Li 2 CO 3 formájában található a Li és ezt termelik ki. (1,0 p)
|
|
- Frigyes Papp
- 9 évvel ezelőtt
- Látták:
Átírás
1 IX. osztály, IV. forduló, megoldás 2012 / 2013 as tanév, XVIII. évfolyam 1. a) Lítium, Li, Z = 3 (0,75 p) b) Az alkálifémek sorában ez volt az első elem, amelyet egy ásványban (= kőben) fedeztek fel. A görög lithos szó követ jelent. (0,5 p) c) A Li-sók sötét pirosra (=vörös) festik a gázégő lángját. d) LiH + H 2 O LiOH! H 2 (0,75 p) 1 kg LiH-ből: V = 2800 dm 3 = 2,8 m 3 (n.k.) H 2 gáz d2) lehet a helyes (1,75 p) e) Általában a vízi mentőövek töltőanyaga. Pl. a repülőgépek utasainak mentőmellényében LiH- tabletták formájában is jelen van arra az esetre, ha a repülőgép a tengerbe zuhanna, a felszabaduló H 2 -gáz kis sűrűsége miatt képes a víz felszínén tartani a szerencsétlenül járt utast. (1,0 p) f) Nem, mert alkálifém lévén nagyon reakcióképes (konfigurációja: 2s 1 ), a levegőn meggyullad = oxigénnel reagál, vízzel (a levegő nedvességével is) hevesen reagál; ezért nem létezhet szabadon a természetben. (0,75 p) g) A Lítium-háromszög Bolívia, Argentina és Chile által behatárolt területet jelenti. Itt Li 2 CO 3 formájában található a Li és ezt termelik ki. (1,0 p) 2. a) A gázhalmazállapotú anyagok legkisebb részecskéi: atomok vagy molekulák, tehát atomtömeget, ill. molekulatömeget jelent. (Pl. atomtömeg, az egyatomos gázok = nemesgázok esetében; molekulatömeg a többatomos gázok esetében.) (1,0 p) b) A víz molekulái polárisak. A hasonló a hasonlót oldja elv alapján azok a gázhalmazállapotú anyagok oldódnak vízben (és ez kémiai folyamatot is jelenthet), amelyek poláris szerkezetű molekulákból állnak (pl. NH 3, HCl, stb.). Az apoláris molekulájú gázok (pl. H 2, O 2, CO 2, stb.) nem oldódnak, illetve a nyomás függvényében nagyon kis mértékben keveredhetnek a víz molekuláival. (2,0 p) A fenti tényezők alapján az atom-, illetve a molekulatömeg is meghatározza az oldékonyságot. A polarítás szerint a nagyobb tömegű molekulák erősebb intermolekuláris kötéseket hoznak létre a vízmolekulákkal, így az oldódásuk mértéke ezzel egyenes arányban van. (1,0 p) 3. a) (1) Z = 4, 12, 20, 38, 56, 88 (2) Eredetileg csak a Ca (20), Sr (38) és Ba (56) ra vonatkozott a csoportnév, mivel ezeknek oxidjai és hidroxidjai átmeneti jellegűek az alkálifémek és a földfémek hasonló vegyületei között. (0,75 p) b) (1) Z = 5, 13, 31, 49, 81 (2) A név az egyik oxid nevéből, a timföldből (Al 2 O 3 ) ered; a bór nemfém. Használt csoportnév: bórcsoport. (0,75 p) c) (1) Z = 8, 16, 34, 52, 84 (2) A kalkogén elnevezés görög eredetű, jelentése ércképző, mivel az oxidjaik, szulfidjaik jelentős szerepet játszanak a földkéreg felépítésében. Más elnevezés: oxigéncsoport. (0,75 p) d) (1) Z = 21, 39, 57, 89 (2) 9 elektron az (n 1) héjon: (n 1)s 2 (n 1)p 6 (n 1)d 1 (0,5 p) e) (1) Z = 26, 27, 28
2 (2) Az eddigi (a-d) megnevezések függőlegesen elhelyezkedő elemcsoportokat jelöltek, a Fecsoport elemei vízszintes irányúak. Ebben az irányban a szomszédos elemek kémiai tulajdonságai jobban hasonlítanak egymáshoz, mint a függőleges szomszédok. (0,75 p) f) (1) Z = 44, 45, 46, 76, 77, 78 (0,5 p) (2) A fenti elemeket a sűrűségük szerint csoportosítják: könnyű platinafémek sűrűségük 12 g/cm 3 körüli (Ru, Rh, Pd); a nehéz platinafémek sűrűsége 22 g/cm 3 körüli érték (Os, Ir, Pt). (0,75 p) g) (1) Z = 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 (2) A ceritföldek: Z = 58 64, az itterföldek: Z = (elemek oxidjai). (1,0 p) h) (1) Ugyanaz, mint a g(1). Megj.: egyes források ide sorolják még a Z = 21 (Sc)-t és Z = 39 (Y)-t is. (2) Egyesek közülük nem is olyan ritkák; vannak, amelyek az elemek gyakorisági sorrendjében megelőzik pl. az Pb-t, I-t, Cd-t, Ag-t, stb. A páros rendszámúak gyakoribbak, mint a páratlan rendszámúak. (0,75 p) 4. (1): U; (2): Np; (3): As, 1250-ben; (4): Fl és Lv május; (5): Sn 10 izotóp; (6): K; (7): Po a Ra-nál 5000-szer radióaktívabb; (8): Cs; (9): Ag; (10): Xe; (11): Te, 6,24 kg/dm 3 ; (12): I; (13): Tc; (14): Au, 1 g-ból kb. 2,5-2,6 km vékony szál; (15): Ca, kb. 1,9%; (16): F; (17): W, 3410 o C; (18): Os, 22,66 kg/dm 3 ; (19): Al; (20): O, 62,43%; (21): He; (22): Ar, 0,93%, 1,28%; (23): Si, tízkilences = 99, % tisztaság; (24): Cl, 1774-ben fedezték fel; (25): At, 1940-ben fedezték fel; (26): Ne; (27): H; (28): Li; (29): Rf, rutherfordium= 13 betű; (30): Rn; (31): Fe; (32): N; (33): C, gyémánt; (34): Sc, [Ar]4s 2 3d 1 ; (35): Hg, 39 o C. (35x0,15=5,25 p) H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 5. (1) mindkettő; (0,1 p) (2) CO 2 ; Az emberi és állati szervezet légzése során termelődik. Ezen kívül más emberi tevékenységek során is keletkezhet. (3) CO; Amennyiben a motorban az égés nem teljes, az egyik végtermék a CO. (4) CO; A CO még képes oxigén megkötésre: CO + ½ O 2 CO 2 (5) egyik sem; Minden veszélyes anyagnak van egy alsó, megengedett koncentrációja, amely általában nagyon kicsi, de nagyobb, mint zéró. (6) CO; M(CO) = 28 és M(lev.) = 28,9 (7) CO 2 ; Ez az arány az O 2 koncentrációt lecsökkenti, így a levegő légzésre alkalmatlan. (8) CO 2 ; M(CO 2 )=44 és M(lev)=28,9,tehát nehezebb, mint a levegő (=nagyobb a sűrűsége). (9) mindkettő; CO + H 2 O CO 2 + H 2 (magas hőmérséklet); CO 2 + H 2 O H 2 CO 3 (10) CO 2 ; - lásd a (8)-as választ. (11) CO; A szenes vasalókban a parázsló szén tökéletlen égése ment végbe, amely nem tette lehetővé a CO 2 keletkezését, csak a CO felszabadulást.
3 (12) CO 2 ; A megfagyott állapotú CO 2 -nak (= szárazjég) van ez a tulajdonsága. (13) CO; - lásd (11)-es választ. (14) CO 2 (0,15 p) (15) egyik sem; CO 2 : C=O=C; CO : (16) CO; Csökken az agy oxigénellátása a CO erősebben kapcsolódik, mint az O 2 ; ez vezet a fejfájáshoz. (17) mindkettő; CO+FeO Fe+CO 2 ; CO 2 +2FeO Fe 2 O 3 +CO (CO 2 ipari felhasználása) (18) CO 2 ; - lásd a (7)-es választ. (19) CO; - lásd a (16)-os választ. (20) CO 2 ; Elnyeli az UV-sugárzást; minél jobban feldúsul a Föld légkörében, annál kevesebb hőenergia jut vissza a világűrbe és ezáltal nő a Föld átlaghőmérséklete (=üvegházhatás). 6. A természetes vizek standard körülményeken kellő mennyiségű oldott O 2 -t tartalmaznak a vízi élővilág számára. A gázok oldhatósága viszont a hőmérséklet növekedésével csökken, az O 2 egy része távozik az oldatból és a halak a vízben nem jutnak megfelelő mennyiségű oxigénhez, ezért időnként a felszínre jönnek lélegezni. (1,5 p) 7. a) a henger térfogata: V henger = V külső V belső V külső = 3,14x(11,0/2) 2 x9,75x10 2 cm 3 V belső = 3,14x(10,1/2) 2 x9,75x10 2 cm 3 V henger = 3,14x9,75x10 2 x(5,5 2 5,05 2 ) = 14542,1 cm 3 = 14,542 dm 3 m ötvözet = ρv = 8,3x14,542 = 120,7 kg ötvözet m Sn = 114,66 kg Sn m Pb =6,035 kg Pb (2,5 p) b) Az orgonasípok nem henger alakúak teljes magasságban, hanem bizonyos részen tölcsér alakúak (kúp alakzat). Ennek a résznek a felülete kisebb, mint a megfelelő magasságú henger része, így a gyakorlatban kevesebb a felhasznált ötvözet tömege, mint az a)-pontban számított érték. (0,5 p) c) 20 tömegegység (te) ötvözet = 19 te Sn + 1 te Pb ρ Sn = 7,3 g/cm 3 és ρ Pb = 11,3 g/cm 3 V Sn = 19/7,3 =2,6 cm 3 V Pb = 1/11,3 = 0,088 cm 3 V ötvözet = 2,6 + 0,088 = 2,688 cm 3 ρ ötvözet = 20/2,688 = 7,44 g/cm 3 (1,5 p) d) Ötvözéskor a komponensek tömege nem változik, de az új kristályrács szerkezete miatt a keveréket alkotó részecskék közötti távolság, vagyis a térfogat változhat. A reális sűrűség: 8,3 g/cm 3 és a számított érték: 7,44 g/cm 3 közötti eltérés igazolja, hogy ötvözéskor térfogatváltozás történt. Azonos tömegek esetében a kisebb sűrűség kisebb térfogatot jelent (ρ = m/v összefüggésből következik). Tehát ötvözéskor térfogatcsökkenés történt. (1,0 p) 8. a) Először kis lánggal ég (a gyufák meggyúlnak), majd a láng mérete fokozatosan nő. Közben fehér füst keletkezése is látható, majd egyre nagyobb fehér füst száll fel, végül természetesen a füst mennyisége csökken, majd befejeződik a látvány. A fémdobozban nagyon kevés szilárd anyag, vagy majdnem semmi nem marad. (1,5 p) b) C 12 H 22 O 11 c) A cukor a hevítés során fokozatosan kezd megbarnulni (karamellizálódás) miközben megolvad. Hosszabb idő után feketévé válik, elszenesedik. A cukor összetételéből következik, hogy hő hatására szén válik szabaddá és víz távozik. A megbarnulás a folyamat kezdete, a fekete szín a teljes bomlás eredménye, amikor csak szén marad. (1,25 p)
4 d) A kísérlet kezdetén = cukor hevítés, megkezdődik a cukor bomlása C + H 2 O (g). A lehűtött elegy így tartalmaz el nem bomlott cukrot, C-t és KNO 3 -t. A meggyújtott keverék tetején lévő gyufák égéséből származó hő hatására: KNO 3 KNO 2 + 1/2O 2 illetve kellő hőenergia esetén 2KNO 3 K 2 O + N 2 + 2,5O 2. Mindkét változás exoterm; a felszabadult hőenergia hatására a cukor tovább bomlik: C 12 H 22 O 11 12C + 11H 2 O (g). A keletkezett O 2 : C + O 2 CO 2 és CO. A fehér füst főleg CO 2 és H 2 O pára keverékét jelenti. (Más lehetséges változások: K 2 O + CO 2 K 2 CO 3, a K 2 CO 3 viszonylag alacsony a forráspontja és elpárolog. ) (2,5 p) 9. a) (3,0 p) D B S G B E K L A C E P R N D P E R I * T M Á H H S M T * A M É G T L P B B H O D I E R R * D S R G C É * S Z A I P O A T R S C * E L E J Ó C I T V C G P E T * T J * E H E T I M E K * V A Á S * R M E N U U T F L E M E O S I R E R L L * I Ó T Y E I L U U P L E K * P T A U H T * I A * Z Ö Ö * T * V U U S Ö R E D B E N F E L É K D R * R E T M S M O L É Y * M B C V E C Ő S E S U K É V P E E U G N T E Á G G A L O E T * M E, V E T É S S D T B I Z É * R E N D L G G * T U É L L E N É * N O R C S É E L K E Z T T S O L E N N A L Á R O Z O K N * F V E * J E A L Á S E K * M F E L T T * T R J E N N F R R K C R U S E G * A F E D U L A J R D A G A A C T R H P R * S Z E E Z É D O N S B C D I H P A U A A E N Y M Ü N K S Ü K L L U Z N P P U A M S * * * D J Z * E L Ő E E S Ő S N G C M B K C F N S P E U K R T T I F M T I T * A * K É B E N S T P * J O L R V L X M D A O R * J Ó L * N N B T Ö S Ó S N I K E A E N O G M E G H A T Á Ü N * E L C L E, S T * R C L R E R A K Y * I S M E Ő T T M N S * E A R É S R F A, H C D Y H A S S * E G I B L U I * E N B R E T O G A O E R M E B Y * S A H F T Z E K * A L E N L E M T M Y G A N B M O T A W R A Z * Ú b) A periódusos törvény megtalálása előtt a kémiai elemek a természet töredékes, véletlen jelenségei voltak. A periodicitás törvénye tett először képessé bennünket arra, hogy ismeretlen elemek létezését meg tudjuk jósolni, s ezek az új elemek már jóval a felfedezésük előtt egy sor jól meghatározott tulajdonsággal rendelkezve jelennek meg a szemünk előtt. (1,5 p) c) 1869
5 d) Julius Lothar Meyer, , német vegyész, akinek első ilyen irányú közleménye 1864-ben jelent meg, de valójában csak az 1870-ben publikált munkája jöhet szóba (amelyet 1869 decemberében adott le). Mengyelejev esetében két közlemény már 1869-ben megjelent (az elsőt 1868-ban küldte be az Orosz Kémiai Társasághoz és ott március 6-án olvasták fel.) (1,0 p) e) Az első viszonyítási alap a H atomtömege volt. Ezt először John Dalton ( ) javasolta 1803-ban, majd 1860-ban ezt továbbra is megerősítette, mint egység Stanislao Cannizaro ( ) genovai professzor tól hivatalosan az oxigén atomtömege lett a viszonyítási alap, majd 1961-től a C-atom 12-es izotópja vált ma is használt viszonyítási alappá. (1,25 p) f) A Z (rendszám) növekvő értéke szerinti sorrendben 117 elem vegyjele található. (0,5 p) g) Uut = ununtrium, Z = 113; Uup = ununpentium, Z = 115; Uus = ununseptium, Z = 117. A fenti elemeknek még nincs elfogadott vegyjele, ezért a megfelelő Z érték latin elnevezését használják. (1,0 p)
Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz
Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges
XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória
Tanuló neve és kategóriája Iskolája Osztálya XLVI. Irinyi János Középiskolai Kémiaverseny 201. február 6. * Iskolai forduló I.a, I.b és III. kategória Munkaidő: 120 perc Összesen 100 pont A periódusos
Az elektronpályák feltöltődési sorrendje
3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában
Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2013.feb.18. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály,
Az elemek rendszerezése, a periódusos rendszer
Az elemek rendszerezése, a periódusos rendszer 12-09-16 1 A rendszerezés alapja, az elektronszerkezet kiépülése 12-09-16 2 Csoport 1 2 3 II III IA A B 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IV V VI VII
Izotópkutató Intézet, MTA
Izotópkutató Intézet, MTA Alapítás: 1959, Országos Atomenergia Bizottság Izotóp Intézete Gazdaváltás: 1967, Magyar Tudományos Akadémia Izotóp Intézete, de hatósági ügyekben OAB felügyelet Névváltás: 1988,
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós
Az elemek periódusos rendszere (kerekített relatív atomtömegekkel)
Kedves versenyző! A kémia feladatsor megoldására 60 perc áll rendelkezésedre. Nem kell arra törekedned, hogy ennyi idő alatt minden feladatot megoldj, az a fontos, hogy minél több pontot szerezz! A feladatok
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
1.ábra A kadmium felhasználási területei
Kadmium hatása a környezetre és az egészségre Vermesan Horatiu, Vermesan George, Grünwald Ern, Mszaki Egyetem, Kolozsvár Erdélyi Múzeum Egyesület, Kolozsvár (Korróziós Figyel, 2006.46) Bevezetés A fémionok
15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl
1. oldal 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban:
MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT
MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT XXVIII. HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY MEGYEI (FŐVÁROSI) DÖNTŐJÉNEK FELADATLAPJA 2015/2016. tanév 8. osztály A versenyző jeligéje: Megye: Közreműködő és támogató
RÖNTGEN-FLUORESZCENCIA ANALÍZIS
RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt
9. A felhagyás környezeti következményei (Az atomerőmű leszerelése)
9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. fejezet 2006.02.20. TARTALOMJEGYZÉK 9. A FELHAGYÁS KÖRNYEZETI KÖVETKEZMÉNYEI (AZ ATOMERŐMŰ LESZERELÉSE)... 1 9.1. A leszerelés szempontjából
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO
ALPHA spektroszkópiai (ICP és AA) standard oldatok
Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók
RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz
RÉSZLETEZŐ OKIRAT (3) a NAH-1-1755/2014 1 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: ISOTOPTECH Nukleáris és Technológiai Szolgáltató Zrt. Vízanalitikai Laboratórium
NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők:
A Szerb Köztársaság Oktatási Minisztériuma Szerbiai Kémikusok Egyesülete Köztársasági verseny kémiából Kragujevac, 2008. 05. 24.. Teszt a középiskolák I. osztálya számára Név és utónév Helység és iskola
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.
1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
A SZERB KÖZTÁRSASÁG OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA SZERB KÉMIKUSOK EGYESÜLETE. KÖZTÁRSASÁGI KÉMIAVERSENY (Varvarin, május 12.
A SZERB KÖZTÁRSASÁG OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA SZERB KÉMIKUSOK EGYESÜLETE KÖZTÁRSASÁGI KÉMIAVERSENY (Varvarin, 2012. május 12.) TUDÁSFELMÉRŐ FELADATLAP A VII. OSZTÁLY SZÁMÁRA A tanuló jeligéje:
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály C változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Prompt-gamma aktivációs analitika. Révay Zsolt
Prompt-gamma aktivációs analitika Révay Zsolt Prompt-gamma aktivációs analízis gerjesztés: neutronnyaláb detektált karakterisztikus sugárzás: gamma sugárzás Panorámaanalízis Elemi összetétel -- elvileg
Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI
1. ELŐKÉSZÍTÉS Durva törés pofás törővel pofás törő 800 Törés, talaj porló kőzetek törése pofás törő+ Fritsch szinterkorund golyósmalommal max. 20 g +szitálás 1000 0,063 mm-es szitán Törés, kőzet masszív
I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK
I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk
Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve Foszfátion Szulfátion
A periódusos rendszer, periodikus tulajdonságok
A periódusos rendszer, periodikus tulajdonságok Szalai István ELTE Kémiai Intézet 1/45 Az előadás vázlata ˆ Ismétlés ˆ Történeti áttekintés ˆ Mengyelejev periódusos rendszere ˆ Atomsugár, ionsugár ˆ Ionizációs
Vegyületek - vegyületmolekulák
Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek
Radioizotópok az üzemanyagban
Tartalomjegyzék Radioizotópok az üzemanyagban 1. Radioizotópok friss üzemanyagban 2. Radioizotópok besugárzott üzemanyagban 2.1. Hasadási termékek 2.2. Transzurán elemek 3. Az üzemanyag szerkezetének alakulása
a NAT-1-1316/2008 számú akkreditálási ügyirathoz
Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1316/2008 számú akkreditálási ügyirathoz A METALCONTROL Anyagvizsgáló és Minõségellenõrzõ Központ Kft. (3540 Miskolc, Vasgyár u. 43.) akkreditált
a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.
MAGYAR TANNYELVŰ KÖZÉPISKOLÁK IX. ORSZÁGOS VETÉLKEDŐJE AL IX.-LEA CONCURS PE ŢARĂ AL LICEELOR CU LIMBĂ DE PREDARE MAGHIARĂ FABINYI RUDOLF KÉMIA VERSENY - SZERVETLEN KÉMIA Marosvásárhely, Bolyai Farkas
8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő
8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Mit tanultunk kémiából?2.
Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000
Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás
Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen
T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...
T I T - M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...
Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek
Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az
7. osztály 2 Hevesy verseny, megyei forduló, 2004.
7. osztály 2 Hevesy verseny, megyei forduló, 2004. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p
Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
0,25 NTU Szín MSZ EN ISO 7887:1998; MSZ 448-2:1967 -
Leírás Fizikaikémiai alapparaméterek Módszer, szabvány (* Nem akkreditált) QL ph (potenciometria) MSZ EN ISO 3696:2000; MSZ ISO 10523:2003; MSZ 148422:2009; EPA Method 150.1 Fajlagos elektromos vezetőképesség
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez
Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek
A (nano-)tudomány néhány alapkérdése
ELFT Anyagtudományi Őszi iskola A (nano-)tudomány néhány alapkérdése Kaptay György BAY-LOGI + Miskolci Egyetem 2011. október 5., Visegrád Az SI-sztori kezdete 1799: az első logikusnak tűnő mértékegységrendszer
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325
Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325 MODELLEK ÉS SZIMMETRIÁK BEVEZETÉS Az atomokról alkotott elképzelésünket állandóan módosítják az újabb felfedezések. Az atom modelljének
Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik
Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer
Szigetelők Félvezetők Vezetők
Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).
1. feladat Összesen: 10 pont
1. feladat Összesen: 10 pont A következő feladatokban jelölje meg az egyetlen helyes választ! I. Az aromás szénhidrogénekben A) a gyűrűt alkotó szénatomok között delokalizált kötés is van. B) a hidrogének
Atomszerkezet, kötések
Anyagszerkezettan és anyagvizsgálat 016/17 Atomszerkezet, kötések Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük: a két alapvető atommodell alapjait, és a modellek közötti különbségeket;
V É R Z K A S A Y E N P
Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 7. évfolyam 1. feladat (1) Írd be a felsorolt anyagok sorszámát a táblázat megfelelő helyére! fémek anyagok kémiailag tiszta anyagok
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
Könnyűfém és szuperötvözetek
Könnyűfém és szuperötvözetek Anyagismeret a gyakorlatban Dr. Orbulov Imre Norbert Anyagtudomány és Technológia Tanszék Az előadás fő pontjai A könnyűfémek definíciója Alumínium és ötvözetei Magnézium és
A tudós neve: Mit tudsz róla:
8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
KÉMIA 10. Osztály I. FORDULÓ
KÉMIA 10. Osztály I. FORDULÓ 1) A rejtvény egy híres ember nevét és halálának évszámát rejti. Nevét megtudod, ha a részmegoldások betűit a számozott négyzetekbe írod, halálának évszámát pedig pici számolással.
... Dátum:... (olvasható név)
... Dátum:... (olvasható név) (szak) Szervetlen kémia írásbeli vizsga A hallgató aláírása:. Pontok összesítése: I.. (10 pont) II/A. (10 pont) II/B. (5 pont) III.. (20 pont) IV.. (20 pont) V.. (5 pont)
7. osztály Hevesy verseny, megyei forduló, 2003.
Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos
Jellemző redoxi reakciók:
Kémia a elektronátmenettel járó reakciók, melynek során egyidejű elektron leadás és felvétel történik. Oxidáció - elektron leadás - oxidációs sám nő Redukció - elektron felvétel - oxidációs sám csökken
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat
KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály A változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:
Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18
1 Az anyagmennyiség, a periódusos rendszer Előtétszavak (prefixumok) Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18 Az anyagmennyiség A részecskék darabszámát
KRISTÁLYOK GEOMETRIAI LEÍRÁSA
KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia
Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek
Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyz jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyz jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja
Általános és szervetlen kémia Laborelőkészítő előadás VII-VIII. (október 17.) Az elektródok típusai A standardpotenciál meghatározása a cink példáján Számítási példák galvánelemekre Koncentrációs elemek
Az anyagi rendszerek csoportosítása
Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?
Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4, NH 4 Cl, NaCl C) Fe(NO
Az atomok szerkezete. Az atomok szerkezete. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Az atomok szerkezete A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Atommodellek A kémiai szempontból legkisebb önálló részecskéket atomoknak nevezzük. Az atomok felépítésével kapcsolatos
CONCURSUL DE CHIMIE PENTRU CLASA a VII-a RALUCA RIPAN etapa judeţeană 5 mai 2018 Ediţia a XIV-a. I Tétel pont
CONCURSUL DE CHIMIE PENTRU CLASA a VII-a RALUCA RIPAN etapa judeţeană 5 mai 2018 Ediţia a XIV-a Munkaidő: 3 óra. A feladatok megoldásához használjátok az atomtömegek kerekített értékét a csatolmányban
Áldott karácsonyi ünnepet és boldog új évet kívánok!
Áldott karácsonyi ünnepet és boldog új évet kívánok! Név:... Helység / iskola:... Kémia tanár neve:...... Beküldési határidő: 2015.jan.19. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály, I. forduló, 2014
Az anyagi rendszerek csoportosítása
Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi
Kémiai alapismeretek 14. hét
Kémiai alapismeretek 14. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. december 6. 1/9 2010/2011 I. félév, Horváth Attila c 1785 Cavendish:
Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás.
Részletes tematika (14 hetes szorgalmi időszak figyelembe vételével): 1. hét (2 óra) Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás. Kémiai alapjelenségek ismétlése, sav-bázis,
Minta vizsgalap (2007/08. I. félév)
Minta vizsgalap (2007/08. I. félév) I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4,
(3) (3) (3) (3) (2) (2) (2) (2) (4) (2) (2) (3) (4) (3) (4) (2) (3) (2) (2) (2)
TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály, II. forduló - megoldás 2009 / 2010 es tanév, XV. évfolyam 1. a) Albertus, Magnus; német polihisztor (1250-ben) (0,5 p) b) Brandt, Georg; svéd kémikus (1735-ben)
LI. Irinyi János Középiskolai Kémiaverseny február 28. Második forduló I.a, I.b és I.c kategória
A program részben az Emberi Erőforrások Minisztériuma megbízásából a Nemzeti Tehetség Program és az Emberi Erőforrás Támogatáskezelő által meghirdetett NTPTMV180139 azonosítószámú pályázati támogatásból
Általános és szervetlen kémia Laborelıkészítı elıadás VI
Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók
Kormeghatározás gyorsítóval
Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval
A budapesti aeroszol PM10 frakciójának kémiai jellemzése
A budapesti aeroszol PM10 frakciójának kémiai jellemzése Muránszky Gábor, Óvári Mihály, Záray Gyula ELTE KKKK 2006. Az előadás tartalma - Mintavétel helye és eszközei - TOC és TIC vizsgálati eredmények
Elemanalitika hidegneutronokkal
Elemanalitika hidegneutronokkal Szentmiklósi László MTA Izotópkutató Intézet, Nukleáris Kutatások Osztálya szentm@iki.kfki.hu http://www.iki.kfki.hu/nuclear/ Mik azok a hideg neutronok? A neutron semleges
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
8. osztály 2 Hevesy verseny, megyei forduló, 2009.
8. osztály 2 Hevesy verseny, megyei forduló, 2009. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthet legyen! A feladatok megoldásában a gondolatmeneted követhet
1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
O k t a t á si Hivatal
k t a t á si Hivatal I. FELADATSR 2013/2014. tanévi rszágos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. KATEGÓRIA Javítási-értékelési útmutató A következő kérdésekre az egyetlen helyes választ
SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz
SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH-1-1626/2014 nyilvántartási számú (2) akkreditált státuszhoz Az IMSYS Mérnöki Szolgáltató Kft. Környezet- és Munkavédelmi Vizsgálólaboratórium (1033 Budapest, Mozaik
Analitikai kémia I (kvalitatív) gyakorlat 2014
Analitikai kémia I (kvalitatív) gyakorlat 2014 tantárgyfelelős: Szalai István és Szoboszlai Norbert 1. gyakorlat Asztalátadás, munkavédelmi oktatás (tűz- és balesetvédelem, laboratóriumi munka szabályai,
7. osztály 2 Hevesy verseny, országos döntő, 2004.
7. osztály 2 Hevesy verseny, országos döntő, 2004. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő tíz feladat megoldására 90 perc áll rendelkezésedre.
Radioaktív izotópok előállítása. Konkrét módszerek
Magreakciók Radioaktív izotópok előállítása Konkrét módszerek Trícium MgLi ötvözetből készült fólia, a trícium melegítéssel távozik: T 2 vagy T 2 O nyerhető. Szerves vegyületek előállítása: 1. Izotópcsere