Flood risk model. Content. Convergence. Distribution of exceedances. Dependence: a typical 100- day segment of the data. Threshold selection

Hasonló dokumentumok
Flood risk model. Content. Distribution of exceedances. Dependence: a typical 100- day segment of the data. Threshold selection

A risk model. Content. Distribution of exceedances. Threshold selection. Convergence

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS

Statistical Inference

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Cluster Analysis. Potyó László

Statistical Dependence

Descriptive Statistics

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

FÖLDRAJZ ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

Választási modellek 3

Construction of a cube given with its centre and a sideline

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

On The Number Of Slim Semimodular Lattices

EN United in diversity EN A8-0206/419. Amendment

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Csima Judit április 9.

General information for the participants of the GTG Budapest, 2017 meeting

Using the CW-Net in a user defined IP network

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

FÖLDRAJZ ANGOL NYELVEN

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Genome 373: Hidden Markov Models I. Doug Fowler

Mapping Sequencing Reads to a Reference Genome

Middle Tisza District Environment and Water Directorate. Information tools of flood risk mapping

Rezgésdiagnosztika. Diagnosztika

A jövőbeli hatások vizsgálatához felhasznált klímamodell-adatok Climate model data used for future impact studies Szépszó Gabriella

Performance Modeling of Intelligent Car Parking Systems

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Klaszterezés, 2. rész

Bird species status and trends reporting format for the period (Annex 2)

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

A TÓGAZDASÁGI HALTERMELÉS SZERKEZETÉNEK ELEMZÉSE. SZATHMÁRI LÁSZLÓ d r.- TENK ANTAL dr. ÖSSZEFOGLALÁS

Computer Architecture

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

GEOGRAPHICAL ECONOMICS B

2. Local communities involved in landscape architecture in Óbuda

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

Supporting Information

Cashback 2015 Deposit Promotion teljes szabályzat

Effect of sowing technology on the yield and harvest grain moisture content of maize (Zea mays L.) hybrids with different genotypes

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

Expansion of Red Deer and afforestation in Hungary


Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

FÖLDRAJZ ANGOL NYELVEN

Implementation of water quality monitoring

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

USER MANUAL Guest user

Mikroszkopikus közlekedési szimulátor fejlesztése és validálása (Development and validating an urban traffic microsimulation)

Meteorológiai ensemble elırejelzések hidrológiai célú alkalmazásai

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

STATISZTIKA PRÓBAZH 2005

TestLine - Angol teszt Minta feladatsor

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Esetelemzések az SPSS használatával

Supplementary Figure 1

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

IES TM Evaluating Light Source Color Rendition

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Logistic regression. Quantitative Statistical Methods. Dr.

Tudományos Ismeretterjesztő Társulat

Utasítások. Üzembe helyezés

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom , 2005,

UCI C1 Pro Trials Championships & Regional Competition

PIACI HIRDETMÉNY / MARKET NOTICE

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

Extreme flood events in the Lower Tisza Region The relevance of the excess water

BIOMETRIA_ANOVA_2 1 1

Probabilistic Analysis and Randomized Algorithms. Alexandre David B2-206

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Pletykaalapú gépi tanulás teljesen elosztott környezetben

KISTERV2_ANOVA_

DOAS változások, összefoglaló

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

EPILEPSY TREATMENT: VAGUS NERVE STIMULATION. Sakoun Phommavongsa November 12, 2013

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

FORGÁCS ANNA 1 LISÁNYI ENDRÉNÉ BEKE JUDIT 2

A TISZA FOLYÓ MODELLEZÉSE EGYDIMENZIÓS HIDRODINAMIKAI MODELLEL. TISZA-VÖLGYI MŰHELY alapító konferencia

A V Á R B Ű V Ö L E T É B E N

Tudományos Ismeretterjesztő Társulat

Anyagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp

N É H Á N Y A D A T A BUDAPESTI ÜGYVÉDEKRŐ L

AZ ERDÕ NÖVEKEDÉSÉNEK VIZSGÁLATA TÉRINFORMATIKAI ÉS FOTOGRAMMETRIAI MÓDSZEREKKEL KARSZTOS MINTATERÜLETEN

Átírás:

Flood risk model 2015/2016 II. félév Content Introduction: extreme value models Algorithm of the flood simulator Some simulation results Effect of the most important settings The most dangerous areas Distribution of exceedances If X has a max-stable distribution, the conditional distribution function of X-u, under the condition that X>u, can be given as y H( y) 1 1 ~ 1/ if 0, y>0 and ( 1y / ~ ) 0, where ~ ( u ). ( H(y) is the so called generalized Pareto distribution, GPD). If =0, H(y)=1-e -y, y>0 (the unit exponential distribution). is the same as the shape parameter of the corresponding GEV., 1 lim Convergence If F belongs to the MDA of a GEV distribution, then there exists a positive, measurable function a such that 1/ F( u xa( u)) X u (1 x) if 0 P x X u x 1 F( u) a( u) e if uxf 0 This implies that for high enough threshold, the exceedance distribution can be modelled by the GPD. Question: how to choose the threshold in order to ensure that the model is reasonable? Threshold selection Mean excess plot: For any u (threshold), plot the mean of X-u (for those observations for which X>u) against u. If the Pareto model is true, this plot should be nearly linear. The interpretation is made difficult by the great variability near the upper endpoint of the observations. Alternative: Fit the distribution for different values of u and such a threshold should be chosen, where the parameter estimates are stable It is a trade-off between bias (likely to occur if the threshold is too low) and variance (occurs if the threshold is too high, and just a few observations are used for estimation). Dependence: a typical 100- day segment of the data water level 0 100 200 300 400 500 600 700 0 20 40 60 80 100 day 1

Declustering Practical solutions One may take just the peak out of a cluster above the threshold. The set of points does not increase monotonically as u decreases. water level 0 100 200 300 400 500 600 700 x x There are physical considerations resulting in a given time period, after which a new high value corresponds to a new flood, thus independence from the previous values is realistic. For water level data there is also a natural choice for the threshold u, as there is a level, when the water fills a wider area around the narrow riverbed. 0 20 40 60 80 100 day Inference Similar to the annual maxima method: Maximum likelihood is to be preferred Some simple methods are also known (Hill estimator, for example) Confidence bounds can be based on profile likelihood Model fit can be analyzed by P-P plots and Q-Q plots Return levels/upper bounds can be estimated Modelling time-dependence Assumptions: Shape does not change Scale depends linearly on the time: t t Positive coefficient (larger scale) here means larger observations as time advances Maximum likelihood estimator and the (modified) QQ plot for checking the fit are available An example: Budapest The flood simulator Tapasztalati eloszlás 0 1 2 3 4 5 Időfüggő QQ-plot Budapest - Eltelt idő: 60 nap Likelihood statisztika értéke: 8.354 Szignifikancia szintje: 0 0 1 2 3 4 Illesztett eloszlás (std. exponenciális) Parameters: time-dependent scale:1.79, scale:23.91, shape:-0.58 relatív gyakoriság 0.000 0.010 0.020 Időfüggő hisztogram Budapest - Eltelt idő: 60 nap Az időszak elején érv ény es GPD eloszlás Az időszak v égén érv ény es GPD eloszlás 600 650 700 750 800 850 900 Megfigyelések (cm) The distribution at the end of the time period is much more dangerous Flood frequency estimator By MCMC (result for the last period: climate change ) traditionally Random floods for the stations at upstream river sections Routing of upstream hydrographs by conceptual hydrodynamic models 2

Estimating the flood-frequency intensity It is assumed that the intensity is constant over a time period, but jumps are allowed (the data suggested such changes, corresponding to wet or dry periods in the climate) Reversible jump Markov Chain Monte Carlo method is used Apriori distribution for the jumps: uniform for the intensity: Gamma The MCMC algorithm Data: all flood peaks at the upstream stations (considered as different if the water level is low for at least 20 days) Three type of flood events Flood of the Danube only Flood of the Tisza and/or its tributaries only Flood of both watersheds Steps of the algorithm Change in intensity Change the location of changepoints Introducing a new changepoint Removing an old changepoint Illustration of the results (all floods) The simulated Markov chain can be in different states (different number of change points) The summary of the two change point-models show moderate fluctuation, but an increasing tendency for the last 50 years 0.0084 0.0090 0.0084 0.0090 red: average of the daily intensities, blue: homogenous green/black: density of the first/second changepoint 0.00000 0.00004 0.00008 Results for floods of the Danube only 2-changepoints 0.00000 0.00006 3-changepoints These models were the most frequent. Weighted average estimator for the last 10 years: 0.0023 0.00000 0.00006 Floods of the Tisza and its tributary only Floods affecting both rivers 0.0030 0.0040 0.0050 0.0030 0.0040 0.0050 2-changepoints 0.00000 0.00008 0.0030 0.0045 0.0030 0.0045 4-changepoints 0.00000 0.00006 0.0012 0.0018 0.0024 0.0012 0.0018 0.0024 0.00000 0.00006 0.00012 Estimator: 0.0013 The fit of the nonhomogenous Poisson process was much better in all cases These models were the most frequent. Weighted average estimator for the last 10 years: 0.0053 3

alak: 1.86 skála: 2.24 alak: 1.59 skála: 9.34 alak: 0.99 skála: 8.56 alak: 2.58 skála: 1.39 alak: 0.66 skála: 24.52 A regressziós egyenes meredeksége: 0.027 A regressziós egyenes meredeksége: 0.185 A regressziós egyenes meredeksége: 0.119 A regressziós egyenes meredeksége: 0.027 A regressziós egyenes meredeksége: 0.15 The chosen upstream-stations Tisza and its tributaries: Felsőberecki (Bodrog) (Tisza) (Szamos) Gyoma (Kőrös) (Maros) Danube and its tributaries : Sárvár (Rába) Komárom (Duna) Budapest (Duna) Results of the GPD-modelling Scale (1) Scale (2) Shape Frequency Flood/year Sárvár 0.17 108.87-0.35 91 0.95 Komárom 0.58 92.06-0.39 107 1.02 Budapest 1.79 23.92-0,59 50 0.52 1.22 143.68-0.47 107 1.01 0.24 127,23-0.28 49 0.46 Felsőberecki 1.16 37.14-0.59 78 1.03 Gyoma 0.53 134.57-0.39 122 1.15 0.21 52.29-0.05 37 0.39 Duration of the floods Differences among the stations, basically two groups Gamma distribution was used for modelling the length 0.00 0.10 0.20 0.00 0.03 0.06 0.00 0.06 i szintfeletti árvízhosszak 0 5 10 15 Felsőbereckii szintfeletti árvízhosszak 0 10 20 30 40 50 i szintfeletti árvízhosszak 0 10 20 30 40 0.00 0.20 0.00 0.03 0.06 i szintfeletti árvízhosszak 2 4 6 8 10 Gyomai szintfeletti árvízhosszak 0 20 40 60 80 100 2 6 10 0 20 40 0 20 40 Dependence between the height and the duration of the floods 0 100 200 300 400 500 Felsőberecki 0 50 100 150 200 250 0 50 100 150 200 2 6 10 0 40 80 0 100 200 300 400 Gyoma 0 100 200 300 Linear regression was used, without an intercept and with a heteroscedastic, shifted Gamma distributed error term The flood shape Dependence among the stations 4 different groups of stations was formed Having the height of the flood, 30 such hydrographs were chosen from the given group, where the height was nearest to the current simulated one Having the duration d, such a hydrograph was chosen from the above 30, for which the duration is at least d/2 and at most 2d. The most frequent scenarios out of the possible 31 There were a couple of combinations, which have not occurred among the 164 floods, so a modification was needed Berecki Gyoma Frequency 0 0 0 1 0 32 1 0 0 0 0 21 0 1 0 0 0 17 1 0 0 1 0 15 1 1 0 0 0 14 0 0 0 0 1 10 1 1 1 1 1 8 0 1 0 1 0 8 1 1 0 1 0 7 1 1 1 0 0 5 4

Modified frequencies of joint flood occurrencies Possible conditional dependence between the flood peaks The near-floods were considered as floods with a probability (depending on the difference between the threshold and the observed peak). The chance of multiple flooding was increased. Berecki Gyoma Freq. Modified freq. 0 0 0 1 0 32 25.49 1 0 0 0 0 21 20.26 0 1 0 0 0 17 14.262 1 0 0 1 0 15 21.874 1 1 0 0 0 14 13.07 0 0 0 0 1 10 4.054 1 1 1 1 1 8 15.1553 If we know that there were floods at two stations, is there any relation between the height of these floods? The p-values of the χ 2 -tests are rather high, so the conditional independence can be accepted. Gyoma 400 500 600 600 750 900 400 500 600 Összetartozó csúcsok 550 600 650 700 750 800 850 Összetartozó csúcsok 500 550 600 650 700 750 800 Összetartozó csúcsok 500 600 700 800 900 Gyoma 0.2 0.6 0.2 0.6 0.2 0.6 Tapasztalati kopula 0.07 0.2 0.4 0.6 0.8 Tapasztalati kopula 0.11 0.2 0.4 0.6 0.8 Tapasztalati kopula 0.59 0.2 0.4 0.6 0.8 Simulations for the stations, where there was no flood Dependence is strong for neighbouring stations (two groups were formed on the Tisza) For the neighbouring stations a height from the conditional distribution of the (non-flood) peaks was chosen, and then a real part of the hydrograph, which had this height as peak and the whole distribution was near enough to the observed one For other stations, only the peak was set as before Summary of the algorithm 1. Number of floods for the given year (from the Poisson distribution) 2. Simulation of the affected upstream stations 3. Simulation of the flood peaks from the timedependent GPD (conditionally independent) 4. Duration of the flood (by regression model) 5. The shape of the flood (random choice from the observed sequences, by transformation) Algorithm/2 The choice of medium and low flow data (from the conditional distribution, as a real, non-transformed sequence) Special case: the data for Budapest is got by Komárom (approx. 100 km upstream from Budapest) (by regression for two groups: were there floods on the catchment between) Hydrological routing By the discrete linear cascade model, for the most important representative floodplain sections: For the Tisza: Vásárosnamény, Záhony, Tokaj, Polgár, Szolnok, Szeged For the Danube: Baja 5

Megfigyelt Szimulált (exp. súly) Szimulált (kvadr. súly) Súlyozatlan The most dangerous area Data base for floods Tapasztalati eloszlás 0 1 2 3 4 5 Időfüggő QQ-plot Szolnok - Eltelt idő: 60 nap Likelihood statisztika értéke: 9.489 Szignifikancia szintje: 0 0 1 2 3 4 Illesztett eloszlás (std. exponenciális) Parameters: time-dependent scale:1.22, scale:133, shape:-0.63 relatív gyakoriság 0.000 0.002 0.004 0.006 Időfüggő hisztogram Szolnok - Eltelt idő: 60 nap Az időszak elején érv ény es GPD eloszlás Az időszak v égén érv ény es GPD eloszlás 700 800 900 1000 Megfigyelések (cm) The simulated floods were even more dangerous As the simulation of floods for the upstream stations and the hydrological routing are computer intensive, the simulation uses a data base of floods generated as described above. 20000 floods were generated 10000 from the described model another 10000 from a bootstrap version, where the error of the GPD fit was also taken into account 1000 floods were chosen so that the fit to the observed data should be acceptable, but the sample should also include exceptionally dangerous ones (900 from the original sample, 100 from the bootstrap). Weights for the simulator We had dangerous floods in the data base, but the simulator should comply with the reality. We set the chosen risk by weights. The chosen characteristic was the duration (time length) of the flood. Exponential weights: by the likelihood-ratio of the Gamma distribution, fitted to the observed and simulated flood length at the given station. Quadratic weights: the extreme long floods were downweighted by a quadratic function (minimising the discrepancy between the observed and the simulated regression model for the exceedance/duration pair). suruség 0.000 0.001 0.002 0.003 0.004 0.005 suruség 0.000 0.001 0.002 0.003 0.004 Examples Szolnok Megfigyelt Szimulált (exp.súly) Szimulált (kvadr.súly) Megfigyelt Szimulált (exp.súly) Szimulált (kvadr.súly) Szeged 600 800 1000 1200 Budapest cm Megfigyelt Szimulált (exp.súly) Szimulált (kvadr.súly) sűrűség 0.000 0.002 0.004 0.006 600 700 800 900 cm Density 0.000 0.001 0.002 0.003 0.004 800 1000 1200 1400 1600 1800 N = 67 Bandwidth = 35.25 Choosing from the weights The floodplain sections The quadratic weights put more weight on the longer floods ( wet years ), The exponential weights provide floods more similar to the observed ones ( dry years ). Both cases are more risky than the observed data. The are more than 100 such sections, bordered by natural or artificial dykes. The dykes are not everywhere in good shape, the risks are determined by the weakest part in the floodplain sections. Thus a just safe (critical) level was determined for all floodplain sections, and it was supposed that a 140 cm higher flood automatically causes a dyke breachment. 6

Risk model Elöntési valószínûségek Localisation Probability of breaching the dikes was given by hydrologists, a distinction between partial and full inundation of the floodplain section was done. Valószínûség 0.0 0.2 0.4 0.6 0.8 1.0 teljes részleges kritikus szint -100 0 100 200 300 400 500 Árvíz magassága - a kritikus szint Even for larger dike failures it is usually possible to localise the flooding There are official contingency plans to confine inundation for the two largest floodplain sections Budapest-Baja Fegyvernek-Mesterszállás where secondary protection lines are marked by the plans For the others: a decrease of the probability for complete flooding in accordance with the area of the floodplain section was included into the model. The cities of Szolnok, Szeged, Győr are expected to get exceptional care, so their flooding is less likely (it is supposed to happen only if the peak level is higher by more than 140 cm than the level of the surrounding flood embankments/levees) Effect of dike breach The water level is decreased by a couple of centimetres in the neighbouring downstream stations. This effect depends on the size and topology of the inundated floodplain section. We used a simple model: the effect is 10cm/100km 2, which is halved every 50 km. Experiences In the last decades there were just a few breaching of dykes Bereg, 2001 being the most recent (where we had claim data from) These corresponded to extreme high floods (with estimated return period over 100 years) There were problems with the dykes around Szolnok during the recent floods. This validates our observation of this area being the most dangerous. Claim ratio It is possible to choose from different distributions (beta, or normal/t for the logit transform). The expected value and variance of the claim can be parametrised. The default value is the estimator we got by the available data (it depends on the wall type, floor etc.) The dependency between the building and content-losses is also included into the model. Here we used the copulas for finding suitable structure to a given correlation. Some parameters of the losses partial flooding total flooding building content building content stone 0.0261 0.1173 0.1236 0.1173 adobe 0.0318 0.1173 0.2635 0.1959 other 0.0339 0.1173 0.2934 0.1959 These losses are supposed to be halved for 2 nd floor flats and further halved for higher levels. 7