Kétpólusok vizsgálata
|
|
- Lőrinc Somogyi
- 8 évvel ezelőtt
- Látták:
Átírás
1 6. mérés Kétpólusok vizsgálata Bevezetés Az áramkör modellezés és a gyakorlati kapcsolások építése során egyaránt a passzív kétpólusok a legegyszerűbb építőelemek (R, L, C). A gyakorlatban használt kétpólusok azonban tulajdonságaikban csak megközelítik a modellezésnél használt ideális társaikat (például a tekercs huzalnak ellenállása, a vasmagnak vesztesége, a kondenzátornak véges ellenállása, és induktivitása is van), így pontos leírásuk csak összetettebb modellel lehetséges. A valóságban használt elemi kétpólusok tulajdonságainak megismerése alapfeltétele az áramkör tervezésnek és analizálásnak. Természetesen az is gyakran előfordul, hogy eleve egy összetett kétpólust szeretnénk megvalósítani a kívánt viselkedés elérése érdekében. (Például egy hangszínszabályzóban összetett kétpólusokból tudjuk felépíteni a kívánt frekvenciamenetű osztót.) A mérési módszerek és eszközök megismerése lehetővé teszi olyan mérések megtervezését, amelyekkel részletesebb információt nyerhetünk az analizálandó eszközünk viselkedéséről, és rámutat az alkalmazott eszközök, módszerek korlátait, hibáira is. A mérés célja A mérés célja, hogy (1) az áramkör építésben előforduló alkatrészek mérésével a hallgatók tájékozódjanak az RLC elemek nem ideális tulajdonságairól, (2) összetett kétpólusok mérése során megismerjék azok erősen frekvenciafüggő viselkedését, és meghatározzák a leíró paramétereket, (3) a mérések során tanulmányozzák az alkalmazott módszerek tulajdonságait és korlátjait. Az elvégzendő mérések fejlesztik a hallgatók modellalkotó készségét, szembesítik őket a valós eszközök (műszerek és mérendő objektumok) hibáival. A komplex kétpólusok mérése során a hallgatók gyakorolják az áramkör analízist is. A mérés elméleti alapjai Mérendő paraméterek Az impedancia mérés legegyszerűbb esetben csak egy egyparaméteres modell (R, L vagy C) paraméterének meghatározására szorítkozik. Ilyenkor azonban a modell viselkedése általában jelentősen eltér a mérendő objektum viselkedésétől, ezért bármilyen precíz is a mérés, a hiba bizonyos határ alá nem csökkenthető (ezt nevezhetjük modellezési hibának). A pontosabb méréshez több paraméteres modell szükséges. Egy komplex impedanciát egyetlen frekvencián egy komplex mennyiséggel jellemezhetünk. A komplex impedancia vagy reciproka az admittancia valós és képzetes része egy-egy ideális kétpólusnak feleltethető meg. Ezért a pontosabb impedancia mérők mindig egy két elemű modell paramétereit mérik meg adott frekvencián. Az egyes modellek és az esetükben értelmezhető leggyakrabban használt paraméterek a következők: Utoljára mentve: :31, sorsz.: 37 1
2 Labor I. Hallgatói segédlet 1. Soros RC modell paraméterei C S, R S C S, D; D = ωc S R S hatásos teljesítmény D a veszteségi tényező = 8 mivel ez egyben az impedancia meddő teljesítmény szögének tangense, szokás tgδ-nak is nevezni 2. Párhuzamos RC modell paraméterei C P, R P C P, G P C P, D; 1 D = ϖr C 3. Soros RL modell paraméterei P P L S, R S L S, Q; Q = ωl R S S Q a jósági tényező meddő teljesítmény =8 hatásos teljesítmény = 1 D 4. Párhuzamos RL modell paraméterei L P, R P L P, G P L P, Q; RP Q = ϖ L 5. Általános impedancia modell Z, ϕ ( Z = Z e ) P jϕ R = Re(Z), X = Im(Z) G = Re(Y), B = Im(Y) Impedancia mérés során bármilyen impedanciának meg lehet mérni bármilyen helyettesítőképét (tehát például egy tekercsnek a párhuzamos RC képét, bár ilyenkor negatív kapacitást kapunk eredményül). Az adott helyettesítőkép azonban nem ad semmilyen információt a mérendő objektum frekvencia tartománybeli viselkedéséről, egyedül a mérési frekvencián ad helyes eredményt. Éppen a szélesebb frekvencia tartományban végzett mérések adhatnak bővebb információt az objektum jellegéről. Mérési módszer Az impedancia analizátorok általában komplex aránymérést alkalmaznak [1] mérési elvként. Itt a mérendő objektumot (Z X ) és egy precíziós impedanciát (általában ellenállást) (R S ) sorba kapcsolva, azonos nagyságú áramot (I) bocsátanak rajtuk keresztül. A mérendő objektumon és a precíziós ellenálláson eső feszültségek (U X és U S ) komplex arányának mérésével az ismeretlen Z X komplex impedancia kifejezhető: 2 Utoljára mentve: sorsz.: 37
3 6.mérés Kétpólusok vizsgálata U X Z X = RS (6-1) U S (Felhívjuk a figyelmet, hogy a fenti kifejezésben szereplő feszültségek komplex mennyiségek, így az eredményül kapott komplex Z X a fázis információt is hordozza.) A mérés legkritikusabb pontja a mérendő objektum csatlakoztatása a műszerhez. A különböző mérési elrendezések (kettő, három, négy illetve öt vezetékes mérés) lehetővé teszik a csatlakoztatás során létrejövő parazita elemek hatásának csökkentését. A különböző mérési elrendezések leírása megtalálható az impedancia analizátor rövid leírásában és [2]- ben is. Hivatkozások, felkészüléshez ajánlott irodalom 0 Dr. Zoltán István: Méréstechnika, Műegyetemi Kiadó, 55029, Budapest, [1] Komplex aránymérés, o. [2] Átvitelicsatorna-modellek, o. [3] BME VIK: Műszerismertető segédlet a Laboratórium I. c. tárgy méréseihez, Műegyetemi Kiadó, Budapest, 2003 Röviden az impedancia analizátorról (elvi bevezető) Bevezető a Wayne Kerr 6440A impedancia analizátor használatához Bevezető az Agilent 34401A digitális multiméter használatához Feladatok a felkészüléshez 0. A mérést megelőző otthoni felkészülésként végezze el az alábbiakat önállóan! 1. Olvassa át alaposan A mérés elméleti alapjai c. szakaszban foglaltakat! 2. A Laboratórium I. c. tárgy WEB-es adatlapja alatt töltse le és válaszolja meg írásban az Ön számára kijelölt feladatot! 3. Írja fel egy veszteséges párhuzamos rezgőkör impedanciájának kifejezését! 4. Olvassa el és gondolja végig a Mérési feladatokat! 5. Válaszolja meg a (mérési leírás végén található) Ellenőrző kérdéseket! Az írásbeli feladatokat (kézzel írott formában) be kell mutatni a mérésvezetőnek. Elfogadásuk előfeltétele a mérés megkezdésének. A felkészülést a mérésvezető szúrópróbaszerűen szóbeli kérdésekkel is ellenőrizheti. Alkalmazandó műszerek Digitális multiméter (3½ digit) Ellenállás- és kondenzátor-dekádszekrény Impedancia-analizátor Négyvezetékes mérésre alkalmas multiméter Tápegység Függvénygenerátor Oszcilloszkóp METEX ME-22T WayneKerr 6440 Component Analyzer Agilent 34401A Agilent E3630A Agilent 33220A Agilent 54622A Utoljára mentve:, :31, sorsz.: 37 3
4 Labor I. Hallgatói segédlet Tesztpanel A mérendő kétpólusokat három teszt panel tartalmazza. Mérési feladatok0) 1. Kis ellenállások mérése A mérés célja, hogy a kis ellenállások mérésére szolgáló módszereket bemutassa. A kis ellenállás itt azt jelenti, hogy a mérendő objektum ellenálláshoz képest a műszerhez való csatlakoztatás ellenállása (mérővezeték, kontaktus ellenállások) nem elhanyagolható Mérje meg egy mérővezeték ellenállását multiméterrel, kétvezetékes módszerrel! A mérendő vezeték csatlakoztatására használjon külön mérővezetékeket és krokodilcsipeszt! 1.2. Mérje meg a fenti mérővezeték ellenállását négyvezetékes módszerrel! Az újabb mérővezetékeket az előzőekhez hasonlóan csatlakoztassa! Ügyeljen a drive és a sense vezetékek sorrendjére! 1.3. Értékelje a mérési eredményeket! 2. Ellenállás teljesítmény függésének mérése A mérés célja az ellenállás nem ideális tulajdonságának (terhelés, vagy hőmérséklet függés) kimutatása 2.1. Tervezzen mérési elrendezést, amivel megmérheti egy kb. 1 kω-os 0.9 W-os ellenállás értékének teljesítményfüggését tápegység és multiméter segítségével! Számolja ki, hogy a névleges teljesítmény eléréséhez mekkora feszültség illetve áramra van szükség! 2.2. Mérje meg és ábrázolja az ellenállás értékének teljesítményfüggését a névleges teljesítmény 1 és 80%-a között 5 pontban! Mérés közben ügyeljen rá, hogy az ellenállás nagyon felforrósodhat, ne érjen hozzá! 3. Induktivitás mérés A mérés célja a különböző tekercsek (légmagos, vasmagos) eltérő viselkedésének tanulmányozása 3.1. Mérje meg egy légmagos tekercs induktivitásának frekvencia függését párhuzamos és soros R-L helyettesítőkép esetén! 3.2. Magyarázza meg, a két modell frekvenciafüggésének eltérését! (Segítségként mérje meg a tekercs DC ellenállását és impedanciájának abszolút értékét (Z) 50 Hz-en!) 3.3. Helyezze el a fenti tekercset egy fazékvasmagba! Mérje meg a tekercs induktivitásának frekvenciafüggését soros R-L helyettesítőkép esetén ebben az összeállításban! (Mérés közben gondoskodjon a fazékvasmag összeszorításáról!) 3.4. Magyarázza meg vasmagos és a légmagos tekercs viselkedésének eltérését! 4. Kapacitás mérés A mérés célja, hogy rámutasson a gyakorlatban leggyakrabban használt kondenzátor típusok eltérő tulajdonságaira, és ezek alapján célszerű alkalmazási területükre. 4 Utoljára mentve: sorsz.: 37
5 6.mérés Kétpólusok vizsgálata 4.1. Mérje meg egy tantál, egy polisztirol és egy kerámia kondenzátor kapacitásának frekvenciafüggését párhuzamos R-C helyettesítőkép esetén! 4.2. A mérési eredmények alapján mik az egyes kondenzátorok előnyös és hátrányos tulajdonságai, illetve javasolt alkalmazási területük? 4.3. Mérje meg a tantál kondenzátor fázisának frekvenciamenetét! Kapcsoljon a tantál kondenzátorral párhuzamosan egy 100 nf-os kerámia kondenzátort! Mérje meg az eredő impedancia fázismenetét! Magyarázza meg a tapasztaltakat! 5. Párhuzamos rezgőkör mérése A mérés célja egy elterjedten használt (LC oszcillátorokban, egyszerű rádió vevőben) összetett kétpólus tulajdonságainak vizsgálata Tervezzen mérési elrendezést, amivel megmérheti egy párhuzamos rezgőkör rezonancia frekvenciáját és megfigyelheti a rezonancia jelenségét! A feszültség mérésére használjon oszcilloszkópot! 5.2. Mérje meg a rezonancia frekvenciát! 5.3. Mérje meg a rezonancia impedanciát! 5.4. Mérje meg a rezgőkör sávszélességét! (Sávszélesség azon frekvenciák különbsége, amelyeknél a rezonancia impedanciánál 3dB-lel kisebb impedanciát mérünk) 5.5. Számolja ki a jósági tényezőt: ( Q = = ω0rc ) ω3db 5.6. A fenti adatokból határozza meg az induktivitás és a kapacitás értékét! 5.7. Component Analyzer segítségével ellenőrizze a rezonancia paramétereket! ω 0 Kiegészítő mérési feladatok 6. Ismeretlen összetett kétpólus mérése A mérés célja a modell alkotás gyakorlása egy ismeretlen kétpólus analizálásával, mérési módszer kidolgozása egy modell paramétereinek megméréséhez A mérésvezető által kijelölt impedancia analizálásával állapítsa meg, hogy a 6-1. ábrán látható kapcsolások melyikével jellemezhető! Állapítsa meg a kapcsolás paramétereit! 7. Maxwell-Wien híd összeállítása A mérés célja egy komplex mérőhíd kiegyenlítési folyamatának megismerése. A mérőhidak jelentősége az impedancia mérésben csökkent ugyan, de számos olyan gyakorlati alkalmazásuk van ahol a kis változásokra való érzékenységüket jól lehet használni (pl. kapacitív érzékelők, nyúlásmérő bélyegek, ellenállás hőmérők változásának érzékelése) A megadott panel segítségével állítson össze egy Maxwell-Wien hidat és egyenlítse ki! 7.2. Állapítsa meg a mérendő objektum paramétereit! Utoljára mentve:, :31, sorsz.: 37 5
6 Labor I. Hallgatói segédlet Z a C 1 Z b C 1 R 2 Z c Z d L 1 C 1 R ábra. Modellek ismeretlen kétpólus méréshez Ellenőrző kérdések Mit jelent az, hogy nem ideális a tekercs, a kondenzátor és az ellenállás? 2. Milyen modellekkel írjuk le a nem ideális RLC elemeket? 3. Mi a jósági tényező és a veszteségi tényező? 4. Egy kondenzátor "jóságát" a jósági- vagy a veszteségi tényezővel szokták leírni? 5. Párhuzamos RC-modellt alkalmazva, kapacitás értéke negatív. Adja meg a vizsgált alkatrész kapcsolási rajzát! 6. Milyen mérési elvet használnak az impedancia analizátorok? 7. Rajzoljon fel egy kétvezetékes impedancia mérőkapcsolást! 8. Rajzoljon fel egy háromvezetékes impedancia mérőkapcsolást! 9. Rajzoljon fel egy négyvezetékes impedancia mérőkapcsolást! 10. Milyen fő mérési módjai vannak a Component Analyzernek? 11. Nagyságrendileg mekkora egy egyméteres mérőzsinór ellenállása? 12. Feszültséggenerátorból hogyan készítünk áramgenerátort? 13. Hogyan győződünk meg arról hogy egy feszültséggenerátorból készített áramgenerátor elég "áramgenerátorosan" hajtja-e meg a vizsgált kétpólust? 14. Hogyan számítható ki a rezgőkör rezonanciafrekvenciája az elemértékek ismeretében? 15. Hogyan határozható meg a rezgőkör jósági tényezője? 16. Számolja ki egy 1 m hosszú, 1 mm2 keresztmetszetű réz vezeték ellenállását! 17. Egy ellenállás hőmérsékleti tényezője 200 ppm/ K. egy 1 kohmos ellenállás a terhelés következtében 75 C-ra melegszik. Mekkora lesz az ellenállása? 18. Ha ismert egy induktivitás párhuzamos R-L helyettesítőképe, mekkorák lesznek a soros helyettesítőkép elemei? 19. Ha ismert egy kapacitás párhuzamos R-C helyettesítőképe, mekkorák lesznek a soros helyettesítőkép elemei? 20. Írja fel a 6. feladatban látható kétpólusok impedanciáit! 21. Feltételezve, hogy a törésponti frekvenciák legalább egy dekádnyi távolságra vannak egymástól, rajzolja fel az impedanciák Bode-diagramját! 6 Utoljára mentve: sorsz.: 37
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Villamos teljesítmény mérése
4. mérés Villamos teljesítmény mérése Bevezetés A villamos teljesítmény az egyik villamos alapmennyiség, amely mind egyen-, mind váltakozó-áramon definiálható. Mérésével különféle összetett villamos áramkörök
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok
ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)
MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Zárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.09.18. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.03.02. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Kondenzátor, induktivitás, rezgőkör...ha5gy összefoglalója
Kondenzátor, induktivitás, rezgőkör...ha5gy összefoglalója Kondenzátorok Kondenzátorok Két fémfelület egymással szemben ( két fedő a konyhából ) Közöttük valamely szigetelőanyag ( levegő ) Máris van egy
Kiegészítő tudnivalók a fizikai mérésekhez
Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Tápegység tervezése. A felkészüléshez szükséges irodalom Alkalmazandó műszerek
Tápegység tervezése Bevezetés Az elektromos berendezések működéséhez szükséges energiát biztosító források paraméterei gyakran különböznek a berendezés részegységeinek követelményeitől. A megfelelő paraméterű
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató
Aktív Szűrő Mérése - Mérési Útmutató A mérést végezte ( név, neptun kód ): A mérés időpontja: - 1 - A mérés célja, hogy megismerkedjenek a Tina Pro nevű simulációs szoftverrel, és elsajátítsák kezelését.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE
M I S K O C I E G Y E T E M GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA EEKTOTECHNIKAI ÉS EEKTONIKAI INTÉZET Összeállította D. KOVÁCS ENŐ DIÓDÁS ÉS TIISZTOOS KAPCSOÁSOK MÉÉSE MECHATONIKAI MÉNÖKI BSc alapszak hallgatóinak
Digitális multiméterek
PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:
Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása
Egyszerű áramkör megépítése és bemérése
. mérés Egyszerű áramkör megépítése és bemérése Bevezetés A szokásos mérnöki megközelítések az áramkörtervezésben azon alapulnak, hogy az elméleti ismeretek alapján elsőként az áramkör egy modelljét építik
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
Ellenállásmérés Ohm törvénye alapján
Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos
MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)
MŰVELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) mérések célja: megismerni a leggyakoribb alap- és alkalmazott műveleti erősítős kapcsolások jellemző tulajdonságait. mérések elméleti
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
Tranzisztoros erősítő alapkapcsolások vizsgálata
5. mérés Tranzisztoros erősítő alapkapcsolások vizsgálata Bevezetés Az analóg elektronika, ezen belül is a tranzisztoros alapkapcsolások egy tipikus példáját jelentik azon villamosmérnöki ismereteknek,
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
ELEKTRONIKAI ALAPISMERETEK
zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata
Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai
MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi
Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?
Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc
Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 6 ÉRETTSÉGI VIZSG 06. október 7. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUM Egyszerű,
DTMF Frekvenciák Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet DTMF Frekvenciák Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: Bevezető A Proto Board 2. mérőkártya olyan
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ
0 Általános műszer- és eszközismertető
0 Általános műszer- és eszközismertető A laborgyakorlatok során előforduló eszközök vázlatos áttekintésében a teljesség igénye nélkül s a célfeladatokra koncentrálva a következő oldalak nyújtanak segítséget.
Villamos teljesítmény mérése (4. mérés) A mérés időpontja: 2004. 03. 02. de. A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik:
MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Villamos teljesítmény mérése (4. mérés) A mérés időpontja: 2004. 03. 02. de. A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: Belso Zoltan Szilagyi Tamas Mérőcsoport
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint ÉETTSÉG VZSGA 0. október 5. ELEKTONKA ALAPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladatok Maximális
21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú
1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő
NEMZETGAZDASÁGI MINISZTÉRIUM
NEMZETGAZDASÁGI MINISZTÉRIUM Minősítés szintje: Érvényességi idő: 2016. 10. 05. 10 óra 00 perc a vizsgakezdés szerint. Minősítő neve, beosztása: Palotás József s.k. Nemzeti Szakképzési és Felnőttképzési
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elektronika ismeretek középszint 7 ÉRETTSÉGI VIZSG 07. október 0. VILLMOSIPR ÉS ELEKTRONIK ISMERETEK KÖZÉPSZINTŰ ÍRÁSELI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMERI ERŐFORRÁSOK MINISZTÉRIUM
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2017. október 20. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. október 20. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai
Felhasználói kézikönyv
Felhasználói kézikönyv 870K Digitális Lakatfogó Multiméter TARTALOMJEGYZÉK 1. Biztonsági figyelmeztetések... 2 2. Előlap és kezelőszervek... 2 3. Műszaki jellemzők... 3 4. Mérési jellemzők... 3 5. Működési
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
6 az 1-ben digitális multiméter AX-190A. Használati útmutató
6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális
Felhasználói kézikönyv
Felhasználói kézikönyv 90A Digitális Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Biztonsági információk... 3 4. Általános tulajdonságok... 3 5. Mérési tulajdonságok...
Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?
Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak
A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE
MTA-MMSZ Kft. Kalibráló Laboratóriuma A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE 1. Egyenfeszültség-mérés 1.1 Egyenfeszültség-mérők 0...3 mv 1,5 µv 1.2 Egyenfeszültségű jelforrások - kalibrátorok,
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK Szóbeli vizsgarész értékelési táblázata A szóbeli felelet értékelése az alábbi szempontok és alapján történik: