Polimerizáció. A polimerizáci jellemzőit. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek. Monomerek szerkezete vinil
|
|
- Amanda Somogyiné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Polimerizáció Bevezetés Gyökös polimerizáció alapvető lépések kinetika mellékreakciók Ionos polimerizáció kationos polimerizáció anionos polimerizáció Sztereospecifikus polimerizáció Kopolimerizáció Ipari polimerizációs eljárások
2 Polimerizáció A polimerizáci ciós s eljárás s meghatározza a polimer jellemzőit és s stabilitását. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek gyökös anionos kationos sztereoszelektív Monomerek szerkezete vinil vinilidén CH 2 CHR 1 CH 2 CR 1 R 2 R1 és R2: hidrogén, halogén, alkil, alkenil, aril, pl. metil, fenil ciano, vinil
3 Gyökös polimerizáció A polimerizáci ció aktív v centruma szabad gyök és s elemi lépéseiben is gyökök k vesznek részt. r Elemi lépések 1. Iniciálás: a növekedésre képes aktív centrum kialakítása R R R 2 R + M R M Gyök létrehozása peroxidok bomlása CH 3 CH 3 C O O C 2 CH 3 CH 3 CH 3 C O CH 3
4 Gyökös polimerizáció azovegyületek bomlása redox iniciálás CH 3 CH 3 CH 3 C N N C CH 3 CN CN CH 3 2 CH 3 C + N 2 CN R O O H + Fe 2 RO + OH + Fe 3 2. Láncnövekedés: gyors monomer addíció H H R ( CH 2 CH ) CH 2 C CH 2 CH R ( CH 2 CH ) CH 2 C n + n+1
5 Gyökös polimerizáció 3. Lánzáródás: a láncnövekedés megállása, a kinetikai lánc lezáródása két makrogyök kölcsönhatásával egy makrogyök és egy iniciátor gyök reakciójával reakció valamilyen más aktív molekulával szennyeződések (pl. oxigén) hatására A láncvégek reakciója lehet rekombináció CH 2 diszproporcionálódás CH 2 CH CH + CH CH 2 + CH CH 2 CH 2 CH CH CH 2 CH 2 CH 2 + CH CH
6 Gyökös polimerizáció 1. Iniciálás Kinetika 2. Növekedés I k d 2 R k i R + M M 1 v i d = dt [ R ] = 2 f k [] I f gyökhasznosítási tényező Az iniciátor bomlása a se- bességmeghat gmeghatározó lépés. d k p1 M 1 + M M 2 k pi M i + M M i+1 Feltételez telezés: a makrogyök reakcióképess pessége független f a lánc l hosszától
7 Gyökös polimerizáció 2. Növekedés sebességi egyenlet v d = dt 3. Lánczáródás p [ M ] = k [ M ][ M ] + k [ M ][ M ] k [ M ][ M ]... v p p 1 p 2 p i + [ ] [ ] [ ][ ] p M M i = k p M i= 1 = k M k t M n + M m M n+m k t M M n + M m n + Mm v t [ M ] [ ] 2 d = = kt M dt
8 Gyökös polimerizáció 2 Stacioner körülmények, állandó gyökkoncentráció d dt f v i = v t [ ] [ R d M ] k = dt [] [ I = k M ] 2 d t x n v p = = k v v p t p = 2 k f k k t d [] I 1/ 2 [ ][ ] p M M [ k M ] 2 t = [ M ] k k [ M ] p [ M ] t [ [ ] ] 2 f kd I M = k t x n = f k ( k k ) d p t 1/ 2 I [ M ] [] 1/ 2 A polimer molekulatömege mege a polimerizáci ció körülményeinek változtatásával szabályozhat lyozható.
9 Gyökös polimerizáció Eltérés s az egyensúlyi kinetikától 1. Láncátadás a molekulatömeg csökkenéséhez és elágazáshoz vezet. Átadás történhet monomerre iniciátorra polimerre oldószerre Monomer, iniciátor: a reakciósebesség nem változik, a polimerizáció fok csökken. Polimer: a polimerizáció fok nem változik, elágazások jönnek létre. Oldószer: a móltömeg jelentősen csökken. Láncátadószer: a molekulatömeg szabályozására alkalmazzák.
10 Gyökös polimerizáció Láncátadás Sebesség v tr = k S tr [ M ][ S] Polimerizáció fok x [ ][ k ] p M M n = [ ] 2 M [ ][ ] I [][ ] S [ ][ k M + k M M + k I M + k S M ] t tr tr tr C i p 1 x n = 1 x n0 + C [ i] [ M ] i ktr = i = I, M, S k a C i reakciósebességi arány a láncátadási tényező i
11 Gyökös polimerizáció Láncátadás n-butil merkaptán CBr 4 CCl 4 m-krezol A polimerizáci ció fok láncátadószer ada- golásával szabályoz lyoz- ható. 1/x n butil-benzol n-heptán benzol [Láncátadó]/[Sztirol] arány
12 Gyökös polimerizáció Inhibíci ció,, retardáci ció adalék nélkül Konverzió (%) nitrozobenzol benzokinon nitrobenzol Idő x 10 2 (perc) Az inhibítor leáll llítja, a retarder lassítja a polimerizáci ciót.
13 Gyökös polimerizáció Géleffektus 100 Konverzió (%) o C 20 o C 10 o C Diffúzi zió kontrollált lt záródás, gyorsuló polimerizáci ció Idő (perc)
14 Ionos polimerizáció Kationos polimerizáci ció Katalizátor: Lewis sav, pl. BF 3, AlCl 3, TiCl 4, SnCl 4 Kokatalizátor: nukleofil anyagok, pl. víz Láncindítás: BF 3 + H 2 O H [BF 3 OH] H [BF 3 OH] + (CH 3 ) 2 C CH 2 (CH 3 ) 3 C [BF 3 OH] Láncnövekedés fontos az aktív centrum ionjainak kapcsolata R R R // R kovalens ionpár szeparált ionpár szabad ionok Záródás: láncátadás, szennyeződés Telekelikus polimerek, élő polimerizáció
15 Ionos polimerizáció Anionos polimerizáci ció Katalizátor: kálium-amid, n-butil-lítium, Grignard vegyületek, pl. alkil-magnézium-bromid Láncindítás: KNH 2 K + NH 2 NH 2 + CH 2 CHC 6 H 5 H 2 NCH 2 C H Növekedés: addíció a karbanionra Záródás: láncátadás az oldószerre, szennyeződés
16 Ionos polimerizáció Anionos polimerizáci ció 8 Tényezők: N n /N x gyökös polimer élő polimer oldószer polaritása ellenion jellege ellenion erőssége rezonancia stabilitás sztérikus hatások Szennyeződések Hőmérséklet Polimerizációfok Élő polimerizáci ció
17 Sztereospecifikus polimerizáció Mikroszerkezeti rendezettség Láncszerkezet: lineáris, elágazott stb. Izomeria: transz- vagy cisz-izomerek Aszimmetrikus monomerek orientációja fej-fej szerkezet láb-láb szerkezet Sztereoizomeria H Y C C C C H H H Y
18 Mikroszerkezet Az építőelem kapcsolódása Aszimmetrikus monomerek fej-láb szerkezet Fej-fej és láb-láb szerkezet CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH CH 2 CH 2 CH CH CH 2 CH 2 CH fej-fej láb-láb Szabályosság, hibahelyek
19 Sztereospecifikus polimerizáció Sztereoizomeria 1. Izotaktikus 2. Szündiotaktikus 3. Ataktikus CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH CH 2 CH rendezettség - fázisszerkezet - tulajdonságok
20 Sztereospecifikus polimerizáció Mechanizmus C C Ti C ( ) n + C C Ti C ( ) n+1 Ti C ( ) n
21 Sztereospecifikus polimerizáció Mechanizmus Ionos polimerizációban is előfordul. Gyökösben soha. Megfelelő szubsztituensek hiányában ionos polimerizációban sem. Koordinációs polimerizáció. Heterogén katalizátorok (AlEt 3 TiCl 3, TiCl 4 ). Ataktikus hányad, katalizátor hatékonyság. 5. Generáció - metallocén katalizátorok.
22 Láncpolimerizáció Összehasonlítás Monomer Polimerizáció mechanizmusa Gyökös Kationos Anionos Koordinációs Etilén Propilén + Izobutilén + Diének Sztirol Vinil-klorid + + Vinilidén-klorid + + Vinil-fluorid + Tetrafluor-etilén + + Akrilátok + + +
23 Kopolimerizáció Általános informáci ció,, reakciók Kopolimerizáció: két vagy több monomer egységből áll. Típusai: statisztikus vagy random alternáló blokk ojtott vagy ág Polimerizációs mechanizmus: gyökös, esetenként ionos Reakciók M 1 + M 1 M 1 M 1 + M 2 M 2 + M 1 M 1 M 2 M 2 + M 2 M 2 k 11 [M 1 ][M 1 ] k 12 [M 1 ][M 2 ] k 21 [M 2 ][M 1 ] k 22 [M 2 ][M 2 ]
24 Kopolimerizáció Kinetika Stacioner körülmények Relatív reaktivitás k [ ][ ] [ M M = k M ][ ] M 2 r 1 = k 11 /k 12 és r 2 = k 22 /k 21 Különböző r értékek, változó összetétel VC/VAC kopolimerizáció, %-os elegy a kopolimer összetétele: t1 9:3 t2 7:3 t3 5:3 t4 5:7
25 Kopolimerizáció Relatív v reaktivitási arányok 1. monomer 2. monomer r 2 r 1 T ( C) akril-nitril 1,3-butadién 0,02 0,30 40 metil-metakrilát 0,15 1,22 80 sztirol 0,04 0,40 60 vinil-klorid 2,70 0,04 60 metil-metakrilát sztirol 0,46 0,52 60 vinil-acetát 20 0, vinil-klorid 10 0,10 68 sztirol vinil-acetát 55 0,01 60 vinil-klorid 17 0,02 60 vinil-acetát vinil-klorid 0,23 1,68 60
26 Kopolimerizáció Kopolimer összetétele, tele, szabályoz lyozás m 1 (polimer) P M 1 (reakció elegy) 1. Ideális polimerizáció, r 1 = r 2 = 1 2. Majdnem ideális, r 1 r 2 = 1, de r 1 r 2 3. Alternáló, 0 < r 1 r 2 < 1 4. Reális azeotróp azeotróp kis konverzió monomer pótlás
27 Kopolimerizáció Előáll llítás Statisztikus, alternáló: gyökös Blokk: gyökös, r 1 r 2 >> 1 ionos, nagyon eltérő reaktivitású monomerekből élőpolimerizáció aktív végcsoportot tartalmazó polimerek összekapcsolása Ojtott ojtás láncról ojtás láncra mechanokémiai ojtás
28 Ipari polimerizációs módszerek Gázfázisú Körülmények: nagy nyomás, magas hőmérséklet Iniciátor: oxigén Termék: elágazott Példa: PE Tömb Iniciátor: Termék: Előny: Hátrány: Példa: monomerben oldódó tömb, por tiszta termék géleffektus PMMA, PVC, PAN Oldószeres Termék: oldat, csapadék Előny: hőátadás Hátrány: szennyeződés, oldószer, láncátadás Példa: ionos, sztereospecifikus Szuszpenziós Iniciátor monomerben oldódó Közeg: általában víz Termék: por Előny: hőelvezetés Hátrány: szennyeződés Példa: PVC, PS, PMMA
29 Ipari polimerizációs módszerek Emulziós Iniciátor: Közeg: Előny: Hátrány: Példa: vízben oldódó víz ld. fenn ld. fenn PVC, SBR, PMMA
Lépcsős polimerizáció, térhálósodás; anyagismeret
Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők sztöchiometria és móltömeg (x n ) reakciók Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek
Makromolekulák. I. Rész: Bevezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor
Makromolekulák I. A -vázas polimerek I. Rész: evezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor MTA Wigner FK SZFI Telefon:392-2222/1845 Email: pekker.sandor@wigner.mta.hu ELTE, 2017
Műanyagok (makromolekuláris kémia)
Műanyagok (makromolekuláris kémia) Fogalmak, definíciók Makromolekula: azonos építőelemekből, ismétlődő egységekből felépített szerves, vagy szervetlen molekula, melynek molekulatömege általában nagyobb,
A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI?
A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI? Szabó Ákos Magyar Tudományos Akadémia Természettudományi Kutatóközpont Anyag- és Környezetkémiai Intézet Polimer Kémiai
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Lépcsős polimerizáció, térhálósodás; anyagismeret
Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők reakciók kinetika sztöchiometria és x n Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek
MŰANYAGOK. Egyetemi tananyag. Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudományi Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudományi Tanszék Írta: PUKÁNSZKY BÉLA, MÓCZÓ JÁNOS Lektorálta: ZSUGA MIKLÓS MŰANYAGOK Egyetemi tananyag
Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.
Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20
Fémorganikus kémia 1
Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Szénhidrogének II: Alkének. 2. előadás
Szénhidrogének II: Alkének 2. előadás Általános jellemzők Általános képlet C n H 2n Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C = C kötést
Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor
Makromolekulák I. A -vázas polimerek szerkezete és fizikai tulajdonságai Pekker Sándor MTA SZFKI Telefon:392-2222/845, Fax:392-229, Email: pekker@szfki.hu SZFKI tanfolyam: www.szfki.hu/moodle/course/ a
Tevékenység: Olvassa el a történeti áttekintést! Jegyezze meg a legfontosabb feltalálók nevét és a találmányok megjelenésének időpontját!
Olvassa el a történeti áttekintést! Jegyezze meg a legfontosabb feltalálók nevét és a találmányok megjelenésének időpontját! Bevezetés A makromolekuláris anyagok (polimerek) az élettel egyidősek a földön.
Új lineáris, ojtásos és csillag polimerek szintézise kváziélı atomátadásos gyökös polimerizációval
Új lineáris, ojtásos és csillag polimerek szintézise kváziélı atomátadásos gyökös polimerizációval Ph.D. értekezés Kovács Orsolya Kémia Doktori Iskola Szintetikus kémia, anyagtudomány, biomolekuláris kémia
2. melléklet a 4/2011. (I. 14.) VM rendelethez
1. Egyes légszennyező anyagok tervezési irányértékei A B C D 1. Légszennyező anyag [CAS szám] Tervezési irányértékek [µg/m 3 ] Veszélyességi 2. 24 órás 60 perces fokozat 3. Acetaldehid [75-07-0] 0,2 1
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév
Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Győr-Moson-Sopron Megyei Kormányhivatal Népegészségügyi Főosztály Laboratóriumi Osztály TEFONAZ Laboratórium 9024 Győr, Jósika u. 16.
Foglalkozás egészségügyi akkreditált vizsgálatok listája Klórozott alifás szénhidrogének: 1,1-diklór-etán, 1,2-diklór-etán, diklór-metán, kloroform, szén-tetraklorid, tetraklór-etilén, 1,1,1-triklór-etán,
Új típusú elágazott topológiájú polimerek
ZÁRÓJELENTÉS az TKA T048409 számú, Új típusú elágazott topológiájú polimerek című pályázatról Szesztay Andrásné Magyar Tudományos Akadémia, Kémiai Kutatóközpont, Anyag- és Környezetkémiai Intézet, Polimer
Aromás vegyületek II. 4. előadás
Aromás vegyületek II. 4. előadás Szubsztituensek irányító hatása Egy következő elektrofil hova épül be orto, meta, para pozíció CH 3 CH 3 CH 3 CH 3 E E E orto (1,2) meta (1,3) para (1,4) Szubsztituensek
Kis hőmérsékletű polimerizáció
ELTE TTK Szerves Kémiai Tanszék Kis hőmérsékletű polimerizáció c. gyakorlat leírása Összeállította: Dr. Erdődi Gábor tud. munkatárs Dr. Iván Béla egyetemi magántanár Tartalomjegyzék I. Kis hőmérsékletű
AROMÁS SZÉNHIDROGÉNEK
AROMÁS SZÉNIDROGÉNK lnevezés C 3 C 3 3 C C C 3 C 3 C C 2 benzol toluol xilol (o, m, p) kumol sztirol naftalin antracén fenantrén Csoportnevek C 3 C 2 fenil fenilén (o,m,p) tolil (o,m,p) benzil 1-naftil
1. feladat. Versenyző rajtszáma: Mely vegyületek aromásak az alábbiak közül?
1. feladat / 5 pont Mely vegyületek aromásak az alábbiak közül? 2. feladat / 5 pont Egy C 4 H 8 O összegképletű vegyületről a következő 1 H és 13 C NMR spektrumok készültek. Állapítsa meg a vegyület szerkezetét!
4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.
4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk.
1. feladat Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk. 2. feladat Etil-metil-keton (bután-2-on) Jelek hozzárendelése:
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás I. Egyatomos molekulák He, Ne, Ar, Kr, Xe, Rn - a molekula alakja: pontszerű - a kovalens kötés polaritása: NINCS kötés
Szerkezet és tulajdonságok
Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,
ALKOHOLOK ÉS SZÁRMAZÉKAIK
ALKLK ÉS SZÁRMAZÉKAIK Levezetés R R alkohol R R R éter Elnevezés Nyíltláncú, telített alkoholok általános név: alkanol alkil-alkohol 2 2 2 metanol etanol propán-1-ol metil-alkohol etil-alkohol propil-alkohol
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Fémorganikus vegyületek
Fémorganikus vegyületek A fémorganikus vegyületek fém-szén kötést tartalmaznak. Ennek polaritása a fém elektropozitivitásának mértékétől függ: az alkálifém-szén kötések erősen polárosak, jelentős százalékban
NAGYENERGIÁJÚ SUGÁRZÁSSAL INICIÁLT POLIMERIZÁCIÓ KINETIKAI EGYÜTTHATÓINAK MEGHATÁROZÁSA
NAGYENERGIÁJÚ SUGÁRZÁSSAL INICIÁLT POLIMERIZÁCIÓ KINETIKAI EGYÜTTHATÓINAK MEGHATÁROZÁSA Az eredeti munkatervnek megfelelően a kutatások a következő három tématerületen folytak: - a sugárzással iniciált
MESTERSÉGES ÉS SZINTETIKUS POLIMEREK
MESTERSÉGES ÉS SZINTETIKUS POLIMEREK POLIMERKÉMIAI ALAPFOGALMAK A polimer fogalma: Az nagy molekulatömeg anyagokat makromolekuláknak nevezzük. A polimer makromolekulák ismétl d egységekb l állnak. A polimer
szabad bázis a szerves fázisban oldódik
1. feladat Oldhatóság 1 2 vízben tel. Na 2 CO 3 oldatban EtOAc/víz elegyben O-védett protonált sóként oldódik a sóból felszabadult a nem oldódó O-védett szabad bázis a felszabadult O-védett szabad bázis
Félvezető és mágneses polimerek és kompozitok
A MÛANYAGOK ALKALMAZÁSA 3.3 Félvezető és mágneses polimerek és kompozitok Tárgyszavak: polimerkeverék; magnetit töltőanyag; poli(ferrocenil-szilán); szintézis; félvezető; mágneses kerámiák; mikrogömb;
Kis hőmérsékletű polimerizáció
ELTE TTK Kémiai Technológiai és Környezetkémiai Tanszék Kis hőmérsékletű polimerizáció c. gyakorlat leírása Összeállította: Erdődi Gábor doktorandusz Dr. Iván Béla egyetemi magántanár Tartalomjegyzék I.
NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC
NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC Az alkalmazott nagy nyomás (100-1000 bar) lehetővé teszi nagyon finom szemcsézetű töltetek (2-10 μm) használatát, ami jelentősen megnöveli
A felületi kölcsönhatások
A felületi kölcsönhatások 3. hét Adhézió: különbözı, homogén testek közötti összetartó erı ragasztóanyag faanyag; bevonat faanyag Kohézió: homogén anyag molekulái, részecskéi közötti összetartó erı elsırendő
Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz
Pórusos polimer gélek szintézise és vizsgálata és mi a közük a sörgyártáshoz Póta Kristóf Eger, Dobó István Gimnázium Témavezető: Fodor Csaba és Szabó Sándor "AKI KÍVÁNCSI KÉMIKUS" NYÁRI KUTATÓTÁBOR MTA
Láncvégen funkcionalizált poliizobutilén előállítása
Tudományos Diákköri Dolgozat FÁBIÁN BEÁTA VEGYÉSZ MSC HALLGATÓ Láncvégen funkcionalizált poliizobutilén előállítása Témavezetők: Szabó Ákos, tudományos munkatárs, MTA TTK AKI Polimer Kémiai Kutatócsoport
(11) Lajstromszám: E 004 263 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA
!HU000004263T2! (19) HU (11) Lajstromszám: E 004 263 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 70014 (22) A bejelentés napja:
Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Szemináriumi feladatok (alap) I. félév
Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
Laborgyakorlat terv összeállítása a Polimerek laboratórium c. gyakorlatra (kurzuskód: KMN404)
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Fizikai Kémiai és Anyagtudományi Tanszék Laborgyakorlat terv összeállítása a Polimerek laboratórium c. gyakorlatra (kurzuskód: KMN404) Készítette:
Ni 2+ Reakciósebesség mol. A mérés sorszáma
1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol
Javítókulcs (Kémia emelt szintű feladatsor)
Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.
Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. 1; PAP
Új oxo-hidas vas(iii)komplexeket állítottunk elő az 1,4-di-(2 -piridil)aminoftalazin (1, PAP) ligandum felhasználásával. H 1; PAP H FeCl 2 és PAP reakciója metanolban oxigén atmoszférában Fe 2 (PAP)( -OMe)
IV. Elektrofil addíció
IV. Elektrofil addíció Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMnO 4 -os reakció. 2 2 Mi történik tehát a brómmolekula addíciója során? 2 2 ciklusos bromónium
Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)
lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly
Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. www.chem.elte.hu/pr
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok november 26. 16:00 ELTE Kémiai Intézet 065-ös terem Észontogató (www.chem.elte.hu/pr)
SZERVES KÉMIA I. B.Sc. képzés, kód: BMEVESZA301 Tantárgy követelményei 2018/2019tanév II. félév
SZERVES KÉMIA I. B.Sc. képzés, kód: BMEVESZA301 Tantárgy követelményei 2018/2019tanév II. félév Az alaptárgy heti 3 óra előadásból és heti tantermi gyakorlatból áll. A tárgy szóbeli vizsgával zárul. A
VILÁGÍTÓ GYÓGYHATÁSÚ ALKALOIDOK
VILÁGÍTÓ GYÓGYHATÁSÚ ALKALIDK Biczók László, Miskolczy Zsombor, Megyesi Mónika, Harangozó József Gábor MTA Természettudományi Kutatóközpont Anyag- és Környezetkémiai Intézet Hordozóanyaghoz kötődés fluoreszcenciás
MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2016 nyilvántartási számú akkreditált státuszhoz
MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH-1-1790/2016 nyilvántartási számú akkreditált státuszhoz Az Országos Közegészségügyi Intézet Munkahigiénés és Foglalkozás-egészségügyi Igazgatóság Kémiai, Zaj-, Rezgés-
Általános kémia vizsgakérdések
Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.
Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék
Petrolkémiai alapanyagok és s adalékok eláll llítása manyag m hulladékokb kokból Angyal András PhD hallgató Veszprémi Egyetem, Ásványolaj és Széntechnológiai Tanszék Veszprém, 2006. január 13. 200 Mt manyag
Borbély Endréné dr. IPARI CELLULÓZOK OJTHATÓSÁGA VINIL-ACETÁT MONOMERREL. Doktori (PhD) értekezés
1 2 Borbély Endréné dr. IPARI CELLULÓZOK OJTHATÓSÁGA VINIL-ACETÁT MONOMERREL Doktori (PhD) értekezés Témavezet: Dr. h. c. dr. Erdélyi József egyetemi tanár Nyugat-Magyarországi Egyetem Faipari Mérnöki
Reakciókinetika és katalízis
Reakciókinetika és katalízis 6. előadás: 1/32 1 A láncreakció az összetett reakciórendszerek egyik különleges fajtája. A "láncszemek" olyan elemi reakciók, amelyek ismétlődnek. Az egyik lépésben keletkező
Szerves kémia Fontosabb vegyülettípusok
Fontosabb vegyülettípusok Szénhidrogének: alifás telített (metán, etán, propán, bután, ) alifás telítetlen (etén, etin, ) aromás (benzol, toluol, naftalin) Oxigéntartalmú vegyületek: hidroxivegyületek
Részletes tematika: I. Félév: 1. Hét (4 óra): 2. hét (4 óra): 3. hét (4 óra): 4. hét (4 óra):
Részletes tematika: I. Félév: 1. Hét (4 óra): Szerves Vegyületek Szerkezete. Kötéselmélet Lewis kötéselmélet; atompálya, molekulapálya; molekulapálya elmélet; átlapolódás, orbitálok hibridizációja; molekulák
H 3 C H + H 3 C C CH 3 -HX X 2
1 Gyökös szubsztitúciók (láncreakciók gázfázisban) - 3 2 2 3 2 3-3 3 Szekunder gyök 3 2 2 2 3 2 2 3 3 2 3 3 Szekunder gyök A propánban az azonos strukturális helyzetű hidrogének és a szekunder hidrogének
Szerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776
Ragasztás, ragasztóanyagok
9. hét Kötés kialakulása fizikai úton kötı oldószeres diszperziós olvadék-ragasztók kémiai úton kötı oldószeres természetes polimer alapú ragasztók fehérje, szénhidrát, szénhidrogén alapú oldószeres ragasztó
Szemináriumi feladatok (alap) I. félév
Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/
7. Kémia egyenletek rendezése, sztöchiometria
7. Kémia egyenletek rendezése, sztöchiometria A kémiai egyenletírás szabályai (ajánlott irodalom: Villányi Attila: Ötösöm lesz kémiából, Példatár) 1.tömegmegmaradás, elemek átalakíthatatlansága az egyenlet
ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «бакалавр»
ЗАКАРПАТСЬКИЙ УГОРСЬКИЙ ІНСТИТУТ ІМ. Ф. РАКОЦІ ІІ КАФЕДРА МАТЕМАТИКИ ТА ІНФОРМАТИКИ II. RÁKÓCZI FERENC KÁRPÁTALJAI MAGYAR FŐISKOLA MATEMATIKA ÉS INFORMATIKA TANSZÉK ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ
Helyettesített Szénhidrogének
elyettesített Szénhidrogének alogénezett szénhidrogének Alifás halogénvegyületek Szerkezet Kötéstávolság ( ) omolitikus disszociációs energia (kcal/mol) Alkil-F 1,38 116 Alkil-l 1,77 81 Alkil-Br 1,91 66
Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben
Polimerek kémiai reakciói 6. hét Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Poliaddíció bi- vagy polifunkciós monomerek lépésenkénti összekapcsolódása: dimerek, trimerek oligomerek
Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
Szénhidrogének III: Alkinok. 3. előadás
Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést
a NAT /2012 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1702/2012 nyilvántartási számú akkreditált státuszhoz A QC-five Analitika Kft. (1116 Budapest, Fehérvári út 144., Csarnok II. 12. sz.) akkreditált
Poli(poli(etilén-glikol)-metil-étermetakrilát-ko-N-vinilimidazol) kopolimerek előállítása és hőmérsékletérzékeny intelligens viselkedésük vizsgálata
Tudományos Diákköri Dolgozat KORONKA DÁNIEL Poli(poli(etilén-glikol)-metil-étermetakrilát-ko-N-vinilimidazol) kopolimerek előállítása és hőmérsékletérzékeny intelligens viselkedésük vizsgálata Témavezetők:
Az enzimműködés termodinamikai és szerkezeti alapjai
2017. 02. 23. Dr. Tretter László, Dr. Kolev Kraszimir Az enzimműködés termodinamikai és szerkezeti alapjai 2017. február 27., március 2. 1 Mit kell(ene) tudni az előadás után: 1. Az enzimműködés termodinamikai
Funkciós csillag és hiperelágazásos polimerek előállítása kváziélő atomátadásos gyökös polimerizációval. Doktori értekezés tézisei.
Funkciós csillag és hiperelágazásos polimerek előállítása kváziélő atomátadásos gyökös polimerizációval Doktori értekezés tézisei Szanka István Eötvös Loránd Tudományegyetem, Természettudományi Kar Kémia
Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.
Általános és szervetlen kémia 10. hét Elızı héten elsajátítottuk, hogy a kémiai reakciókat hogyan lehet csoportosítani milyen kinetikai összefüggések érvényesek Mai témakörök a közös elektronpár létrehozásával
Szerkezet és tulajdonságok
Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
FUNKCIÓS POLISZTIROL ÉS POLIIZOBUTILÉN ELŐÁLLÍTÁSA KVÁZIÉLŐ POLIMERIZÁCIÓVAL ÉS AZT KÖVETŐ VÉGCSOPORT MÓDOSÍTÁSSAL
Tudományos Diákköri Dolgozat PÁSZTÓI BALÁZS FUNKCIÓS POLISZTIROL ÉS POLIIZOBUTILÉN ELŐÁLLÍTÁSA KVÁZIÉLŐ POLIMERIZÁCIÓVAL ÉS AZT KÖVETŐ VÉGCSOPORT MÓDOSÍTÁSSAL Kasza György, tudományos munkatárs MTA TTK
A PVC gyártás bemutatása PVC Üzem BorsodChem
A PVC gyártás bemutatása PVC Üzem BorsodChem 2015 Kazincbarcika PVC Üzem története 1978- Polimer II. Üzem indulása, Shin Etsu technológiával. 6 reaktorral. Névleges évi kapacitása 150.000 tonna PVC por
Összefoglalás. Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció. Kötéshossz Nagyobb Kisebb Átmenet a kettő között
Összefoglalás Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció Kötéshossz Nagyobb Kisebb Átmenet a kettő között Reakciókészség Paraffin (legkevésbé) Nagy Átmenet a kettő között
POLIMER KÉMIA ÉS TECHNOLÓGIA
POLIMER KÉMIA ÉS TECHNOLÓGIA BSc III. éves vegyészek részére ETR-kód: kv1n1tc3 3 kredit heti 3 óra előadás Dr. Iván Béla egyetemi magántanár ELTE TTK Kémiai Intézet Szerves Kémiai Tanszék A tárgy tematikája:
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok
BŐVÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz
BŐVÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH-1-1626/2014 nyilvántartási számú (2) akkreditált státuszhoz Az IMSYS Mérnöki Szolgáltató Kft. Környezet- és Munkavédelmi Vizsgálólaboratórium (1033 Budapest, Mozaik
Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
Hagyományos HPLC. Powerpoint Templates Page 1
Hagyományos HPLC Page 1 Elválasztás sík és térbeli ábrázolása Page 2 Elválasztás elvi megoldásai 3 kromatográfiás technika: frontális kiszorításos elúciós Page 3 Kiszorításos technika minta diszkrét mennyisége
Budapest, szeptember 5. Dr. Tóth Tünde egyetemi docens
SZERVES KÉMIA I. levelező B.Sc. képzés, kód: BMEVESZAL17 Tantárgy követelményei 2016/2017. tanév I. félév Az alaptárgy heti 2,5 óra (páratlan héten 2 óra, páros héten 3 óra) előadásból és ezzel integrált
Műanyagok alkalmazása
Műanyagok alkalmazása Bevezetés Degradáció fogalmak, definíció, osztályozás depolimerizáció elimináció lánctördelődés, térhálósodás egyéb degradációs mechanizmusok Stabilizálás a PVC stabilizálása poliolefinek
SZERVES KÉMIA I. B.Sc. képzés, kód: BMEVESZA301 Tantárgy követelményei 2016/2017tanév II. félév
SZERVES KÉMIA I. B.Sc. képzés, kód: BMEVESZA301 Tantárgy követelményei 2016/2017tanév II. félév Az alaptárgy heti 3 óra előadásból és heti tantermi gyakorlatból áll. A tárgy szóbeli vizsgával zárul. A
Sav bázis egyensúlyok vizes oldatban
Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid
10. Kémiai reakcióképesség
4. Előadás Kémiai reakciók leírása. Kémiai reakciók feltételei. Termokémia. A szerves kémiai reakciómechanizmusok felosztása és terminológiája. Sav-bázis reakció. Szubsztitució. Addició és elimináció.
6. melléklet a 4/2011. (I. 14.) VM rendelethez
Általános technológiai kibocsátási határértékek 1. kibocsátási határérték tüzelési és termikus (a levegőből tényleges oxigén-elvonás történik) technológiáknál - ha jogszabály vagy hatósági határozat másként
KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.
KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt
Reakciókinetika és katalízis
Reakciókinetika és katalízis 2. előadás: 1/18 Kinetika: Kísérletekkel megállapított sebességi egyenlet(ek). A kémiai reakció makroszkópikus, fenomenológikus jellemzése. 1 Mechanizmus: Az elemi lépések