research Abstracts, Vol. 9., 01544, 2007., European Geosciencies Union, General Assembly, Vienna, Austria, 15-20 April 2007 [11] 22/2001.(X.10.) KöM rendelet [12] Szucs P; Madarasz T; Civan F: Remediating over-produced and contaminated aquifers by artificial recharge from surface waters. Environmental Modeling and Assessment, Springer, 2009, DOI: 10.1007/s10666-008-9156-4., (14), pp. 511-520. 356