Összefoglalás. Summary. Bevezetés



Hasonló dokumentumok
Összefoglalás. Summary

KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL VÉGZETT MÉRÉSEK KÜLÖNBÖZŐ EJTÉSI MAGASSÁGOKBÓL

Vizsgálati eredmények értelmezése

DEBRECENI EGYETEM Agrártudományi Centrum Mezőgazdaságtudományi Kar Fölhasznosítási, Műszaki és Területfejlesztési Intézet Debrecen, Böszörményi út 138

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

NYÍRÓSZILÁRDSÁG MEGHATÁROZÁSA KÖZVETLEN NYÍRÁSSAL (kis dobozos nyírókészülékben) Közvetlen nyíróvizsgálat MSZE CEN ISO/TS BEÁLLÍTÁSI ADATOK

A MÉLYMŰVELÉS SZÜKSÉGESSÉGE MÓDJA ÉS ESZKÖZEI

Mérési metodika és a műszer bemutatása

A magyarországi termőhely-osztályozásról

TALAJAZONOSÍTÁS Kötött talajok

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

Talajmechanika II. ZH (1)

A talaj vízforgalma és hatása a mezőgazdasági termelésre

Összefoglalás. Summary. Bevezetés

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján

Munkatérhatárolás szerkezetei. programmal. Munkagödör méretezés Geo 5

Csővezetékekben lévő korróziós hibák veszélyességének értékelési rendszere

Síklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

PRÓBAMÉRÉSEK TEREPI KÖRÜLMÉNYEK KÖZÖTT KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL

Kovács Ernő 1, Füvesi Viktor 2

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Sósvíz behatolás és megoldási lehetőségeinek szimulációja egy szíriai példán

M0 autópálya szélesítése az Anna-hegyi csúszás WOLF ÁKOS

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Mobil Gamma-log berendezés hajtásláncának modellezése LOLIMOT használatával

Humán anyagok kenőképességének vizsgálata és hatása a gerincimplantátumok stabilitására

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú (1) akkreditált státuszhoz

GEOTECHNIKAI VIZSGÁLATOK

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

Szikes talajok szerkezete és fizikai tulajdonságai

Villámárvíz modellezés a Feketevíz vízgyűjtőjén

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

A talaj nedvességének alakulása a Dél-Alföldön 2014-ben, automata nedvességmérő állomások adatai alapján. Benyhe Balázs ATIVIZIG

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

A profilmélységet is érzékeli a Continental intelligens abroncsnyomás-ellenőrző rendszere

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Geológiai radonpotenciál térképezés Pest és Nógrád megye területén

Ejtési teszt modellezése a tervezés fázisában

Aszálykezelés a vízügyi szolgálat védelmi rendszerében LÁNG ISTVÁN MŰSZAKI FŐIGAZGATÓHELYETTES ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG

Mérés és modellezés Méréstechnika VM, GM, MM 1

Tiszai árvízvédelmi töltések károsodásainak geotechnikai tapasztalatai

TALAJDEFORMÁCIÓK VIZSGÁLATA COMPUTER TOMOGRÁF SEGÍTSÉGÉVEL THE INVESTIGATION OF SOIL DEFORMATION WITH COMPUTER TOMOGRAPHY

SZABAD FORMÁJÚ MART FELÜLETEK

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

Mérés: Millikan olajcsepp-kísérlete

Méréselmélet MI BSc 1

Nanokeménység mérések

műszaki főigazgató helyettes Dátum: június 15. Helyszín: Országos Vízügyi Főigazgatóság

LABORATÓRIUMI SOROZATMÉRÉSEK HATÁSA TALAJOK ÁLLÉKONYSÁGI PARAMÉTEREIRE EFFECT OF LABORATORY MEASUREMENTS TO THE GEOTECHNICAL PARAMETERS OF SOILS

Gravi-szell huzatfokozó jelleggörbe mérése

XCELSIOR / VARI FLEX. Függesztett váltvaforgató ekék. Powered by Kongskilde

Alumínium ötvözetek aszimmetrikus hengerlése

Aszályindexek és alkalmassági vizsgálatuk

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

Fizika középszintű érettségi szimuláció A bomlástörvény

Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése

Talajmechanika. Aradi László

JÓVÁHAGYÁS. szervezet. Név Dr. Szakonyi Lajos KPI Oktatási Minisztérium

Fiatal kutatói beszámoló

A STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL. Wolf Ákos

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (4) a NAT /2011 nyilvántartási számú akkreditált státuszhoz

Jellemző szelvények alagút

8. FELADAT: AUTOMATIKUS IRÁNYÍTÁSI RENDSZEREK

XVII. econ Konferencia és ANSYS Felhasználói Találkozó

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI

SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú 1 akkreditált státuszhoz

A talajok összenyomódásának vizsgálata

RÉSZLETEZŐ OKIRAT (2) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

Kádár István 1 Dr. Nagy László 1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem,

FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA

GÁZKEVERÉK ROBBANÁSA SORÁN TÖRTÉNŐ LEFÚVATÁS ELŐZETES VIZSGÁLATA I. RÉSZ

Mozgáselemzés MEMS alapúgyorsulás mérőadatai alapján

Térinformatikai eszközök használata a szakértői munkában - a térbeliség hozzáadott értékei II. Esettanulmányok

Scan 1200 teljesítmény-értékelés evaluation 1/5

A talajnedvesség mérés módszerei és a mérési eredmények hasznosíthatósága

Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére

Geotechnikai monitoring elemek és alkalmazásuk Dr. Horváth Tibor GEOVIL SoilInstruments Kft.

DOKTORI (Ph.D) ÉRTEKEZÉS

Újabb eredmények a borok nyomelemtartalmáról Doktori (PhD) értekezés tézisei. Murányi Zoltán

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

a NAT /2006 számú akkreditált státuszhoz

Folyami hidrodinamikai modellezés

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

DOKTORI (Ph.D.) ÉRTEKEZÉS

Mérés és modellezés 1

2000 Szentendre, Bükköspart 74 MeviMR 3XC magnetorezisztív járműérzékelő szenzor

a NAT /2007 számú akkreditálási ügyirathoz

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

ÖDOMÉTERES VIZSGÁLAT LÉPCSŐZETES TERHELÉSSEL MSZE CEN ISO/TS BEÁLLÍTÁS ADAT. Zavartalan 4F/6,0 m Mintadarab mélysége (m)

DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI

Bonded és No Separation

OTKA NN Szabó András és Balog Kitti

MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI

Sebesség visszaszámítás féknyomból?

Átírás:

Abroncs terhelés okozta talajfeszültségek meghatározása talajládás szimulációval Kiss Zsolt Péter Kriston Sándor 2 Nyíregyházi Főiskola, Műszaki és Mezőgazdasági Főiskolai Kar Közlekedéstudományi és Infotechnológiai Tanszék 2 Michelin Hungária Kft. Nyíregyháza E-mail: kisszs@nyf.hu Összefoglalás Kutatásaink célja, hogy laboratóriumi körülmények között meg tudjuk mérni különböző kialakítású mezőgazdasági ill. terepjáró abroncsok különböző típusú és állapotú talajra gyakorolt hatását. Ennek érdekében kifejlesztettünk egy speciális berendezést, amely különböző nyomásszenzorok segítségével az abroncs terhelések alatt a talajban ébredő feszültségeket és annak térbeli eloszlását méri. Ebben a publikációban a tesztvizsgálatok menetét és annak néhány eredményét szeretnénk bemutatni. Summary For determination of stress distributions generated in soil samples by different segments application of oriented pressure sensors mounted under the appropriate segments is necessary. In addition to the stress state determination measuring the deformation on the surface and inside of the sample is also resource of important information. A number of mechanical, hydraulic and software developments and modifications were needed for the realisation of this conception. Of course, the main element of this was planning and production of the hydraulic pushing tool approximating the tyre model and its installation. Bevezetés A szerkezetromlás talajaink degradációjának egyik legaggasztóbb jelensége, melynek során a talajok térfogattömege 0-20 év alatt,-,3 g/cm 3 értékről,5-,7 g/cm 3 értékre nőtt (BIRKÁS 987). A legtöbb kutató a talaj tömörödöttségi állapotát a talajellenállással jellemzi. BIRKÁS (987), KOVÁCS et al. (2004), RÁTONYI (999). A vizsgálatokhoz a 3T (termőhelyi talaj teszter) nevű rétegindikátort használtuk, amely a mérés során cm-ként rögzíti a behatolási ellenállás és a szántóföldi vízkapacitás (pf.2.5) mért értékeit. A különböző nedvességtartalom melletti tömörödöttségi értékek összehasonlítása SZŐLLŐSI (2003) nyomán történt. Korábbi vizsgálataink eredményeként rendelkezésünkre áll egy olyan adatbázis, amely segítségével egy egész évre vonatkozóan meg tudjuk mondani, hogy az adott talajtípus, milyen nedvességi és tömörödöttségi állapotban volt, mindezt külön-külön a művelt, a művelés nélküli és a talajvályúban szerkezet azonosan elhelyezett talajok 5

Talajvédelem különszám 2008 (szerk.: Simon L.) vonatkozásában is. A vizsgálati talajládában tehát a kiválasztott talajtípus esetén a fent említett két legfontosabb paraméterrel (nedvességtartalom és tömörödöttség) igyekszünk beállítani azt a talajállapotot, amelyet a természetes körülmények között korábban megmértünk. Ezzel szeretnénk biztosítani a talajláda és valóságos körülmények közötti azonosságot. A természetbeni talajok ún. in-situ feszültségállapotát egy általunk egyedileg kifejlesztett speciális vizsgáló berendezéssel (Danhauser gép) hozzuk létre a talajládában. Az előterhelést követően szintén penetrométeres mérésekkel igazoltuk a talajminták és a szántóföldi állapot szerkezeti és állapotbeli azonosságát. Vizsgálati anyag és módszer A vizsgálataink során 3 fizikai talajféleség (homok, homokos vályog, agyag) 3 nedvességtartalmú állapotának (száraz, közepesen nedves, nedves) megfelelő, homogenizált talajmintákat hoztunk létre. Célunk ezután a különböző talajtípusok és talajállapotok terhelés alatti feszültségállapotának és eloszlásának a meghatározása volt. A vizsgálatokhoz egyedi fejlesztésű nyomásszenzorokat használtunk. A talajmintákban elhelyezett irányított nyomásszenzorokkal lehetővé vált a minták feszültségállapotának meghatározása A mérések pontosságának igazolására hidrosztatikai nyomásmérések is történtek, valamint a méréseket több alkalommal is megismételtük. A meghatározott feszültségállapotok jelentik majd ugyanezen minták triaxiális méréseinek bemenő adatait. A következő lépés egy valóságos abroncs okozta terhelést modellező próbatest megtervezése és létrehozása volt. A vizsgáló berendezést és a nyomószerszám tervrajzát az. ábrán láthatjuk.. ábra. A vizsgáló berendezés és a nyomószerszám 3D-s tervrajza Az. ábrán látható három fő elem egymástól függetlenül mozgatható és az alábbi funkciókkal rendelkezik. A külső legnagyobb nyomólap a talajminta kezdeti feszültségállapotát létrehozó sík, amely kezdetben a másik két elemmel (talp és bordák) együtt mozogva hozza létre a természetes talajban ébredő 6

Talajtani Vándorgyűlés, Nyíregyháza, 2008. május 28-29. kiindulási ún. in situ feszültség állapotot és ezt a terhelési folyamat során végig biztosítja. Ennek az a lényege, hogy a valóságnak megfelelően az abroncson kívül eső talaj alapállapota (terhelése statikus) állandó legyen. Ezt követően két terhelési módszer közül választhatunk. Az egyik lehetőség, amikor a talajfelszín nyomásának állandó értéken tartása mellett először a bordák mozdulnak ki az előírt hosszon (bordamagasság) a síkból, majd ezt követően az abroncslenyomatot modellező rész nyomódik bele a talajba az általa létrehozott talajfelszínnyomás beállított értékeke szerint. Ez természetesen nagyobb érték, mint az IN-SITU sík által eközben folyamatosan állandó értéken tartott nyomás. A második lehetőség, hogy a bordák és az abroncslenyomat síkja fordított sorrendben mozdulnak el. Ebben az esetben először az abroncslenyomat síkjának kinyomása után következnek csak a bordák. A vezérlésnek kell biztosítania, hogy a sík alatti talajfelszín nyomása a bordák mozgása közben is állandó értéken maradjon. A különböző elemek által létrehozott feszültségeloszlások meghatározásához a talajmintákban a megfelelő elemek alatt irányított nyomásszenzorokat helyeztünk el. A feszültségállapot mérése mellett fontos információt jelent a minta deformációjának meghatározása, mind a felszínen, mind pedig a minta belsejében. Az. ábrán bemutatott hidraulikus nyomószerszám az abroncsot erősen egyszerűsítve modellezi, ezért a későbbiek során a valósághoz közelebb álló kialakítások válhatnak szükségessé. Ennek érdekében a nyomószerszám moduláris kialakítású, azaz az abroncslenyomatot modellező téglatest, valamint az egyszerűsített bordaelemek cserélhetőek. A vizsgáló berendezés számos útadó és erőmérő cellával van felszerelve, így a mérés befejeztével a megfelelő erő-elmozdulás diagramok könnyen előállíthatók. A mérőberendezés helyére szerelhető agyra egy teljes értékű pántra szerelt abroncs is rögzíthető. A hidraulikus rendszer elemei vízszintes és kerület irányú elmozdulásra is képesek, így lehetőséget adnak akár valódi abroncsok talajon való elmozdulásának elemzésére is. A következő kihívást a szabályozott mérési folyamat megvalósítása jelentette. Különösen nagy jelentősége van ennek a hidraulikus nyomószerszám alkalmazásakor, a terhelési program bonyolultsága miatt. Az eszközfejlesztéseket követően kerülhetett sor az egyedileg kifejlesztett rádiófrekvenciás szenzorok talajmintába történő beépítésére, és a megtervezett mérés elvégzésére. A tesztméréseket száraz állapotú nyírségi homok, taktaharkányi nedves agyag, valamint megyaszói nedves homokos vályog talajon végeztük. A vizsgálat során az alábbi paramétereket definiáltuk. Terhelési folyamat lépcsői: 7

Talajvédelem különszám 2008 (szerk.: Simon L.).) A természetes talaj tömörödöttségével azonos IN-SITU állapot elérése: A talajfelszín nyomása bar, amelyet 0,2 báronként 5 terhelési lépcsőben érünk el. Egy terhelési lépcső elérési ideje 5 másodperc, és az adott nyomáson 5 másodperc pihentetés következik. 2.) Az abroncs talplenyomatának kialakítása: Az abroncslenyomatot modellező egység alatti talajnyomás az IN-SITU állapothoz képest,8 baros növekedést, azaz összesen 2,8 bar-t jelent. A terhelés felfuttatása az IN- SITU állapot + bar-ra folyamatosan történik 60 másodperc alatt, majd 0,2 bar-os nyomásnövekményenként 5 másodperces terhelési és pihentetési ciklusok következnek. 3.) Az abroncsbordák lenyomata: Az egyszerűsített bordaelemek 50 mm bordamagasságot modellezve penetrálódnak a talajmintába. Ennek eléréséhez 60 másodpercre van szükség. Vizsgálati eredmények és értékelésük A vizsgálat során a 20 db nyomásszenzort az előkészített talajminta 200 mmes mélységében helyeztük el a 2. sz. ábrának megfelelő kiosztásban. A terhelési folyamat során a szenzorok által mért értékek szintén a 2. sz. ábrán láthatóak. 4,5 szenzorok IN-SITU sík σy σx 4,0 Emlékező műanyagrúd 3,5 borda sík borda sík 3,0 2,5 2,0,5,0 0,5 abroncsnyom sík 0,0 0,4 0,6 0,8,0 2,0 2, 2 2,4 2,6 2,8 2,8 2,8 bar talajláda 2. ábra. A szenzorok elhelyezése a talajban és a mért értékek bar sy abr sy borda sy abr sy borda sy abr sy IN-SITU A talajminta nyomáseloszlásának meghatározását követően a 3. sz. ábra szerinti elosztásban penetrométeres méréssel állapítottuk meg a talajminta tényleges tömörödöttségét és nedvességtartalmát. Az általunk alkalmazott 3T System típusú penetrométer az adott talajmintában a szántóföldi vízkapacitáshoz viszonyított víztartalmat határozza meg térfogat % egységben. A kezdeti terheletlen, homogén nedvességtartalmú talajmintában a terhelést követően különböző mélységekben a 3. sz. ábra szerinti nedvességtartalmakat kapjuk. 8

Talajtani Vándorgyűlés, Nyíregyháza, 2008. május 28-29. Taktaharkány - nedves agyag Talajkat egória :6 talajne dvesség IN-SITU tala jellenállás IN- SITU talajne dvesség abro ncsnyom tala jellenállás ab ronc snyom talajne dvesség bord a tala jellenállás b orda 00 90 80 70 60 50 40 30 20 0 0 0 5 0 5 20 25 30 35 40 ele nál ás x0 0 kp a nedve sé g t f% t ala jmélység cm 3. ábra. A penetrométeres vizsgálati pontok és azok görbéi A mérések eredményei a Cambridge-Cam-Clay végeselemes talajmodell adott talajtípusra vonatkozó számításainál input adatként fognak majd szolgálni. Annak igazolására, hogy a hidraulikus nyomószerszám egyes elemeit a valóságos abroncsot érő hatásokkal terheljük-e, konkrét típusú, valódi abroncsvizsgálatokat végeztünk. A kiválasztott abroncs a 480/65R28 Point65-ös méret, amelyet a maximálisan megengedett erővel, 2770 dan-nal terheltük. Ebben az esetben a vizsgált talaj a megyaszói homokos vályog volt, nedves állapotban. Először kísérletet hajtottunk végre termőhelyi állapotig előterhelt talajjal, azonban a szenzorok által mért nyomásértékek nagy szórást mutattak. Ennek oka az előterhelt, majd tehermentesített talajban, az abroncs hatására kialakuló töredezés jelensége, amely a talajminta inhomogenitásához vezet. A szenzorokat előbb 0 cm, majd 2 cm mélységben a talajnyom megfelelő helyeire, a bordák alá, valamint a bordák közé helyeztük el. A szenzorok elhelyezkedését a 4. ábra mutatja. 2007..5 Megyaszó- homokos vályog abroncsos mérés (,5 bar) IN-SITU nélkül III II 2 4 3 2 IX 3 I 4 4 2 4. ábra. A szenzorok elhelyezése a gumiabroncs alatt A vizsgálat és a terhelés folyamata az alábbi 5. ábrán látható. 9

Talajvédelem különszám 2008 (szerk.: Simon L.) 5. ábra. A gumiabroncs vizsgálat és az abroncs talajlenyomata A mérések kiértékelése a 6. ábrán látható. A talajnyomás értékek 2 cm mélységben a bordák alatt és között jelentősen elkülönülnek, az előző alatt magasabb értéket mutatnak. 0 cm mélységben azonban az abroncs különböző elemei alatt kiegyenlítődnek. 2007..7 3,50 3,00 2,50 2,00,50,00 0,50 0,00-0,50 Megyaszó - nedves vályog 2007..7 Megyaszó - nedves vályog abroncsos mérés (,5 bar) IN-SITU nélkül abroncsos mérés (,5 bar) IN-SITU nélkül szenzorelhelyezés 2 cm mélyen szenzorelhelyezés 0 cm mélyen,80 Adatsor Adatsor2,60 Adatsor3,40 Adatsor4 Adatsor5,20 Adatsor6 Adatsor7,00 Adatsor8 0,80 Adatsor9 Adatsor0 0,60 Adatsor Adatsor2 0,40 Adatsor3 0,20 Adatsor4 Adatsor5 2 3 4 0,00 Adatsor6 2 3 4 6. ábra. A gumiabroncs lenyomatának értékelése I / I / 2 I / 3 I / 4 II / II / 2 II / 3 II / 4 III / III / 2 III / 3 III / 4 IX / IX / 2 IX / 3 IX / 4 Következtetések A kezdeti vizsgálatok során mind a vezérlő berendezés, mind a szimulációs modell és a nyomásszenzorok is jól működtek. A valódi abroncs és a modell különböző paraméterek melletti összehasonlító vizsgálatai alapján lehet majd egyértelmű véleményt mondani. Irodalomjegyzék BIRKÁS M. (987): A talajművelés minőségét befolyásoló agronómiai tényezők értékelése. Gödöllő. (kandidátusi értekezés). KOVÁCS Z., LAJB L., SZENTE M., KASSAI ZS. (2004): Vibration testing of agricultural power machines. MicroCAD 2004 International Scientific Conference, Miskolc, 8-9 th March 2004. p. 03-06. RÁTONYI, T. (999): A talaj fizikai állapotának penetrométeres vizsgálata talajművelési tartam kísérletben. Debrecen. (doktori (Ph.D) értekezés). SZŐLLŐSI I. (2003): Talajok tömörödöttségi állapotának jellemzése penetrométeres vizsgálatokkal. Debrecen. (doktori (Ph.D) értekezés). 20