ZÁRVÁNYKOMPLEXEK ELŐÁLLÍTÁSA ÉS VIZSGÁLATA (A gyakorlatot két alkalommal végzik) Kémiai technológia laboratóriumi gyakorlat kémiatanár szakos hallgatók számára ELTE Kémiai Intézet, Szerves Kémia Tanszék
1 ZÁRVÁNYKOMPLEXEK ELŐÁLLÍTÁSA Bevezetés A zárványkomplexek A zárványkomplexek kétféle molekulából álló addíciós vegyületek, amelyekben a komponenseket csak fizikai erők tartják össze. Az egyik komponens a gazdamolekula a szerkezet hordozója, kristályrácsainak üregeibe zárja be a másik komponenst, a vendégmolekulát. Ipari méretekben fontos a zárványkomplex képzés keverékek szétválasztásában, ui. azok a vendégmolekulák, amelyek alakjuknál és méretüknél fogva nem illenek be a kristályrács üregébe, az oldatban maradnak vissza. Így zárványkomplex képzés segítségével keverékek komponensei elkülöníthetők egymástól. Ipari szempontból jelentős továbbá, hogy zárványkomplexek formájában kémiailag érzékeny anyagok stabilizálhatók. Különösen a karbamid zárványvegyületeinek van jelentős szerepe az iparban, pl. n-paraffinok szénhidrogén elegyből történő elkülönítését karbamidos addukt képzéssel végzik. Zárványkomplexek előállítási módjainak szemléltetésére a gyakorlat során egy világviszonylatban is elterjedt ipari alapanyagot használunk. Ez a vegyület a ciklodextrin, amelyet hazánkban kukoricakeményítőből enzimek segítségével állítanak elő. A ciklodextrinek ciklikus, nem redukáló oligoszaharidok, amelyek 6, 7 vagy 8 glükopiranóz egységből állnak, ezeket α-, β-, és γ-ciklodextrinnek nevezzük. Közülük a legfontosabb és a legnagyobb mennyiségben előállított a β-ciklodextrin, amelynek szerkezete és molekuláris méretei az 1. ábrán látható. 1. ábra: A β-ciklodextrin szerkezete és mérete A gyűrűs szerkezetű ciklodextrinekben a glükopiranóz egységek úgy helyezkednek el, hogy a gyűrű egyik peremén helyezkedik el az összes primer hidroxil-csoport, a másik peremén valamennyi szekunder hidroxil-csoport. A gyűrűk belseje hidrofób, külseje hidrofil, jól nedvesedő. A ciklodextrineket szerkezetük alkalmassá teszi zárványkomplexek képzésére minden olyan vegyülettel, amelyek molekuláris méretei megfelelnek a ciklodextrin üreg méreteinek. A bezárt molekula oly módon helyezkedik el, hogy hidrofób része az apoláris ciklodextrin üreggel, míg hidrofil része a ciklodextrin külső, hidroxil csoportjaival és a szolvenssel létesít kapcsolatot. A komplexbe zárt molekula fizikai, kémiai sajátságai jelentős mértékben megváltozhatnak. Zárványkomplexek alkalmazása Komplexképző sajátságaiknak köszönhetően számos gyakorlati célra alkalmazhatók a ciklodextrinek. 2
Kozmetikai szerekben elsősorban az oldhatóság és nedvesedés fokozása miatt alkalmaznak ciklodextrineket. Illatanyagok megőrzésére parfümökbe, krémekbe keverve fordulnak elő. A ciklodextrineket a gyógyszerekben komplexálásra vagy segédanyagként lehet alkalmazni. Ciklodextrinek segítségével folyékony vegyületek kristályossá alakíthatók, amelyek alkalmasak tabletták előállítására. Kis dózisú hatóanyag tablettáiban a hatóanyag egységességét így könnyen meg lehet valósítani, hiszen a ciklodextrin komplexek könnyen homogenizálható, laza szerkezetű porok. Stabilis vizes oldatok készíthetők olyan hatóanyagokból, amelyek egyébként csak szerves oldószerekben oldhatók. Az oldhatóság növelésén kívül fontos az oldódási sebesség, valamint a biológiai hozzáférhetőség fokozása is. A bomlás, polimerizálódás, átrendeződés és autokatalitikus reakciók sebessége jelentős mértékben csökken mind oldott, mind szilárd állapotban a komplexképzés következtében. Hőre, fényre érzékeny anyagok stabilitása is javul ciklodextrinekkel történő komplexálás következtében. Ciklodextrinek kitűnően alkalmazhatók bizonyos környezetvédelmi problémák megoldására is. Például a növényvédő szerek mezőgazdasági alkalmazhatóságát korlátozza, hogy általában könnyen bomló, fényérzékeny vegyületek. A ciklodextrinekkel való zárványkomplex képződés stabilizálódási lehetőséget nyújt. Növényvédő szerek ciklodextrinnel képzett zárványkomplexeit vizsgálva számos szerző számol be arról, hogy e szerek ciklodextrinnel való komplexképzése előnyös, mert a komplexek hatékonyabbak, mint a hatóanyag molekulák önmagukban, a hatás jobban kontollálható, ezen kívül egyes könnyen bomló növényvédő szerek esetén a komplexképzéssel stabilabb vegyületek nyerhetők. A ciklodextrinek élelmiszeripari felhasználását az teszi lehetővé, hogy egészségre ártalmatlanok. Alkalmazhatók illékony, bomlékony vegyületek stabilizálására (például aromaanyagok esetén), kellemetlen illatok és ízek csökkentésére. Aromaanyagok komplexálása A ciklodextrin zárványkomplexek jelentős csoportját képviselik az élelmiszerekben található anyagok komplexei, amelyek többsége ma már a hazai kereskedelmi forgalomban is kapható (pl. fűszeraromák, tea- és kávéaroma zárványkomplexek). A természetes aroma- és illatanyagok többsége sok komponensből áll és e komponensek szobahőmérsékleten is nagy illékonyságot mutatnak. Ezen kívül a növényekből kinyert aroma koncentrátumok oxigénnel szembeni érzékenységük miatt vagy fotokémiai átalakulások következtében mennyiségileg és minőségileg károsodhatnak. Ezeknek a kémiailag kevéssé stabil anyagoknak β-ciklodextrinnel történő komplexálása számottevően fokozza eltarthatóságukat, stabilitásukat, csökkenti illékonyságukat. Zárványkomplexek készítése Az aromaanyagok β-ciklodextrinnel történő komplexálására három komplexképzési eljárás alkalmazható: a.) Közös oldatból kiinduló együttkristályosítási eljárás. Ennél a komlexképzési eljárásnál a β-ciklodextrin 30 %-os vizes etil-alkoholos oldatához csepegtetik az abszolút etil-alkoholban oldott aromaanyagot. A csepegtetés alatt a reakcióelegyet vízfürdőn kevertetik, amelynek hőmérsékletét úgy választják meg, hogy a ciklodextrin feloldódjon, és a hatóanyag olvadáspontját ne érjék el. A reakcióelegy hőmérsékletét ezután szobahőfokra csökkentik, majd a komplex kiválását hűtéssel segítik elő. A kristályos terméket üvegszűrőn szűrik, és tömegállandóságig szárítják. b.) A gazdaságosság növelése céljából előállíthatók a zárvány-komplexek a ciklodextrinek vizes szuszpenziójában is. 3
Ennél az eljárásnál a β-ciklodextrint desztillált vízben szuszpendálják, majd ehhez a vizes szuszpenzióhoz csepegtetik az aroma abszolút etanolos oldatát. A továbbiakban szobahőmérsékleten kevertetik a reakcióelegyet. Az előállított kristályos komplexet üvegszűrőn szűrik, és tömegállandóságig szárítják. c) A β-ciklodextrin átlagosan 12-14 % nedvességtartalma lehetővé teszi a zárványkomplexek előállítását szilárd fázisú komplex-képzéssel. Ennek során a ciklodextrinek apoláris üregébe zárt vízmolekulákat helyettesítik az alkalmas méretű és polaritású molekulák a komplexképzésnél. A komplexek előállítása ez esetben úgy történik, hogy achátmozsárba mérik a β-ciklodextrint és a sztöchiometriailag megfelelő mennyiségű aromaanyagot, majd két órán keresztül intenzíven dörzsölik. Mivel a laktóz nem képez komplexet az aromaanyaggal, összehasonlítás céljából készítendő fizikai keverék előállításánál alapanyagként használható. Gyakorlati munka A laboratóriumi gyakorlat során zárványkomplex-képzés céljára "gazda" molekulaként β- ciklodextrint, "vendég" molekulaként pedig timolt használnak. Előállítják az aromaanyag β-ciklodextrin komplexeit együttkristályosítás módszerével és szuszpenzióban. Összehasonlítás céljából előállítanak az aromaanyagból fizikai keveréket is. (A beméréseket táramérlegen végezzék.) Az előállított preparátumok összehasonlító vizsgálata a következő gyakorlaton történik. a.) Komplexképzés együttkristályosítás módszerével Oldalszáras gömblombikba 5,67 g β-ciklodextrint és 50 cm 3 30 v/v %-os alkoholt teszünk, amelyhez 10 perc alatt 0,6 g aromaanyag 7,5 cm 3 absz. alkohollal készített oldatát csepegtetjük, mialatt az elegyet 50 C-os vízfürdőben kevertetjük. További 10 percet kevertetjük 50 C-on, majd a keverést l/2 óra hosszat szobahőfokon, ezt követően pedig 30 percig só-jég-víz keverékben folytatjuk. A kivált kristályokat G2 üvegszűrőn szűrjük, majd papírcsónakban, levegőn szétterítve egy hétig szárítjuk. A termék tömegét száraz állapotban mérjük. b.) Komplexképzés szuszpenzióban 5,67 g β-ciklodextrint oldalszáras gömblombikba teszünk, hozzáadunk 50 cm 3 desztillált vizet. A csepegtető tölcsérbe 7,5 cm 3 absz. etanolban oldott 0,6 g aromaanyagot teszünk. Az oldatot 10 perc alatt a β-ciklodextrin vizes oldatához csepegtetjük, miközben a reakcióelegyet mágneses keverővel kevertetjük szobahőfokon. A reakcióelegyet összesen 1,5 óra hosszat kevertetjük, majd a G2 üvegszűrőn leszűrt terméket papírcsónakban szétterítve levegőn egy hétig szárítjuk. A termék tömegét száraz állapotban mérjük. c.) Laktóz-aromaanyag keverék előállítása Mivel a laktóz nem képez komplexet az aromaanyaggal, a fizikai keverék előállításánál alapanyagként használható. 2,79 g laktózhoz 0,21 g aromaanyagot adunk, majd 15 percen keresztül mozsárban dörzsöljük. A termék tömegét lemérjük és a továbbiakban zárt edényben tároljuk. d.) Aromaanyag kalibrációs görbéjének elkészítése A gyakorlat felszerelése mellett található a timol UV-spektruma. A kalibrációt a gyakorlaton használt aromaanyag UV spektrumán megjelölt hullámhosszon kell elvégezni. Az előre elkészített törzsoldatból (10 mg/100 cm 3 ) 3 különböző koncentrációjú oldatot készítünk a következő módon. 2, 5 és 7 cm 3 törzsoldatot kétjelű üvegpipettával kipipettázunk 4
egy-egy 10 cm 3 -es mérőlombikba, majd 50%-os etanollal jelre töltjük. Végül a gyakorlatvezető segítségével megmérjük a minták UV-elnyelését. Feladatok 1. Ciklodextrin-aroma komplex előállítása együttkristályosítás módszerével. 2. Ciklodextrin-aroma komplex előállítása szuszpenziós módszerrel. 3. Az aroma kalibrációjának elkészítése. (Legalább két párhuzamos higítást készítve!) Laktóz-aroma keverék előállítása. Jegyzőkönyv készítése és anyagbeadás A jegyzőkönyvnek tartalmaznia kell a komplexek és a fizikai keverék előállításának rövid leírását, az előállított termékek tömegét. Az aromaanyag kalibrációs görbéjét (fényelnyelést - koncentráció függvényében ábrázolva). Beadandó Az előállított két komplex papírcsónakban, amelyen tüntessék fel a minta készítésének módját és a csoport tagjainak nevét. A keveréket lezárt üvegben, címkéjén a csoport tagjainak nevével adják be. 5
2. ZÁRVÁNYKOMPLEXEK ÉS KEVERÉKEK ÖSSZEHASONLÍTÓ VIZSGÁLATA Bevezetés Zárványkomplexek vizsgálata Zárványkomplex képzés következtében a komplexbe zárt vendég-molekula fizikai, kémiai tulajdonságai jelentős mértékben megváltozhatnak. Mivel ezek a változások reverzibilisek, a komplex disszociációját követően a szabaddá vált vendégmolekula minden jellemzője a komplexálás előttivel azonos lesz. Ez teszi lehetővé, hogy az egyébként kémiailag kevéssé stabilis, illékony aromaanyagokból β-ciklodextrinnel történő komplex-képzés révén hosszú ideig stabilisan eltartható, oxidatív behatásokkal szemben ellenálló termékek keletkezzenek. Az élelmiszeriparban ez ma már elterjedt és széles körben alkalmazott módszer érzékeny anyagok gazdaságos és hatékony stabilizálására. A ciklodextrinekkel történő zárványkomplex képzés során egy vendégmolekulát rendszerint egy vagy két ciklodextrin un. gazdamolekula zár magába. A ciklodextrin zárványkomplexek sajátságainak tanulmányozására különféle fizikai és kémiai módszereket alkalmaznak. A komplexek vizsgálatában az első lépés annak igazolása, hogy a képződött termék nem keverék. A komplexek tanulmányozása során ezért mindig kb. azonos aromatartalmú fizikai keveréket használnak összehasonlítóként. Annak igazolására, hogy valóban komplex keletkezett számos módszer használható, pl. a minták hatóanyagtartalmában bekövetkező változások vizsgálata hőkezelést követően, mosások okozta hatóanyag-vesztés követése, új típusú rácsszerkezet kialakulásának igazolása, megváltozott kromatográfiás sajátságok vizsgálata, nedvesedés és kioldódási sebesség mérése vízben. Komplexek hatóanyag-tartalma Igen fontos továbbá a zárványkomplexek hatóanyag-tartalmának meghatározása. Erre alkalmas a komplexek feltárása és a hatóanyag kinyerése utáni összes aromatartalom mérése UV fotometriás, kolorimetriás, gázkromatográfiás, desztillációs és tömeg szerinti meghatározási módszerekkel. A hatóanyag-tartalmat leggyakrabban UV fotometriával határozzák meg a gyakorlat során is ezt a módszert alkalmazzuk előzetesen elkészített kalibráció alapján. A módszer felhasználható többkomponensű aromák esetén is, ha a rendszer UV-színképét adó komponensek aránya a komplexálódás során nem változik. Aromakomplexek stabilitása Kísérletileg gyorsított tartamstabilitási vizsgálatokkal következtetünk az aromák hosszú idejű eltarthatóságára. Ilyenkor általában összehasonlítjuk az aromakomplexek és a fizikai keverékek hatóanyag-tartalmát 80 C-on meghatározott ideig történő hevítés után. A hosszú időtartamú, szobahőmérsékleten történő tárolás esetén az aromakomplexek összes aromatartalma az esetek jelentős részében esetleg több évig sem változik, amint az 1. táblázat adatai mutatják. 1. táblázat Komplex Aromaanyag-tartalom % minta 1978 1980 1985 1987 1992 timol - CD 10,8 10,2-10,4 10,2 édesköményolaj-cd 10,7 10,8-10,6 9,0 vanillin - CD 6,1 5,8 3,2 2,8 - citromolaj - CD 8,8-7,0 5,5 - kakukkfűolaj - CD 9,9 9,1 9,4 9,7 9,4 6
Komplexek nedvesedése A hőstabilitási kísérletek mellett a minták nedvesedési vizsgálata is igen jól demonstrálja a komplexek és keverékek eltérő viselkedését. Számos vitamin, peszticid és más biológiailag aktív anyag igen hidrofób, nehezen és lassan oldódik vízben. Ezen anyagok β-ciklodextrinnel képzett komplexei azonban jól nedvesedő, hidrofil termékek. A szabad aroma, a fizikai keverék és a komplexált aroma eltérő viselkedését mutatja a nedvesedési kísérlet során a 2. ábra mentol esetén. 2. ábra: A mentol/laktóz keverék és mentol/β-ciklodextrin komplex nedvesedése Gyakorlati munka A gyakorlat célja A laboratóriumi gyakorlat során β-ciklodextrin gazdamolekulával és timol aromaanyag vendégmolekulával képzett zárványkomplexeket és timol/laktóz fizikai keveréket vizsgálnak. Meghatározzák a minták aromatartalmát UV-fotometrálással előzetes kalibráció segítségével. Az aromakomplexek jellemzésére stabilitási vizsgálatokat is végeznek. Összehasonlítják a komplexeket és a keveréket hőstabilitási vizsgálatok és nedvesedési kísérletek segítségével. A gyakorlat menete: 1.) Aromatartalom meghatározása A zárványkomplexek és a fizikai keverék hatóanyagtartalmát az alábbi módon határozzuk meg: 20-20 mg mintát 10 cm 3 -es mérőlombikba bemérünk analitikai mérlegen. 5-5 cm 3 96%- os etanolt pipettázunk a mérőlombikokba, majd ultrahang fürdőbe tesszük. Ezután desztillált vízzel jelre töltjük a mérőlombikot. A komplexek és a keverék aromatartalmának feltárása után a készített oldatokból 5-szörös hígítást készítünk. Az oldat aromatartalmát a megadott hullámhosszon UV-elnyelés alapján mérjük, majd a kalibráció segítségével számítjuk ki a minta hatóanyagtartalmát. 3.) A komplexek és a keverék hőstabilitásának vizsgálata 20-20 mg mintát üvegcsónakba analitikai mérlegen bemérünk. 40 percig 80 C-os szárítószekrényben tartjuk, majd exszikkátorban hagyjuk lehűlni. Ezt követően a mintákat 10 cm 3 -es mérőlombikba töltjük, és hatóanyagtartalmukat a korábban leírt módon tárjuk fel és határozzuk meg. 7
4.) A zárványkomplexek és a keverék nedvesedésének meghatározása A minták nedvesedését a 3. ábrán látható, egyszerű berendezés segítségével mérjük. A készülékbe helyezhető mérőcsövek alját vattával zárjuk el. A csöveket a komplexekkel és a keverékkel a vatta szintjétől számított 4 cm magasságig töltjük meg úgy, hogy közben kocogtatással biztosítjuk a csövek minél homogénebb töltését. A nedvesítést szobahőmérsékleten, festett vizes oldattal végezzük. Amikor a csöveket a vizes oldatba merítve az oldat szintje eléri a csövek alján elhelyezkedő vatta-dugó tetejét, a stopperórát beindítjuk. Feljegyezzük a vizes oldat frontjának a csövek mögött elhelyezett milliméterskálán leolvasott helyzetét az egyes oszlopokban 30 másodperc és 1, 2, 3 stb. perc múlva. (A leolvasás ideje maximum 10 perc legyen.). A mért értékeket az idő függvényében grafikusan ábrázoljuk. 3. ábra Berendezés a zárványkomplexek nedvesedésének meghatározásához Feladatok a. Oldatok készítése a timol/β-ciklodextrin komplexek és a timol/laktóz keverék aromatartalmának meghatározásához hőkezelés nélkül. b. Oldatok készítése a timol/β-ciklodextrin komplexek és a timol/laktóz keverék aromatartalmának meghatározásához hőkezelést követően. c. A zárványkomplexek és a keverék nedvesedésének meghatározása. A hatóanyag-tartalom meghatározásához elkészített oldatok fotometrálása. Jegyzőkönyv készítése A leadott jegyzőkönyvnek a következőket kell tartalmaznia: A timol kalibrációs görbéjét (fényelnyelést - koncentráció függvényében ábrázolva). Az aromatartalom meghatározásának rövid, tömör leírását, a mért értékeket, számításokat. Írják le a hőstabilitási vizsgálat menetét, a mért értékeket! A számítás során adják meg, hogy az előállított mintáknak mennyi az aromatartalma (...mg/100 mg minta) és az egyes minták melegítés utáni aromatartalma a kiindulásinak hány százaléka! Indokolják a kapott eredményeket! A nedvesedési vizsgálatok eredményeit jegyezzék fel táblázatban, majd ábrázolják grafikusan a vizes oldat frontjának helyét (mm) az idő függvényében. Magyarázzák a kapott eredményeket! Értékeljék a kapott eredményeket aszerint, hogy az adott aroma esetén melyik eljárást választanák komplexképzés céljára ipari méretben. 8
Ellenőrző kérdések 1) Milyen feladatokat kell elvégezniük a gyakorlaton? (Mindhárom feladatrészben összesen) 2) Milyen vegyszereket használnak a gyakorlat során (név, képlet)? 3) Mit nevezünk zárványkomplexnek? Írja le a szerkezetét! 4) Ipari eljárások során mire használható a zárványkomplex képzés? 5) Mik a ciklodextrinek? Írja le szerkezetüket! 6) Milyen módszerekkel állíthatók elő ciklodextrinek zárványkomplexei? 7) Mi a lényege az együttkristályosítás módszerével végzett zárványkomplex képzésnek? 8) Ismertesse röviden a gyakorlaton elvégzendő együttkristályosításos komplexképzési módszer menetét (vázlatosan mennyiségeket nem kell bemagolni) 9) Mi a lényege a szuszpenziós módszerrel végzett zárványkomplex képzésnek? 10) Ismertesse röviden a gyakorlaton elvégzendő szuszpenziós komplexképzési módszer menetét (vázlatosan mennyiségeket nem kell bemagolni) 11) Mi a lényege a szilárd fázisú zárványkomplex képzésnek? 12) Miért laktózzal készítünk keveréket? 13) Milyen módszerekkel igazolható, hogy CD-komplex keletkezett vagy keverék? 14) Hogyan viselkednek az aromaanyagok komplexei és keverékei nedvesedési kísérletek során? Mivel magyarázható az eltérő viselkedés? 15) Mi az oka, hogy a hidrofób aromaanyagok CD-vel történő komplexálást követően jobban nedvesednek? 16) Hogyan határozható meg a komplexek hatóanyagtartalma? 17) Hőkezelést követően milyen hatóanyag-tartalom változást feltételez a komplexek és milyet a keverék esetén? Miért? 18) Hogyan állítjuk elő a CD-aroma komplexet együttkristályosítás módszerével? 19) Hogyan változik az aroma-komplex minták hatóanyag-tartalma szobahőfokon, hosszú ideig történő tárolás során? 20) Milyen nedvesedőképességet mutat a gyakorlat leírásában szereplő mentol komplexe, keveréke és az aroma maga? 21) Hogyan készít egy x g/l koncentrációjú törzsoldatból egy y mg/ml koncentrációjú oldatot, ha x>y? 22) Ismertesse az elektromágneses spektrum főbb tartományait! 23) Mi a Lambert-Beer törvény, hol alkalmazzák és mi az alkalmazásának határa? 9