MATEMATIKA évfolyam emelt matematika
|
|
- Lilla Bartané
- 9 évvel ezelőtt
- Látták:
Átírás
1 MATEMATIKA évfolyam emelt matematika Ez a kerettantervi elem az emelt szintű matematika érettségire és a matematika főiskolai-egyetemi tanulására való felkészítést célozza meg heti 5 órában. A tanulók évfolyamon általános tanterv szerint haladtak, ezért szükséges az alsóbb évfolyamok azon emelt szintű elemeinek áttekintése. amiket az egyes témakörök tárgyalásánál felhasználunk. Ebben az időszakban áttekintését adjuk a korábbi évek ismereteinek, eljárásainak, problémamegoldó módszereinek, miközben sok, gyakorlati területen széles körben használható tudást is közvetítünk, amelyek kissé összetettebb problémák megoldását is lehetővé teszik. Az érettségi előtt már elvárható a tanulóktól többféle készség és ismeret együttes alkalmazása. Minden témában hangsúlyosan kell kitérnünk a gyakorlati alkalmazásokra, az ismeretek más tantárgyakban való felhasználhatóságára. A sorozatok, kamatos kamat témakör kiválóan alkalmas a pénzügyi, gazdasági problémákban való jártasság kialakításra. A korábbiaknál is nagyobb hangsúlyt kell fektetni a különböző gyakorlati problémák optimumát kereső feladatokra. Ezért az ilyen problémák elemi megoldását külön fejezetként iktatjuk be. Az analízis témakörben a szemléletesség segíti a problémák átlátását, az egzaktság pedig a felsőfokú képzésre való készülést. A rendszerező összefoglalás, túl azon, hogy az eddigi matematikatanulás szintézisét adja, mintaként szolgálhat a későbbiekben is bármely területen végzett összegző munkához. Az egyes tematikus egységekre javasolt óraszámokat a táblázatok tartalmazzák.
2 11.osztály 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika, gráfok 20 óra Matematikai állítások elemzése, igaz és hamis állítások. Logikai műveletek: NEM, ÉS, VAGY. Skatulya elv, logikai szita. Sorbarendezési és kiválasztási feladatok, gráfhasználat feladatmegoldásban. Gráf, csúcs, él, fokszám. Korábban megismert ismétlése, elmélyítése. Kombinatorikai és gráfelméleti módszerek alkalmazása a matematika különböző területein, felfedezésük a hétköznapi problémákban. Számhalmazok. Számhalmazok bővítésének szükségessége a természetes számoktól a komplex számokig. Algebrai számok, transzcendens számok. Halmazok számossága. Halmazok ekvivalenciája. Végtelen és véges halmazok. Megszámlálható és nem megszámlálható halmazok. Kontinuum-sejtés. Matematikatörténet: Cantor, Hilbert, Gödel. Konstrukciók. Lehetetlenségi bizonyítások. Adott tulajdonságú matematikai objektumok konstruálása. Adott tulajdonságú sorozatok, függvények, egyenletek, műveletek, ábrák, lefedések, színezések stb. Annak indoklása, hogy valamely konstrukció nem hozható létre. (Pl. invariáns mennyiség keresésével.) Példák a matematika történetéből lehetetlenségi bizonyításokra. Kombinatorika. (A korábbi ismeretek összegzése.) Permutáció ismétlés nélkül és ismétléssel. Variáció ismétlés nélkül és ismétléssel. Kombináció ismétlés nélkül és ismétléssel. (Vegyes kombinatorikai feladatokon keresztül ismétlés, rendszerezés.) Binomiális együtthatók, tulajdonságaik. Pascal-háromszög és tulajdonságai. Binomiális tétel. Matematikatörténet: Blaise Pascal. Néhány kombinatorikus geometriai probléma. Matematikatörténet: Erdős Pál. Gráfok. Gráfelméleti alap: csúcs, él, fokszám, egyszerű gráf, összefüggő gráf, komplementer gráf, fagráf, kör, teljes gráf). Filozófia: Gondolati rendszerek felépítése. Bizonyíthatóság. Biológia-egészségtan: genetika.
3 Gráfokra, éleikre, csúcsok fokszámaira vonatkozó egyszerű tételek. Euler-vonal, Hamilton-kör. Gráfok alkalmazása leszámolásos feladatokban rendszerező ismétlés. Matematikatörténet: Euler. A matematika felépítése. Fogalmak, alap, axiómák, tételek, sejtések. Műveletek a matematikában. Műveleti tulajdonságok. Relációk a matematikában és a mindennapi életben. Relációtulajdonságok. Bizonyítási módszerek áttekintése. Direkt, indirekt bizonyítás, logikai szita formula, skatulya elv, teljes indukció. Tételek megfordítása. Kulcs/ Filozófia: Gondolati rendszerek felépítése. Állítások igazolásának szükségessége. Permutáció, variáció, kombináció, művelet, reláció, binomiális együttható. 2. Hatvány, gyök, logaritmus 25 óra Hatványozás egész kitevővel, hatványozás azonosságai, n-edik gyök, gyökvonás azonosságai. Valós számok halmaza. A matematika belső fejlődésének felismerése, új alkotása: a racionális kitevő értelmezése, az irracionális kitevőjű hatvány szemléletes fogalma. Tájékozódás a világ mennyiségi viszonyaiban: exponenciálisan, logaritmikusan változó mennyiségek. Más tudományágakban a matematika alkalmazásának felfedezése. A racionális kitevőjű hatványok, a hatványozás azonosságainak ismétlése. Számolás racionális kitevőjű hatványokkal, gyökös kifejezésekkel. Irracionális szám kétoldali közelítése racionális számokkal. A hatványfogalom kiterjesztése irracionális számra. Az exponenciális függvény. Az exponenciális függvény ábrázolása, vizsgálata. Exponenciális egyenletek, egyenlőtlenségek. Megoldás a definíció és az azonosságok alkalmazásával. Exponenciális egyenletre vezető valós problémák megoldása. Technika, életvitel és gyakorlat: kamatszámítás, hitelfelvétel, törlesztőrészletszámítás. Fizika: radioaktivitás. Földrajz: globális problémák (pl. demográfiai mutatók, a Föld eltartó képessége és az élelmezési válság, betegségek, világjárványok, túltermelés és túlfogyasztás).
4 Számolás 10 hatványaival, 2 hatványaival. A logaritmus fogalma. Logaritmus értékének meghatározása a definíció alapján és számológéppel. A logaritmus azonosságai. Szorzat, hányados, hatvány logaritmusa, áttérés más alapú logaritmusra. Az értelmezési tartomány változásának vizsgálata az azonosságok kétirányú alkalmazásánál. A logaritmus azonosságainak alkalmazása kifejezések számértékének meghatározására, kifejezések átalakítására. Matematikatörténet: Napier, Kepler. A logaritmus fogalmának kialakulása, változása. Logaritmustáblázat. A logaritmusfüggvény. A logaritmusfüggvény ábrázolása, vizsgálata. Adott alaphoz tartozó exponenciális és logaritmusfüggvény kapcsolata. Inverz függvénykapcsolat. Logaritmusos egyenletek, egyenlőtlenségek. Megoldás a definíció és az azonosságok alkalmazásával. Értelmezési tartomány vizsgálatának fokozott szükségessége logaritmusos egyenleteknél. Paraméteres exponenciális és logaritmusos egyenletek. Egyenletek ekvivalenciájával kapcsolatos ismeretek összegzése. Kulcs/ Technika, életvitel és gyakorlat: zajszennyezés. Kémia: ph-számítás. Fizika: régészeti leletek kormeghatározás. Racionális kitevőjű hatvány. Exponenciális növekedés, csökkenés. Logaritmus. 3. Trigonometria Vektorokkal végzett műveletek. Hegyesszögek szögfüggvényei, szögmérés fokban és radiánban, szögfüggvények közötti egyszerű összefüggések. 42 óra A geometriai látásmód fejlesztése. A művelet fogalmának bővítése egy újszerű művelettel, a skaláris szorzással. Algebrai és geometriai módszerek közös alkalmazása számítási, bizonyítási feladatokban. A tanultak felfedezése más tudományterületeken is. A függvényszemlélet alkalmazása az egyenletmegoldás során, végtelen sok megoldás keresése. A vektorokról tanultak rendszerező ismétlése: a vektor fogalma, vektorműveletek, vektorfelbontás. A vektorok koordinátáival végzett műveletek és tulajdonságaik.
5 A vektor 90 -os elforgatottjának koordinátái. A szögfüggvények általános értelmezése. Forgásszög, egységvektor, vektorkoordináták. A szögfüggvények előjele a különböző síknegyedekben. Szögfüggvények közötti összefüggések. Egyszerű trigonometrikus összefüggések bizonyítása. A trigonometrikus függvények. A szögfüggvények értelmezési tartománya, értékkészlete, zérushelyek, szélsőérték, periódus, monotonitás. A trigonometrikus függvények transzformáltjai, függvényvizsgálat. Két vektor skaláris szorzata. A skaláris szorzat tulajdonságai. A skaláris szorzás alkalmazása számítási és bizonyítási feladatokban. Merőleges vektorok skaláris szorzata. Szükséges és elégséges feltétel. Két vektor skaláris szorzatának kifejezése a vektorkoordináták segítségével. A skaláris szorzat és a Cauchy-egyenlőtlenség kapcsolata. Vektorok vektoriális szorzata. Szemléletes kép, bizonyítások nélkül. A háromszög területének kifejezése két oldal és a közbezárt szög segítségével. A háromszög egy oldalának kifejezése a köré írt kör sugara és szemközti szög segítségével. Szinusztétel. Koszinusztétel. A tételek pontos kimondása, bizonyítása. Kapcsolat a Pitagorasz-tétellel. Általános háromszög adatainak meghatározása. Egyértelműség vizsgálata. Szög, távolság, terület meghatározása gyakorlati problémákban is. Bizonyítási feladatok. Szögfüggvények közötti összefüggések. Addíciós tételek: két szög összegének és különbségének szögfüggvényei, egy szög kétszeresének szögfüggvényei, félszögek szögfüggvényei, két szög összegének és különbségének szorzattá alakítása. A trigonometrikus azonosságok használata, több lehetőség közül a legalkalmasabb összefüggés megtalálása. Trigonometrikus kifejezések értékének meghatározása. Háromszögekre vonatkozó feladatok addíciós tételekkel. Tangenstétel. Trigonometrikus egyenletek. Az összes megoldás megkeresése. Hamis gyökök elkerülése. Fizika: harmonikus rezgőmozgás, hullámmozgás leírása. grafikonok elkészítése számítógépes programmal. Fizika: munka, elektromosságtan. Technika, életvitel és gyakorlat: alakzatok adatainak meghatározása. Földrajz: távolságok, szögek kiszámítása terepmérési feladatok. GPS-helymeghatározás. Fizika: rezgőmozgás, adott kitéréshez,
6 Trigonometrikus egyenlőtlenségek. Grafikus megoldás vagy egységkör alkalmazása. Időtől függő periodikus jelenségek vizsgálata. Trigonometrikus kifejezések szélsőértékének keresése. Kulcs/ sebességhez, gyorsuláshoz tartozó időpillanatok meghatározása. Skaláris szorzat, szinusztétel. koszinusztétel, addíciós tétel, trigonometrikus azonosság, egyenlet. 4. Koordinátageometria 38 óra Koordinátarendszer, vektorok, vektorműveletek megadása koordinátákkal. Ponthalmazok koordináta-rendszerben. Függvények ábrázolása. Elsőfokú, másodfokú egyenletek, egyenletrendszerek megoldása. Elemi geometriai ismeretek megközelítése új eszközzel. Geometriai problémák megoldása algebrai eszközökkel. Számítógép használata. A Descartes-féle koordinátarendszer. A helyvektor és a szabadvektor. Rendszerező ismétlés. Vektor abszolútértékének kiszámítása. Két pont távolságának kiszámítása. A Pitagorasz-tétel alkalmazása. Két vektor hajlásszöge. Skaláris szorzat használata. Szakasz osztópontjának koordinátái. A háromszög súlypontjának koordinátái. Elemi geometriai ismereteket alkalmazása, vektorok használata, koordináták számolása. Az egyenes helyzetét jellemző adatok: irányvektor, normálvektor, irányszög, iránytangens. A különböző jellemzők közötti kapcsolat értése, használata. Az egyenes egyenletei. Adott pontra illeszkedő, adott normálvektorú egyenes, illetve sík egyenlete. Adott pontra illeszkedő, adott irányvektorú egyenes egyenlete síkban, egyenletrendszere térben. Iránytényezős egyenlet. Geometriai feladatok megoldása algebrai eszközökkel. Kétismeretlenes lineáris egyenlet és az egyenes egyenletének kapcsolata. A feladathoz alkalmas egyenlettípus kiválasztása. Két egyenes párhuzamosságának és merőlegességének a feltétele. Két egyenes metszéspontja. Két egyenes szöge. számítógépes program használata. Fizika: alakzatok tömegközéppontja. Fizika: mérések értékelése. számítógépes program használata.
7 Skaláris szorzat használata. A kör egyenlete. Kétismeretlenes másodfokú egyenlet és a kör egyenletének kapcsolata. Kör és egyenes kölcsönös helyzete. A kör érintőjének egyenlete. Két kör közös pontjainak meghatározása. Másodfokú, kétismeretlenes egyenletrendszer megoldása. A diszkrimináns vizsgálata, diszkusszió. Szerkeszthetőségi kérdések. A parabola tengelyponti egyenlete. A parabola pontjainak tulajdonsága: fókuszpont, vezéregyenes. A parabola és a másodfokú függvény. Teljes négyzetté kiegészítés. A parabola és az egyenes kölcsönös helyzete. A diszkrimináns vizsgálata, diszkusszió. Összetett feladatok megoldása paraméter segítségével vagy a szerkesztés menetének követésével. Mértani helyek keresése. Apollóniosz-kör. Merőleges affinitással kapott mértani helyek. Ponthalmazok a koordinátasíkon. Egyenlőtlenséggel megadott egyszerű feltételek. Lineáris programozási feladat. Kulcs/ számítógépes program használata. Fizika: geometriai optika, fényszóró, visszapillantó tükör. több feltétel együttes vizsgálata. Vektor, irányvektor, normálvektor, iránytényező. Egyenes, kör, parabola egyenlete. 5. Sorozatok 25 óra Számtani sorozat, mértani sorozat fogalma, egyszerű alapösszefüggések. A hétköznapi életben, matematikai problémában a sorozattal leírható mennyiségek észrevétele. Sorozatok megadási módszereinek alkalmazása. Összefüggések, képletek hatékony alkalmazása. A sorozat fogalma, megadása, ábrázolása. Korábbi ismeretek rendszerező ismétlése. Sorozat megadása rekurzióval Fibonacci-sorozat. Rekurzív sorozat n-edik elemének megadása. Matematikatörténet: Fibonacci. Számtani sorozat. A számtani sorozat n-edik tagja. A számtani sorozat első n tagjának összege. Mértani sorozat. A mértani sorozat n-edik tagja. algoritmusok. Fizika; kémia; biológia-egészségtan; földrajz; történelem, társadalmi és állampolgári
8 A mértani sorozat első n tagjának összege. Számítási feladatok számtani és a mértani sorozatokra. Szöveges faladatok gyakorlati alkalmazásokkal. A számtani sorozat mint lineáris és a mértani sorozat mint exponenciális függvény összehasonlítása. Gyakorlati alkalmazások kamatos kamat számítása. Törlesztési feladatok. Pénzügyi alap kamatos kamat, törlesztőrészlet, hitel, THM, gyűjtőjáradék. Véges sorok összegzése. Számtani és mértani sorozatból előállított szorzatok összegzése. Teleszkópos összegek. Matematikatörténet: Fibonacci. Sorozatok konvergenciája. A határérték szemléletes és pontos definíciói. Műveletek konvergens sorozatokkal. Konvergens és divergens sorozatok. n Az n a, n 1 n 1 n sorozatok. Konvergens sorozatok tulajdonságai. Torlódási pont. Konvergens sorozatnak egy határértéke van. Minden konvergens sorozat korlátos. Monoton és korlátos sorozat konvergens. Konvergens sorozatokra vonatkozó egyenlőtlenségek. Rendőrelv. Végtelen sorok. Végtelenen sor konvergenciája, összege. Végtelen mértani sor. Szakaszos végtelen tizedes tört átváltása. További példák konvergens sorokra. Teleszkópos összegek. Négyzetszámok reciprokainak összege. Példák nem konvergens sorokra. Harmonikus sor. Feltételesen konvergens sorok. Kulcs/ ismeretek: lineáris és exponenciális folyamatok. Technika, életvitel és gyakorlat: hitel adósság eladósodás. Sorozat, számtani sorozat, mértani sorozat, kamatos kamat, rekurzív sorozat. 6. Folytonosság, differenciálszámítás 30 óra Függvények megadása, értelmezési tartomány, értékkészlet. Függvények jellemzése: zérushely, korlátosság, szélsőérték, monotonitás, paritás, periodicitás. Sorozatok határértéke.
9 Megismerkedés a függvények vizsgálatának új módszerével. A függvény folytonossága és határértéke fogalmának megalapozása. A differenciálszámítás módszereinek használta a függvények lokális és globális tulajdonságainak vizsgálatára. A matematikán kívüli területeken fizika, közgazdaságtan is alkalmazások keresése. A valós számok halmazán értelmezett függvények jellemzése. Korábbi ismeretek rendszerező ismétlése. Függvény határértéke. A függvények határértékének szemléletes fogalma, pontos definíciói. Jelölések. Függvények véges helyen vett véges; véges helyen vett végtelen; végtelenben vett véges; végtelenben vett végtelen határértéke. A sorozatok és a függvények határértékének kapcsolata. sin x A függvény vizsgálata, az x = 0 helyen vett határértéke. x A függvények folytonossága. Példák folytonos és nem folytonos függvényekre. A folytonosság definíciói. Intervallumon folytonos függvények. Korlátos és zárt intervallumon folytonos függvények tulajdonságai. (Bizonyítások nélkül, de ellenpéldákkal azokra az esetekre, ha az intervallum nem korlátos, nem zárt, illetve ha a függvény nem folytonos.) Bevezető feladatok a differenciálhányados fogalmának előkészítésére. A függvénygörbe érintőjének iránytangense. A pillanatnyi sebesség meghatározása. számítógépes szoftver alkalmazása függvények grafikonjának megrajzolására. a határérték számítógépes becslése. Fizika: felhasználás sin x, illetve tg x közelítésére kis szög esetében. Fizika: példák folytonos és diszkrét mennyiségekre. Fizika: az út-idő függvény és a pillanatnyi sebesség kapcsolata. A fluxus és az indukált feszültség kapcsolata. A differenciálhatóság fogalma. A különbségi hányados függvény, a differenciálhányados (derivált), a deriváltfüggvény. Példák nem differenciálható függvényekre is. Kapcsolat a differenciálható és a folytonos függvények között. Alapfüggvények deriváltja: Biológia-egészségtan: populáció növekedésének átlagos sebessége. Fizika: harmonikus rezgőmozgás kitérése, sebessége, gyorsulása ezek kapcsolata.
10 Konstans függvény, x n, trigonometrikus függvények deriváltja. Műveletek differenciálható függvényekkel. Függvény konstansszorosának deriváltja, összeg-, szorzat-, hányados-, összetett függvény deriváltja. Inverz függvény deriváltja. Exponenciális és logaritmusfüggvény deriváltja. (Bizonyítás nélkül.) Magasabbrendű deriváltak. Matematikatörténet: Fermat, Leibniz, Newton, Cauchy, Weierstrass. A függvény tulajdonságai és a derivált kapcsolata. Lokális növekedés, fogyás intervallumon monoton függvény. Szélsőérték lokális szélsőérték, abszolút szélsőérték. A szükséges és az elégséges feltételek pontos megfogalmazása, alkalmazása. Középértéktételek. Rolle- és Lagrange-tétel. (Szemléletes kép.) Konvexitás vizsgálata deriválással. A konvexitás definíciója. Inflexiós pont. A második derivált és a konvexitás kapcsolata. Függvényvizsgálat differenciálszámítással. Összevetés az elemi módszerekkel. Gyakorlati jellegű szélsőérték-feladatok megoldása. A differenciálszámítás és az elemi módszerek összevetése. Kulcs/ Fizika: fizikai tartalmú függvények (pl. út-idő, sebesség-idő) deriváltjainak jelentése. Fizika: Fermat-elv, Snellius-Descartes törvény. Fizikai jellegű szélsőérték-problémák. Függvényfolytonosság, -határérték. Különbségi hányados függvény, derivált, deriváltfüggvény, magasabbrendű derivált. Monotonitás, lokális szélsőérték, abszolút szélsőérték. Konvex, konkáv függvény. 12.osztály 1. Nevezetes egyenlőtlenségek, szélsőérték-feladatok elemi megoldása 15 óra Nevezetes azonosságok ismerete. Közepek és sorendjük ismerete két változóra. Másodfokú és trigonometrikus függvények ismerete. Gyakorlati problémák matematikai modelljének felállítása. A modell hatókörének vizsgálata, a kapott eredmény összevetése a valósággal. A szélsőérték-problémához illő megoldási mód kiválasztása. Gyakorlat optimális megoldások keresésében. Azonos egyenlőtlenségek. Nevezetes közepek közötti egyenlőtlenségek. (Többváltozós alak bizonyítása fokozatos közelítés módszerével.)
11 Nevezetes közepek közötti egyenlőtlenségek alkalmazása szélsőérték-feladatok megoldásában. Szélsőérték-feladatok megoldása függvénytulajdonságok segítségével. (Másodfokú és trigonometrikus függvényekkel.) Szélsőérték-feladatok megoldása fokozatos közelítés módszerével. Bernoulli-egyenlőtlenség. Cauchy-egyenlőtlenség. Jensen-egyenlőtlenség. (Bizonyítás nélkül, szemléletes képpel.) Környezetvédelem: legrövidebb utak és egyéb optimális módszerek keresése. Kulcs/ Szélsőértékhely, szélsőérték. Nevezetes közép. 2. Integrálszámítás, térgeometria 40 óra Folytonos függvények fogalma. Területszámítás elemei. Sorozatok, véges sorok. Differenciálási szabályok ismerete. Az integrálszámítás módszereivel találkozva a közelítő módszerek ismeretének bővítése. A függvény alatti terület alkalmazásai a matematika és a fizika több területén. Áttekintő képet kialakítása a térgeometriáról, a felszín- és térfogatszámítás módszereiről. A területszámítás alapelvei. Néhány egyszerűbb alakzat területének levezetése az alapelvekből. A területszámítás módszereinek áttekintése. Területszámítási módszerek alkalmazása a matematika más témaköreiben. (Pl. geometriai bizonyításokban.) A térfogatszámítás alapelvei. Néhány egyszerűbb test térfogatának levezetése az alapelvekből. A térfogatszámítás áttekintése. A térfogatszámítás néhány új eleme. Cavalieri-elv, a gúla térfogata. Csonkagúla térfogata. Érintőpoliéderek térfogata. Alakzatok felszíne, hálója. Csonkakúp felszíne. Gömb felszínének levezetése (Heurisztikus, nem precíz módszerrel.) Térgeometria elemei. Tetraéderekre vonatkozó tételek. (Van-e beírt, körülírt gömbje, súlypontja, magasságpontja?) Ortogonális tetraéder. Tetraéder és paralelepipedon. Euler-féle poliéder-tétel. (Bizonyítás nélkül.) Szabályos testek. Kémia: kristályok. Művészetek: szimmetriák.
12 Bevezető feladatok az integrál fogalmához. Függvény grafikonja alatti terület. A megtett út és a sebesség-idő grafikon alatti terület. A munka kiszámítása az erő-út grafikon alatti terület alapján. Alsó és felső közelítő összegek. Az intervallum felosztása, a felosztás finomítása. Közelítés véges összegekkel. A határozott integrál fogalma, jelölése. A szemléletes megközelítésre alapozva eljutás a pontos definícióig. Példa nem integrálható függvényre is. Negatív függvény határozott integrálja. A határozott integrál és a terület-előjeles terület. Az integrál közelítő kiszámítása. Számítógépes szoftver használata a határozott integrál szemléltetésére. Matematikatörténet: Bernhard Riemann. Az integrálhatóság szükséges és elegendő feltétele. Korlátos és monoton függvények integrálhatósága. A határozott integrál tulajdonságai. Az integrál mint a felső határ függvénye. Integrálfüggvény. Folytonos függvény integrálfüggvényének deriváltja. Kapcsolat a differenciálszámítás és az integrálszámítás között. A primitív függvény fogalma. A primitív függvények halmaza a határozatlan integrál: hatványfüggvény, polinomfüggvény, trigonometrikus függvények, exponenciális függvény, logaritmusfüggvény. A Newton-Leibniz-tétel. Integrálási módszerek: Integrálás helyettesítéssel. Matematikatörténet: Newton, Leibniz, Euler. Az integrálszámítás alkalmazása matematikai és fizikai problémákra. Két függvénygörbe közötti terület meghatározása. Forgástest térfogatának meghatározása. Henger, kúp, csonkakúp, gömb, gömbszelet térfogata. Az integrálás közelítő módszerei numerikus módszerek. számítógépes szoftver használata. Fizika: A munka és a mozgási energia. Elektromos feszültség két pont között, a potenciál. Tehetetlenségi nyomaték. Alakzat tömegközéppontja. A hidrosztatikai nyomás és az edény oldalfalára ható erő. Effektív áramerősség. Fizika: Potenciál, munkavégzés elektromos, illetve gravitációs erőtérben. Váltakozó áram munkája, effektív áram
13 Néhány egyszerűbb improprius integrál. Néhány hatványsor. (Formális meghatározás integrálással.) Hatványsorok szerepe a matematikában, fizikában, informatikában. Hogyan számolnak az egyszerű számológépek 12 jegy pontossággal? Kulcs/ és feszültség. Newton munkássága. Alsó- és felső közelítő összeg, határozott integrál. Primitív függvény, határozatlan integrál. Newton-Leibniz-tétel. Felszín, térfogat, forgástestek, csonkagúla, csonkakúp, gömb. 3. Statisztika, valószínűség 30 óra Adatok elemzése, táblázatok, grafikonok használata. Terjedelem, átlag, medián, módusz, szórás. Klasszikus valószínűségi modell. A valószínűség fogalmának bővítése, mélyítése. A kombinatorikai ismeretek alkalmazása valószínűség meghatározására. Mit jelent a valószínűség a nagy számok törvénye. Statisztikai mintavétel. Mintavétel visszatevéssel, visszatevés nélkül. Számsokaságok jellemzése: átlag, medián, módusz, szórás. Gyakorlati példák arra, hogy mikor melyik mutatóval célszerű jellemezni a számsokaságot. Átlagos abszolút eltérés, átlagos négyzetes eltérés. A medián és az átlag minimumtulajdonsága. Közvélemény-kutatás. Statisztikai évkönyv. Minőség-ellenőrzés. Eseményalgebra. Kapcsolat a halmazok és a logika műveleteivel. Matematikatörténet: George Boole. Véletlen jelenségek megfigyelése. A modell és a valóság kapcsolata. Szerencsejátékok elemzése. Klasszikus valószínűségi modell. Események összegének, szorzatának, komplementerének valószínűsége. Kizáró események, független események valószínűsége. Feltételes valószínűség. Teljes valószínűség tétele,bayes-tétel Mintavételre vonatkozó valószínűségek megoldása klasszikus modell alapján. Nagy számok törvénye. (Szemléletes tárgyalás képletek nélkül.) Geometriai valószínűség. Matematikatörténet: Pólya György, Rényi Alfréd. táblázatkezelő, adatbázis-kezelő program használata. Történelem, társadalmi és állampolgári ismeretek: választások. véletlen jelenségek számítógépes szimulációja.
14 Kulcs/ Valószínűség, kizáró esemény, független esemény. A 4 év matematika-tananyaga. 4. Rendszerező összefoglalás 75 óra Ismeretek rendszerezése, alkalmazása az egyes témakörökben. Felkészítés az emelt szintű érettségire: az önálló rendszerzés, lényegkiemelés, történeti áttekintés készségének kialakítása, alkalmazási lehetőségek megtalálása. Kapcsolatok keresése különböző témakörök között. Elemzőkészség, kreativitás fejlesztése. Felkészítés a felsőfokú oktatásra. Gondolkodási módszerek Halmazok, matematikai logika Halmazok, megadási módjaik, részhalmaz, kiegészítő halmaz. Halmazok közötti műveletek. Végtelen halmazok elmélete; számosságok. Állítások, logikai értékük. Negáció, konjunkció, diszjunkció, implikáció, ekvivalencia. Univerzális és egzisztenciális kvantor. Kombinatorika, gráfok, algoritmusok Permutáció, variáció, kombináció. Binomiális tétel. Pascal háromszög. Elemi gráfelméleti ismeretek. Euler-féle poliédertétel. A bizonyítások fejlődése és a bizonyítási módszerek változása. Nevezetes sejtések. Algebra és számelmélet Műveletek kifejezésekkel Algebrai kifejezések átalakításai, nevezetes szorzatok. A hatványozás azonosságai. Matematikai fejlődése, permanencia-elv. Gyökös kifejezések átalakításai. Exponenciális és logaritmikus kifejezések átalakításai. Számelmélet Oszthatósági szabályok. Számolás maradékokkal. Prímszámok. Oszthatósági feladatok megoldása. Egyenletek, egyenlőtlenségek, egyenletrendszerek Lineáris és lineárisra visszavezethető egyenletek, egyenlőtlenségek, egyenletrendszerek. Másodfokú és másodfokúra visszavezethető egyenletek, egyenlőtlenségek, egyenletrendszerek. Gyökös egyenletek, egyenlőtlenségek. Exponenciális és logaritmikus egyenletek, egyenlőtlenségek, Filozófia: gondolati rendszerek felépítése, fejlődése. Fizika; kémia: számítási feladatok megoldása.
15 egyenletrendszerek. Trigonometrikus egyenletek, egyenlőtlenségek, egyenletrendszerek. Polinomok algebrája. Paraméteres egyenletek, egyenlőtlenségek. Függvények, sorozatok, az analízis elemei Függvények A függvény fogalma. Függvények rendszerezése a definiáló kifejezés szerint: konstans, lineáris, egészrész, törtrész, másodfokú, abszolútérték, exponenciális, logaritmus, trigonometrikus függvények. Függvények rendszerezése tulajdonságaik szerint. Függvénytranszformációk. Valós folyamatok elemzése függvénytani modellek szerint. Sorozatok, sorok A sorozat fogalma. Számtani, mértani sorozat. Rekurzióval megadott egyéb sorozatok. Sorozatok monotonitása, konvergenciája. A végtelen mértani sor. Analízis Függvények korlátossága és monotonitása. Függvény határértéke, folytonossága. Differenciálhányados, derivált függvény. Differenciálisi szabályok. L Hospital-szabály. Függvényvizsgálat differenciálás segítségével. Szélsőérték-meghatározási módok. A tanult függvények primitív függvényei. Integrálási módszerek. A határozott integrál. Newton Leibniz-tétel. A határozott integrál alkalmazásai. Improprius integrál. Geometria Geometriai alap Térelemek köcsönös helyzete, távolsága, szöge. Geometriai alakzatok, bizonyítások Nevezetes ponthalmazok. Síkidomok, testek, tulajdonságaik. Elemi sík- és térgeometriai tételek. Geometriai transzformációk Egybevágósági és hasonlósági transzformációk, tulajdonságaik. Szerepük a bizonyításokban és a szerkesztésekben. számítógépes programok használata függvények ábrázolására, vizsgálatára. Fizika: Az analízis alkalmazásai a fizikában. A matematika és a fizika kölcsönhatása az analízis módszereinek kialakulásában. Művészetek: szimmetriák, aranymetszés. számítógépes geometriai programok használata. Vektorok, trigonometria, koordináta-geometria Vektor fogalma, műveletek a vektorok körében. Matematikai fejlődésének követése. Vektorfelbontás, vektorok koordinátái.
16 Hegyesszög szögfüggvényei. Szinusz- és koszinusztétel. A háromszög hiányzó adatainak kiszámolása. Trigonometrikus azonosságok. Az egyenes egyenletei, egyenletrendszere (síkban és térben). A kör egyenletei. A kúpszeletek definíciója, egyenleteik. Geometriai mértékek A hosszúság és a szög mértékei. Kiszámolási módjaik. A kétoldali közelítés módszere. A terület fogalma és kiszámítási módjai. A felszín és térfogat fogalma és kiszámítási módjai. Az integrálszámítás felhasználása alakzatok mértékének kiszámításához. Valószínűségszámítás, statisztika Statisztikai alap: módus, medián, átlag, szórás. Eseményalgebra és műveleti tulajdonságai. Teljes eseményrendszer. A matematika különböző területeinek öszekapcsolása: Boole-algebra. Grafikonok, táblázatok, diagrammok készítése és olvasása. Valószínűségi kísérletek, gyakoriság, relatív gyakoriság. A valószínűség kiszámítási módjai. Feltételes valószínűség. Mintavételi feladatok klasszikus modell alapján. Szerepük a mindennapi életben. A véletlen szabályszerűségei, a nagy számok törvénye. A közvéleménykutatás elemei. Motivációs témakörök Néhány matematikatörténeti szemelvény. A matematikatörténet néhány érdekes problémájának áttekintése. (Pl. Rényi Alfréd: Dialógusok a matematikáról.) Matematikusokkal kapcsolatos történetek. Matematika alapú játékok. Logikai feladványok, konstrukciós feladatok. A matematika néhány filozófiai kérdése. A matematika fejlődésének külső és belső hajtóerői. Néhány megoldatlan és megoldhatatlan probléma. táblázatkezelő, adatbázis-kezelő program használata. Fizika: fizikai jelenségek valószínűség-számítási modellje. könyvtárhasználat, internethasználat. A fejlesztés várt eredményei a két évfolyamos ciklus végén Gondolkodási és megismerési módszerek Halmazok számosságával kapcsolatos ismeretek áttekintése. A kombinatorikai problémák rendszerezése. Bizonyítási módszerek áttekintése. A gráfok eszköz jellegű használata probléma megoldásában. Számelmélet, algebra A kiterjesztett gyök-, és hatványfogalom ismerete. A logaritmus fogalmának ismerete. A gyök, a hatvány és a logaritmus azonosságainak alkalmazása
17 konkrét esetekben, probléma megoldása céljából. Exponenciális és logaritmusos egyenletek megoldása, ellenőrzése. Trigonometrikus egyenletek megoldása, az azonosságok alkalmazása, az összes gyök megtalálása. Egyenletek ekvivalenciájának áttekintése. A számológép biztos használata. Függvények, az analízis elemei Exponenciális-, logaritmus- és a trigonometrikus függvények értelmezése, ábrázolása, jellemzése. Függvénytranszformációk. Exponenciális folyamatok matematikai modellje. A számtani és a mértani sorozat. Rekurzív sorozatok. Pénzügyi alap ismerete, pénzügyi számítások megértése, reprodukálása, kamatos kamatszámítás elvégzése. Sorozatok vizsgálata monotonitás, korlátosság, határérték szempontjából. Véges és végtelen sorok összegzése. A függvények vizsgálata, jellemzése elemi eszközökkel és differenciálszámítás használatával. Az integrálszámítás használata, gyakorlati alkalmazása. Geometria Vektorok a koordináta-rendszerben, helyvektor, vektorkoordináták. Két vektor skaláris szorzata, vektoriális szorzata. Jártasság a háromszögek segítségével megoldható problémák önálló kezelésében, szinusztétel, koszinusztétel alkalmazása. A geometriai és algebrai ismeretek közötti kapcsolódás elemeinek ismerete: távolság, szög számítása a koordináta-rendszerben, kör, egyenes, parabola egyenlete, geometriai feladatok algebrai megoldása. Térbeli viszonyok, testek felismerése, geometriai modell készítése. Távolság, szög, kerület, terület, felszín és térfogat kiszámítása. Valószínűség, statisztika Statisztikai mutatók használata adathalmaz elemzésében. A valószínűség matematikai fogalma, klasszikus kiszámítási módja. Mintavétel és valószínűség kapcsolata, alkalmazása.
Helyi tanterv. Matematika emelt szintű képzés. A kerettanterv A változata alapján. 11. osztály. Heti 2 óra
Helyi tanterv Matematika emelt szintű képzés A kerettanterv A változata alapján 11. osztály Heti 2 óra 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Helyi tanterv MATEMATIKA
Helyi tanterv MATEMATIKA 11 12. évfolyam emelt szintű képzés (fakultáció) Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint
MATEMATIKA tanterv emelt szint 11-12. évfolyam
MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
Az osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Az osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
A számonkérés értékelése: 25%-tól elégséges (2) 85%-tól jeles (5) a közbülső érdemjegyek megállapítása a helyi szokásoknak megfelelően történik.
MATEMATIKA A változat Ezt a tantervet azok számára készítettük, ik matematikából szándékozn tovább tanulni. Ezek a csoportok azokból a diákokból szerveződnek, ik a 9-10. évfolyamon még középszinten tanulták
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
TARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika, gráfok. Tematikai egység/fejlesztési cél Órakeret
11. évfolyam (emelt szintű érettségi előkésztő) Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint a mindennapi élet matematikaigényes
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
MATEMATIKA Emelt szint
MATEMATIKA Emelt szint 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint a mindennapi élet matematikaigényes
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)
Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Matematika tanmenet 12. osztály (heti 4 óra)
Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény
Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, emelt óraszámú csoport)
Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, emelt óraszámú csoport) Az osztályozóvizsga írásbeli és szóbeli részből áll. Az írásbeli vizsga 60 perces, ezen 4-5 különböző témakörbe
Osztályozó és Javító vizsga témakörei matematikából 9. osztály
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
MATEMATIKA. Szakközépiskola
MATEMATIKA Szakközépiskola Az osztályozóvizsga írásbeli feladatlap. Az osztályozó vizsgán az osztályzás a munkaközösség által elfogadott egységes követelményrendszer alapján történik. A tanuló az osztályozó
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, alapóraszámú csoport)
Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, alapóraszámú csoport) Az osztályozóvizsga írásbeli és szóbeli részből áll. Az írásbeli vizsga 45 perces, ezen 4-5 különböző témakörbe
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli Emelt szinten: írásbeli és szóbeli A matematika érettségi vizsga célja A matematika érettségi vizsga célja
Matematika szóbeli érettségi témakörök 2017/2018-as tanév
Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,
Tanmenet a Matematika 10. tankönyvhöz
Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés
A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli
Az érettségi vizsga követelményei 1 MATEK A vizsga formája Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, nyelvi-kommunikáció tagozatos csoport)
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, nyelvi-kommunikáció tagozatos csoport) Az osztályozóvizsga írásbeli és szóbeli részből áll. Az írásbeli vizsga 60 perces, ezen 4-5 különböző
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Az osztályozó vizsgák tematikája matematikából évfolyam
Az osztályozó vizsgák tematikája matematikából 9 12. évfolyam Matematikából a tanulónak írásbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc. A vizsgázónak 4-5 különböző
Matematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
Matematika 11. évfolyam
Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)
17.2. Az egyenes egyenletei síkbeli koordinátarendszerben
Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.
Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra
Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya
Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu
11. évfolyam. Emelt szintű heti 6+6 óra 11 12. évfolyam. További célok:
Emelt szintű heti 6+6 óra 11 12. évfolyam További célok: Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint a mindennapi élet
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Az osztályozó vizsgák tematikája matematikából
Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama
A 11. évfolyam emelt szintű előkészítő csoport óraszáma : 5 óra/hét (180 óra)
A 11. évfolyam emelt szintű előkészítő csoport száma : 5 /hét (180 ) Témakörök 1. Gondolkodási és megismerési módszerek A témakör száma 16 Ismeretanyag Vegyes kombinatorikai feladatok, kiválasztási feladatok.
A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli Emelt szinten: írásbeli és szóbeli A matematika érettségi vizsga célja A matematika érettségi vizsga célja
NT Matematika 11. (Heuréka) Tanmenetjavaslat
NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag
TANMENET. a Matematika tantárgy tanításához a 12. a, b c osztályok számára
TANMENET a Matematika tantárgy tanításához a 12. a, b c osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos tankönyv:
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
Követelmény a 8. évfolyamon félévkor matematikából
Követelmény a 8. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazokkal kapcsolatos alapfogalmak ismerete, halmazok szemléltetése, halmazműveletek ismerete, eszköz jellegű
TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 12. E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Tanulmányok alatti vizsga felépítése. Matematika. Gimnázium
Tanulmányok alatti vizsga felépítése Matematika Gimnázium Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.
NT-17312 Az érthető matematika 11. Tanmenetjavaslat
NT-17312 Az érthető matematika 11. Tanmenetjavaslat Idézet a 3.2.04. kerettantervből (11 12. évfolyam, bevezetés): Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek kiemelten fontos
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
MATEMATIKA (EMELT SZINT)
MATEMATIKA (EMELT SZINT) Tanterv 0 0 2 2 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető Ellenőrizte: Csajági Sándor közismereti igazgató-helyettes Érvényes: 2013/2014 tanévtől 2013. Óratervtábla
A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára
A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára 11. 12. heti óraszám 6 6 éves óraszám 216 180 Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Az osztályozó- és javítóvizsga témakörei matematika tantárgyból. 9. évfolyam
Az osztályozó- és javítóvizsga témakörei matematika tantárgyból Minden évfolyamra vonatkozóan általános irányelv, hogy a matematikai ismeretek alkalmazásán (feladatok, problémák megoldása) van a hangsúly,
A középszintű érettségi vizsga témakörei MATEMATIKÁBÓL
A középszintű érettségi vizsga témakörei MATEMATIKÁBÓL A középszintű szóbeli vizsga tételei a lenti listában szereplő elméleti anyagra épülnek. Minden tétel tartalmaz három egyszerű, az elméleti anyag
MATEMATIKA EMELT SZINTŰ ÉRETTSÉGIRE FELKÉSZÍTÉS. 11. évfolyam
MATEMATIKA EMELT SZINTŰ ÉRETTSÉGIRE FELKÉSZÍTÉS 11. évfolyam A gimnázium utolsó két évében a témakörök feldolgozásánál a matematika látásmódjának, alkalmazhatóságának a bemutatása a cél. Ez a szakasz az
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, matematika tagozatos csoport)
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, matematika tagozatos csoport) Az osztályozóvizsga írásbeli és szóbeli részből áll. Az írásbeli vizsga 60 perces, ezen 4-5 különböző
Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.
Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:
Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam
Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.
Matematika 5. osztály
OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI MATEMATIKA TANTÁRGYBÓL Matematika 5. osztály Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének, két véges halmaz
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, matematika tagozatos csoport)
Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, matematika tagozatos csoport) Az osztályozóvizsga írásbeli és szóbeli részből áll. Az írásbeli vizsga 45 perces, ezen 4-5 különböző
Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek
11.évfolyam éves óraszáma: 108 óra Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek 12 óra Vegyes kombinatorikai feladatok, kiválasztási
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika 11-12. évfolyam
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika 11-12. évfolyam 2 Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek kiemelten fontos
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
évfolyam Emelt szintű érettségi felkészítő
11-12. évfolyam Emelt szintű érettségi felkészítő A matematika helyi tantervnek ez a fejezete a négy- és hatosztályos gimnáziumok azon tanulóinak szól, akik matematikából emelt szintű képzést választottak
Matematika fakultáció a gimnáziumok 11 12. évfolyama számára óraszám: 2 + 2
Matematika fakultáció a gimnáziumok 11 12. évfolyama számára óraszám: 2 + 2 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Matematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
Osztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
TANMENET. a matematika tantárgy tanításához a nappali 11. évfolyam számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a nappali 11. évfolyam számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök
Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök I. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok Állítás (igazságérték), állítás tagadása, állítás megfordítása Halmazok
TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Matematika. Osztályozó vizsga írásbeli szóbeli időtartam 60 p 10 p arány az értékelésnél 60% 40% A vizsga értékelése
Matematika Osztályozó vizsga írásbeli szóbeli időtartam 60 p 10 p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha a tanuló
Miskolci Magister Gimnázium
Miskolci Magister Gimnázium matematika 11. évfolyam 2013/2014 110/2012./VI.4./Kormányrendelet, és az 51/2012/XII.21./ EMMI kerettanterv alapján Készítette: Literáti Márta 1 Alapdokumentumok: EMMI kerettanterv
Tartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
MATEMATIKA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA
MATEMATIKA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA 80 9. ÉVFOLYAM A vizsga részei írásbeli vizsga I. rész: 30 perc írásbeli vizsga II. rész: 60 perc Írásbeli Időtartam 90 perc Elérhető pontszám 60 pont Írásbeli
OSZTÁLYOZÓ VIZSGA TÉMAKÖREI
OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Matematika - 5. évfolyam A természetes számok A tízes számrendszer A kettes számrendszer A római számírás A számegyenes A számok összehasonlítása A számok kerekítése A természetes
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése