A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Hasonló dokumentumok
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektromosság, áram, feszültség

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektromos töltés, áram, áramkörök

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Elektrosztatikai alapismeretek

Elektromos töltés, áram, áramkör

Elektromos áram, áramkör

1. Elektromos alapjelenségek

Elektromos alapjelenségek

Elektromos áram, áramkör

Elektrosztatika tesztek

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

FIZIKA ÓRA. Tanít: Nagy Gusztávné

Elektromos áram, egyenáram

Elektromos áram, áramkör, kapcsolások

Vezetők elektrosztatikus térben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Elektromos áram, egyenáram

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

Elektromos áram, egyenáram

Elektromos ellenállás, az áram hatásai, teljesítmény

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Elektromos áram, egyenáram

Elektromos áram. Vezetési jelenségek

1. SI mértékegységrendszer

Az elektromosságtan alapjai

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező jellemzése

Mágneses mező jellemzése

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Elektromos ellenállás, az áram hatásai, teljesítmény

Q 1 D Q 2 (D x) 2 (1.1)

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

1. ábra. 24B-19 feladat

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Elektrotechnika. Ballagi Áron

Elektromágnesség tesztek

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

Elektrosztatika tesztek

Elektrosztatikai jelenségek

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

A testek részecskéinek szerkezete

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Időben állandó mágneses mező jellemzése

Elektrotechnika 9. évfolyam

Fizika Vetélkedő 8 oszt. 2013

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

Elektromos áram, áramkör, ellenállás

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Fizika A2 Alapkérdések

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Munka, energia Munkatétel, a mechanikai energia megmaradása

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Bevezető fizika (VBK) zh2 tesztkérdések

W = F s A munka származtatott, előjeles skalármennyiség.

Az áram hatásai, áram folyadékokban, gázokban, félvezetőkben

Fizika A2 Alapkérdések

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

Newton törvények, lendület, sűrűség

Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása

Ex Fórum 2009 Konferencia május 26. robbanásbiztonság-technika 1

= Φ B(t = t) Φ B (t = 0) t

Elektromágnesség tesztek

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Fizika 1 Elektrodinamika beugró/kis kérdések

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

1. Cartesius-búvár. 1. tétel

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Elektromos áram, egyenáram

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, május-június

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Elektrosztatika tesztek

Elektromos áramerősség

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

TARTALOMJEGYZÉK. Előszó 9

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Átírás:

Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást, különbözőek vonzzák egymást. Két fajta elektromos állapot hozható létre: elnevezésük: pozitív (+) és negatív ( ) Az azonosak (+ + vagy ) taszítják egymást, a különbözőek (+ ) vonzzák egymást.

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test pozitív töltéssel rendelkezik. A vonzás, taszítás jelenségek magyarázata: A testek, tárgyak atomjai, molekulái + protonokat és elektronokat tartalmaznak. Ha nincsenek elektromos állapotban, akkor ezek száma azonos, kiegyenlítik egymást, a tárgy semleges. A tárgyak szoros érintkezésekor a negatív elektronok képesek leválni az atomról és átmenni az egyik tárgyról a másik tárgyra. Ekkor az egyiken elektron hiány, a másikon elektron többlet alakul ki. Egy töltött tárgy közelében a semleges tárgyban a töltések megoszlanak. Mivel a vonzás akkor nagyobb, ha a töltések közelebb vannak, a külső töltés nagyobb erővel vonzza a semleges testben közelebb levő ellenkező töltéseket, mint ahogy taszítja a távolabbi azonosakat, ezért az egész semleges tárgyat vonzza.

A töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1,6 10-19 C (azért -, mert negatív) 1 proton töltése: 1,6 10-19 C Elektromos állapot mérésére szolgáló eszköz: elektroszkóp Az elektroszkóp mutatója kitér, mivel azonos töltésű lesz a tartó rúddal, ezért taszítják egymást. Minél nagyobb a kitérése, annál nagyobb töltéssel lett feltöltve. Vezető anyag: amelyben a töltések könnyen tudnak mozogni. Elektromos állapotú tárggyal érintkezve az elektromos állapotot könnyen átveszik. Pl. fémek, oldatok, víz, emberi test Szigetelő anyagok: amelyben a töltések nem, vagy csak nehezen tudnak kimozdulni a helyükből, ezért a külső elektromos állapotú testtel érintkezve az elektromos állapotot nem veszik át. Pl. gumi, műanyag, porcelán, üveg, desztillált víz, száraz fa Földelés: Ha egy tárgyat vezető anyaggal összekötünk a Földdel, akkor a tárgyra kerülő töltések levezetődnek a tárgyról a Földbe, és a tárgy semleges lesz. Pl. háztartási eszközök földelt vezetéke

Példák az elektrosztatikus vonzás, taszítás alkalmazására: Lézernyomtató, fénymásoló: A forgó hengeren olyan bevonat van, ami a lézerfény hatására elektromosan feltöltött lesz. Erre rávetítik a szöveget. Ez a réteg magához vonzza az ellenkező töltéssel feltöltött festékszemeket. A henger tovább forog a papírhoz, ahol egy újabb elektromos vonzóhatás áthúzza a festékszemeket a papírra. Elektrosztatikus légszűrő, füstszűrő: A semleges füstszemeket két ellentétesen feltöltött lemez magához vonzza, és azon a füst kirakódik. Elsősorban ipari üzemekben, kéményekben alkalmazzák, így a füst nagy része megköthető, és nem jut ki a környezetbe. A villám, és a szikra keletkezése: Két ellentétesen feltöltött tárgy között a nagy térerősség hatására a levegő semleges részecskéiből ionpárok, ionok lesznek, amelyek a két tárgy felé indulnak a vonzás hatására. Közben ütköznek más levegő részecskékkel, azt ionizálják, így azok is áramlanak a másik tárgy felé, így töltések gyors áramlása, töltéslavina alakul ki a két tárgy között. Ez a szikra. Ha a felhőkben levő vízrészecskék a súrlódás hatására feltöltődnek, akkor ez a töltéslavina a felhők között, vagy a felhők és a Föld között jön létre, ez a villám.

Coulomb törvény Két töltés közötti vonzó vagy taszító erő akkor nagyobb, ha a két töltés nagyobb, vagy távolságuk kisebb. Vagyis az erő egyenesen arányos a töltések nagyságával, és fordítottan arányos a távolságuk négyzetével. Képletben: Q 1 és Q 2 a két töltés, r a távolságuk, k egy arányossági tényező: 9 10 9 N m 2 /C 2 Ha egy töltésre több töltés is hat, akkor a rá ható elektromos erőket irányuk szerint összegezni kell. (Pl. azonos irányúakat összeadni, ellentétesek kivonni.) Elektromos térerősség Bármely elektromos test körül elektromos mező, tér alakul ki. Ha ebbe a mezőbe egy kis pontszerű töltést rakunk, akkor arra erő hat. Az elektromos térerősség megadja a mező egy pontjába helyezett 1 C nagyságú töltésre ható erő nagyságát. Jellemzi az elektromos mező erősségét egy-egy pontban. Képletben: E = F/Q, ahol az F a Q töltésre ható erő. Az elektromos térerősség jele: E, mértékegysége N/C

Elektromos térerősség vonalak Az elektromos teret jellemezhetjük térerősség vonalakkal. Az erővonalak iránya minden pontban megegyezik a térerősség irányával, az erővonalak sűrűsége ott nagyobb, ahol a térerősség nagyobb. Homogén elektromos tér: Az E térerősség minden pontban ugyanakkora. A térerősség vonalak párhuzamos egyenesek. Példák elektromos mezők erővonalaira a) + ponttöltés el.tere b) ponttöltés el.tere e) + és töltések el.tere c) + lemez el. tere d) lemez el. tere f) + és lemezek el. tere (A c), a d) és az f) homogén elektromos tér

Elektromos feszültség, elektromos munka Az elektromos térben levő töltésre erő hat, emiatt elmozdul az A pontból a B pontba, az elektromos tér munkát végez (munka=erő út). A munkavégzés egyenesen arányos a töltés nagyságával. Az 1 C töltés A pontból B pontba történő mozgatásához szükséges munka az elektromos tér e két pontjára jellemző érték: az A és B pont közti feszültség. Jele: U, mértékegysége V (volt) Feszültségforrások A két pontja között folyamatosan tudja biztosítani a feszültséget, vagyis folyamatosan tud töltéseket áramoltatni (munkát végezni), ha rákapcsolják egy áramkörre. A két pontot pólusoknak nevezik, tehát van egy pozitív és negatív pólusa. Feszültségforrások: pl. elemek, akkumulátorok Ezeknek jellemző adata a két pólusa közötti feszültség érték. Pl. ceruzaelem (AA vagy AAA) 1,5 V, gombelem pl. 3 V, lapos elem 4,5 V, mobiltelefon akkumulátora 4-6 V, autó akku 12 V

Töltések elhelyezkedése vezető anyagban A vezetőre vitt többlettöltés mindig a vezető felületére csoportosul a taszítás miatt. Így a vezető belsejében a térerősség nulla, belül nincs elektromos tér. Elektromos árnyékolás Mivel a vezető belsejében nincs elektromos tér, ha egy vezető anyag vesz körül egy térrészt, akkor abban a térrészben nincs elektromos tér akkor sem, ha a vezető burok feltöltődik (elnevezése: Faraday kalitka). A vezető anyagú burok leárnyékolja a külső elektromos teret. Ezt hívják elektromos árnyékolásnak. Felhasználása: Fém autóban, repülőben utazókat nem éri a villámcsapás, fémburok árnyékolás védi a külső elektromos zajoktól a híradástechnikai vezetékeket (pl. antennakábel, hangszerek, erősítők vezetékei), szabadban álló gáztartályokat fémkerettel védik,...

Csúcshatás A vezető anyag felületén elhelyezkedő töltések sűrűbben helyezkednek el ott, ahol a tárgy keskenyebb, csúcsos kialakítású. Ezért ott a töltések jobban vonzzák a levegőben levő ionokat és a semleges részecskéket. Tehát a csúcs odavonzza a környezetében levő részecskéket, ezért azok nem máshova mennek, hanem a csúcsba. Példák a csúcshatás felhasználására: Villámhárító: A csúcsos vezeték magához vonzza a levegőben levő részecskéket és levezeti az elektromos felhőből jövő töltéseket a Földbe. Gépszíjak elektromos semlegesítése Szíjáttétellel meghajtott gépeknél a szoros érintkezés miatt a gépszíj feltöltődik. Ahol a szétválasztott töltések közötti esetleges szikrakisülés robbanásveszélyt jelent, ott földelt fémfésűvel szívják le a töltéseket.

Kondenzátor Két egymással szemben álló vezető anyagú lemezt feltöltünk + és töltéssel. A két lemez között homogén elektromos tér alakul ki. A két lemez között feszültség (U) jön létre, ami annál nagyobb, minél nagyobb töltéssel (Q) töltjük fel a lemezeket. A létrejövő feszültség és a töltés egymással egyenesen arányos. Minél nagyobb a kondenzátorra kapcsolt feszültség, annál több töltéssel tud feltöltődni. A töltés és a feszültség hányadosa a kondenzátorra jellemző adat: a kondenzátor kapacitása Nagyobb kapacitású kondenzátor több töltést tud tárolni. A kondenzátor kapacitása Jele: C, mértékegysége F (Farad) Kiszámítása: mértékegysége F (Farad), mf, μf A kondenzátor kapacitása függ a lemezek nagyságától, és távolságától, és a köztük levő anyagtól. Nagyobb a kapacitás, ha nagyobb a lemezek felülete, és közelebb vannak egymáshoz.

Kondenzátor energiája A kondenzátor két lemezének feltöltéséhez elektromos munkát kell végezni. Amikor pedig a Q töltéssel feltöltött, U feszültségű kondenzátor leadja töltését és semleges lesz, akkor az elektromos tere a töltések áramlását idézi elő és ehhez munkát végez. Tehát feltöltésekor munkavégző képessége, vagyis energiája lesz. Az U feszültségre feltöltött kondenzátor energiája: Kondenzátorokat használnak az elektronikai áramkörökben feszültség tárolásra, feszültség szabályozásra. Készítik különböző méretekben, alakokban.

Egyéb példák a kondenzátor felhasználására: A kondenzátor arra is használható, hogy feltöltve képes tárolni a töltését, feszültségét, majd egy alkalmas pillanatban ezt a töltést leadja és így rövid ideig tartó nagy áramot (töltésmozgást) tud előidézni. Ennek két felhasználása: Vaku: A kondenzátort az akkumulátor feltölti töltéssel, majd ha a lámpára kapcsoljuk, hirtelen kisül, hirtelen leadja töltését egy erős fényű lámpának, ami felvillan. Defibrillátor: Hasonlóan a vakuhoz, az akkumulátor feltölti a kondenzátort, majd egy áramkörre rákapcsolva, hirtelen leadja töltését, és rövid ideig tartó áramot (kis áramütést) hoz létre.

Kondenzátor mikrofon: A mikrofon membrán-lemezeit éri a hanghullám, és megrezegteti. Így közelebb és távolabb kerül a két lemez egymástól és így változik a két lemezből álló kondenzátor kapacitása. Emiatt változik a kondenzátor töltése, ezért váltakozó áram alakul ki. Tehát a hangrezgések átalakulnak áramjelekké. Érintőképernyő (pl. mobiltelefon): A képernyő alatt feltöltött réteg van, fölötte szigetelő réteg (üveg). Ha vezető anyaggal hozzáérünk (pl. ujjal), akkor a képernyő alatti feltöltött réteg és az ujj kondenzátorként működik, mint két szemben álló lemez. Ahol hozzáérünk, ott megváltozik az elektromos tér, megváltozik az ujj alatti réteg töltése. Ezt érzékeli a telefon áramköre.