3. Alapkapcsolások műveleti erősítőkkel
|
|
- Mátyás Veres
- 8 évvel ezelőtt
- Látták:
Átírás
1 3. lapkapcsolások műelet erősítőkkel öden tentsük át az ntegrált műelet erősítőkkel telezett alapkapcsolásokat. z áttenthetőség érdekén a kapcsolások paraméterenek leírását tartalmazó összefüggések leezetése általában deáls műelet erősítők alkalmazását feltételez. Hasonló okokból a tápfeszültségek csatlakozó pontja, alamnt a kompenzáló llete ofszetegyenlítő áramkörök csatlakozás pontja sem szerepelnek az ábrákon. Legyen a gyakorlat felhasználó feladata, hogy a segédáramkörök jellegét és az elemek értékét az áramkör sajátosságoknak megfelelóen meghatározza. 3. Nem nertáló erősítő alapkapcsolás nem nertáló erősítő alapkapcsolása a 3.. ábrán látható. menet jel ( ) ebn az esetn a nem nertáló menetre an kapcsola és fázsfordítás nélkül felerősíte jelentkezk a meneten. Megfgyelhető, hogy a műelet erősítő negatí sszacsatolással an elláta, amelyet az, ellenállásokból álló osztó alkot. műelet erősítő menetén fellépő dfferencáls feszültség: 3. ábra Nem nertáló erősítő Ha o a műelet erősítő sszacsatolt és nyílthrkú erősítése, 0 a kapcsolás feszültségerősítése pedg a sszacsatolt erősítést képsel: Krchhoff törényenek felhasználásáal kapjk a köetkező összefüggéseket: 0 0 sszacsatolt erősítés, ha az nertáló meneten folyó áram nlla ( N = 0 ): 0 Felhasznála az összefüggésn az feltételt, a sszacsatolt feszültségerősítésre a köetkező egyszerű összefüggést kapjk: Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-
2 z erősítés poztí előjele azt mtatja, hogy az áramkör a felerősített jel fázsát nem fordítja meg. Mel értékét csak a sszacsatoló hálózatban leő ellenállások határozzák meg, ez a tény tükröz az áramkör előnyös tlajdonságat, amelyet a műelet erősítő negatí sszacsatolásáal alósíthatnk meg. z áramkör egy másk fontos paramétere az menet ellenállása. deáls műelet erősítő esetén a nem nertáló erősítő áramkör menet ellenállása: negatí sszacsatolás köetkeztén a menet ellenállás ( ) olyan mértékn csökken, mnt a sszacsatolt erősítés ( ) a nyílthrkúhoz ( 0 ) képest: Egy különleges nem nertáló erősítő kapcsolás a feszültségköető (3. ábra.). Ez gyakorlatlag egy olyan nem nertáló erősítő, amelyn = 0 és =. Ennek megfelelően = l, agys a menet jel reprodkálja a menet jelet. Előnye ennek a kapcsolásnak, hogy a menet jelet magas mpedancán fogadja és (erősítés nélkül), alacsony mpedancán áll rendelkezésre a meneten ábra Feszültségköető 3. nertáló erősítő alapkapcsolás z egyk legelterjedtebb műelet erősítőel telezett áramkör az nertáló (fázsfordító) erősítő kapcsolás. Elneezése onnan származk, hogy az, menet jelet az nertáló menetre kapcsoljk és a meneten egy olyan felerősített feszültség jelenk meg, amelynek fázshelyzete ellentétes a menet feszültség fázsáal. Vllamos kapcsolás rajza a 3.3 ábrán látható. 3.3 ábra nertáló erősítő Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-
3 Krchhoff csomópont törényének felhasználásáal köetkezk: N deáls műelet erősítőt feltételeze, 0 és 0, köetkezk : N Láthatjk, hogy a sszacsatolt műelet erősítő erősítését (,), ha 0 nagyon nagy, csak az alkalmazott ellenállások határozzák meg. kapcsolás menet ellenállása:, ha 0, köetkezk: z erősítő menet ellenállásának értékét a negatí sszacsatolás csökkent: Különbségképző áramkör 3.4 ábrán látható kapcsolás egy különbségképző áramkörnek tenthető, mel menet feszültsége egyenesen arányos a menetekre kapcsolt feszültségek különbségéel. sszacsatolt erősítés számítása céljából meghatározzk a műelet erősítő két menetének potencálkülönbségét leíró összefüggést. 3.4 ábra Különbségképző áramkör z összefüggés megállapításánál feltételezzük, hogy a műelet erősítő menet árama nllának tenthetők. deáls esetn 0, köetkezk: kapcsolás feszültségerősítése: Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-3
4 különbségképző áramkörök nagyon jól alkalmazhatók két nagy értékű feszültség között cs különbség erősítésére (példál egy mérőhíd menetén fellépő feszültség erősítésére). 3.4 Feszültségösszegező áramkör 8.3. ábrán látható kapcsolás menet feszültsége egyenesen arányos a (tetszőleges számú) meneten fellépő feszültségek algebra összegéel. kapcsolás működését egy két menetű feszültségösszegzőn zsgáljk a köetkezőkn. Mel az erősítő nertáló alapkapcsolásban működk, a menet jel fázsa ellentétes a meneteken fellépő feszültségek fázsáal. z áramkör menete látszólagos földpontnak tenthető: BE, köetkezk: r menet ellenállások értékét azonosnak álaszta ( = = ), a menet feszültség összefüggése a köetkező: ehát a menet feszültség egyenesen arányos, a meneten fellépő feszültségek összegéel. bban az esetn ha a menetre n számú feszültséget kapcsolnk azonos menet ellenállások alkalmazásáal, a menet feszültség:... n n k k 3.5 ábra Feszültségösszegező áramkör feszültségösszegző áramkör felhasználása gen sokféle lehet. lkalmazzák a méréstechnkában, az atomatkában, szabályozástechnkában és analóg számítógépek részegységeként. 3.5 ntegráló áramkör 3.6 ábrán látható fázsfordító ntegrátor az nertáló erősítőtől abban különbözk, hogy a sszacsatoló ellenállást a kondenzátor helyettesít. Ha c (t) a kondenzátoron folyó áram erőssége és kezdet dőpllanatban a kondenzátort töltés nélkülnek tentjük, akkor egy t dőpllanatban a kondenzátor kapcsan fellépő feszültség: t t 0 t dt Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-4
5 3.6 ábra ntegráló áramkör el kapcsolása Mel a műelet erősítőt deálsnak tentjük, menet ellenállása égtelen nagy, menet árama és a menetek potencálkülönbsége nlla. Ennek megfelelően: t t és t 0 Köetkezk: t t kondenzátoron folyó áram összefüggése: t t 0 t dt Mel: t 0, köetkezk: t t t, tehát: ehát a menet feszültség egyenesen arányos a menet feszültség dő szernt ntegráljáal. z deáls ntegrátor áttel függénye, az nertáló kapcsolás erősítését meghatározó képlet felhasználásáal egyszerűen meghatározható: t 0 t dt j j s z áramkör ampltúdó- és fázs karaktersztkáját a 3.7 ábra szemléltet: 3.7 ábra deáls ntegrátor karaktersztká Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-5
6 Ha az ntegráló áramkör menetére egy négyszög-mplzst ezetünk (3.6 ábra), nlla kezdet feltételek mellett, a meneten egy lneársan áltozó feszültséget kapnk: t t ehát ebn az esetn a menet feszültség az dőel arányosan nő. Ezen tlajdonsága matt a kapcsolás háromszög-, agy fűrészjel előállítására alkalmas. Ha a menet feszültség dőn cosznszfüggény szernt áltozk, = cos t, akkor a menet feszültség dőfüggénye: tehát: t t cos tdt 0 t sn t 0 z összefüggés azt mtatja, hogy a menet jel fázstolása nagyságú a menet jelhez szonyíta (a menet jel 90 -ot set a menet jelhez szonyíta ). 3.6 fferencáló áramkör 3.8 ábrán látható áramkört dfferencáló áramkörnek neezk, mel a menet feszültség egyenesen arányos a menet feszültség dő szernt deráltjáal. Megfgyelhető, hogy a kapcsolás egy olyan nertáló erősítő kapcsolásnak felel meg, amelyn a menet ellenállást egy kondenzátor helyettesít ábra fferencáló áramkör el kapcsolása z áramkör áttel függénye meghatározható, ha az nertáló menetre alkalmazzk Krchhoff csomópont törényét ( = c ): N 0 kondenzátoron folyó áram dőfüggénye: köetkezk: d d, mel: dt dt d dt 0 Ha 0, megkapjk a menet és menet feszültség között kapcsolatot leíró függényt: Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-6
7 d dt kapott összefüggés azt bzonyítja, hogy az deáls dfferencáló áramkör a menet feszültség dő szernt deráltjáal arányos menet feszültséget állít elő. Áttel függénye az nertáló kapcsolás erősítését meghatározó képlet felhasználásáal a köetkező: j s z deáls dfferencáló áramkör ampltúdó- és fázs karaktersztkáját a 3.9 ábra szemléltet. 3.9 ábra fferencáló áramkör karaktersztkája bban az esetn, ha a menet feszültség dőfüggénye sznszos jellegű, t sn t dfferencáló áramkör menet feszültségének áltakozó áramú komplex összeteője a köetkező lesz: t cos t z összefüggés azt mtatja, hogy a menet jel fázstolása nagyságú, a menet jelhez szonyíta (a menet jel késése 90, a menet jelhez szonyíta). 3.9 ábrát tanlmányoza megállapítható, hogy a dfferencáló áramkör erősítése a frekenca nöekedéséel nő, határértékként égtelen felé tart. Gyakorlatlag ez azt jelent, hogy a meneten egy magas frekencás zajösszeteő jelentkezk, amelynek jelszntje gyakran nagyobb mnt a hasznos jelé. z áramkör működése ennek köetkeztén nem tenthető stablnak. z említett hátrányok megszüntetése érdekén a kondenzátorral sorosan ktatnak egy ellenállást és így a deráló áramkör felépítése a 3.0 ábrán láthatóan módosl. z áramkör így egészíte stablan működk. Mel az áramkör nertáló erősítőként ( / erősítéssel) működk, magas frekencán az erősítés értéke állandó. 3.0 ábra fferencáló áramkör gyakorlat kapcsolása Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-7
8 3.7 Logartmks és exponencáls erősítők logartmáló áramkör menet feszültsége arányos a menet feszültség logartmsáal. legegyszerűbb logartmáló áramkör a 3. ábrán látható, dódáal sszacsatolt műelet erősítő. Emlékezzünk a dódakaraktersztkára: K exp m ahol s a sszáram, a hőfeszültség, m a korrekcós együttható. nnen köetkezk: tehát logartms függény. K m ln műelet erősítős kapcsolás az menet feszültséget pedg feszültség jelenk meg. ehát: K m ln árammá alakítja, a meneten ábra ódás logarmáló kapcsolás használható tartományt két tényező korlátozza. z egyk a dóda soros ellenállása, a másk az áramfüggő m együtható. Ezért elégítő pontosság csak egy-két dekádon lül érhető el. z m együttható kedezőtlen hatása elhanyagolható, ha a dóda helyett tranzsztort használnk a 3. ábrán látható módon. 3. ábra ranzsztoros logarmáló kapcsolás Mel exp BE, a tranzsztoros logarmáló menet feszültsége: BE BE ln Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-8
9 + 3.3 ábra egy exponencáls függénygenerátor kapcsolását szemléltet. Ha a menetre negatí feszültséget adnk (>0), akkor a tranzsztoron BE exp áram folyk és a menet feszültség értéke: exp BE 3.8 Váltakozó feszültségű erősítők 3.3 ábra Exponencáls függénygenerátor kapcsolás móelet erősítő nertáló és nem nertáló alapkapcsolása módosítás nélkül alkalmasak áltakozó feszültségek erősítésére. bban az esetn, amkor szükség an a menet és menet egyenfeszültségű leálasztására, ezt legegyszerűbn csatolókondenzátorok alkalmazásáal tehetjük. csatolókondenzátorok sfrekencás erősítéscsökkenést okoznak, ezért az erősítő alsó határfrekencáját ezek határozzák meg nertáló alapkapcsolás 3.4 ábra egy nertáló alapkapcsolásban működő áltozó feszültségű erősítőt szemléltet. V - t 3.4 ábra Váltakozó feszültségű erősítő nertáló alapkapcsolásban kapcsolás jellemző a köetkezők: Bemenet ellenállás: Feszültségerősítés: Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-9
10 menet nygalm áramot bztosító ellenállás: (mel az ellenálláson nem folyk áram a csatolókondenzátor leálasztó hatása matt) Bemenet csatolókondenzátor: f a f a Kmenet csatolókondenzátor: f a t z erősítő alsó határfrekencája, a két alsó határfrekenca (f a és f a ) közül, a kedezőtlenebb érték (a nagyobbk) lesz Nem nertáló alapkapcsolás 3.5 ábra egy nem nertáló alapkapcsolásban működő áltozó feszültségű erősítőt szemléltet. kapcsolás jellemző a köetkezők: Bemenet ellenállás: Feszültségerősítés: Bemenet csatolókondenzátor: Kmenet csatolókondenzátor: f f a a t f a 3.5 ábra Váltakozó feszültségű erősítő nem nertáló alapkapcsolásban 3.9 nalóg szorzó áramkörök d 0 bpolárs tranzsztorok meredeksége arányos a kollektorárammal: dbe kollektoráram megáltozása eszernt arányos a menet feszültségáltozás és a mnkapont kollektoréram szorzatáal. Ezt a tlajdonságot a 3.6 ábrán látható dfferencálerősítőnél szorzásra használjk. műelet erősítő menet feszültsége arányos a kollektoráramok különbségéel: Z dfferencálerősítő áramszonyat meghatároza a köetkező összefüggéshez jtnk: z x y y kapcsolás helyes működése matt feltétel, hogy y mndg negatí legyen, mközn x poztí és negatí s lehet. z lyen szorzót két síknegyedes szorzónak neezzük. Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-0
11 3.6 ábra Meredekségszorzó ele Losoncz Lajos - nalóg áramkörök krzs - apenta dományegyetem Marosásárhely 3-
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A
Elektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
Tirisztorok - négyrétegű félvezető 3 záróréteg (I.; II.; III.) - Teljesítmény elektronikai eszköz - Nagy teljesítményű kapcsoló
Tsztook - négyétegű félezető 3 záóéteg (.;.;. - Teljesítmény elektonka eszköz - Nagy teljesítményű kapcsoló Felépítés jelőlés P nód N G P Gate Katód N K Működés G P + + + + + + + + N + + + + + + + + P
Elektrotechnika 3. előadás
Óbuda Egyetem Bánk Donát Gépész és Bztonságtechnka Kar Mechatronka és Autechnka ntézet Elektrotechnka 3. előadás Összeállította: anger ngrd adjunktus A komplex szám megadása: x a x b j a jb x Komplex írásmód.
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
5. Műveleti erősítők alkalmazása a méréstechnikában
5. Műveleti erősítők alkalmazása a méréstechnikában A műveleti erősítőket emelkedő tlajdonságaik miatt az elektroniks mérőműszerek alapvető alkatrészei közé tartoznak. Felhasználásk nagyon gyakori a különböző
Elektronika 1. (BMEVIHIA205)
Elektronika. (BMEVHA05) 5. Előadás (06..8.) Differenciál erősítő, műveleti erősítő Dr. Gaál József BME Hálózati endszerek és SzolgáltatásokTanszék gaal@hit.bme.h Differenciál erősítő, nagyjelű analízis
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása
Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg
11.B 11.B. 11.B Tranzisztoros alapáramkörök Erısítı áramkörök alapjellemzıi
B B B Tranzsztoros alapáramkörök Erısítı áramkörök alapjellemzı Értelmezze az erısítı áramkörök alapjellemzıt: a feszültségerısítést, az áramerısítést, a teljesítményerısítést, a menet ellenállást és a
Az érintkező működésmódja szerint Munkaáramú: az érintkező a relé meghúzásakor zár. Nyugalmi áramú: az érintkező a relé kioldásakor (ejtésekor) zár.
Vell 3 1. tétel A relé fogalma, feladata, osztályozása. Elektromágneses-, ndukcós-, és egyenrányítós relé szerkezete, működés ele és alkalmazása. Impedancaés energarány-mérés egyenrányítós reléel. A relé
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK Szóbeli vizsgarész értékelési táblázata A szóbeli felelet értékelése az alábbi szempontok és alapján történik:
Elektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások
Elektronika 2 2. Előadás Műveleti erősítők táplálása, alkalmazása, alapkapcsolások Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:
Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;
Analóg áramkörök Műveleti erősítővel épített alapkapcsolások
nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Ideális műveleti erősítő
Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
Műveleti erősítők - Bevezetés
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési feladatok
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006
21.B 21.B. Szinteltoló Erısítı Szinteltoló. A mőveleti erısítı tömbvázlata
2.B lapáramkörök alkalmazásai Mőeleti erısítık Mutassa a mőeleti erısítık felépítését, jellemzıit és jelképi jelöléseit! smertesse a mőeleti erısítık tömbázlatos felépítését! smertesse a differenciálerısítık,
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elektronika ismeretek középszint 1811 ÉETTSÉGI VIZSGA 018. október 19. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ EMBEI EŐFOÁSOK MINISZTÉIUMA
BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET ELEKTRONIKA MINTAPÉLDÁK
BDAPST MŰSZAK FŐSKOLA KANDÓ KÁLMÁN VLLAMOSMÉNÖK FŐSKOLA KA ATOMATKA NTÉZT LKTONKA MNTAPÉLDÁK Összeállította: Dr. váncsyné Csepesz rzsébet Bapest,. ) gy valóságos rétegióa mnkaponti aatait méréssel határoztk
VI. A tömeg növekedése.
VI A tömeg nöekedése Egyszerű tárgyalás A tehetetlenség a test egy tlajdonsága, egy adata A tömeg az adott test tehetetlenségének kantitatí mértéke A tömeg meghatározásának módszere: meg kell izsgálni,
Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők
Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
ELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
KÖZLEKEDÉSAUTOMATIKAI ISMERETEK ÁGAZATON BELÜLI SPECIALIZÁCIÓ SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA
KÖZLEKEDÉSAUTOMATIKAI ISMERETEK ÁGAZATON BELÜLI SPECIALIZÁCIÓ SZAKMAI ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 120 pont 30 pont 120
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:
Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
Villamosság biztonsága
Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK ÁGAZATON BELÜLI SPECIALIZÁCIÓ SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK ÁGAZATON BELÜLI SPECIALIZÁCIÓ SZAKMAI ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint Írásbeli vizsga Szóbeli vizsga Írásbeli vizsga Szóbeli
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA É ELEKTONKA MEETEK EMELT ZNTŰ ÍÁBEL VZGA JAVÍTÁ-ÉTÉKELÉ ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Üzem közben egy rézvezető villamos ellenállása 0 = Ω értékről
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE
MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 080 ÉETTSÉGI VIZSG 008. októr 0. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok
Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész
Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?
Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ELEKTRONIKAI ALAPISMERETEK
zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) és a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított szakmai és vizsgakövetelménye
NEMZETGAZDASÁGI MINISZTÉRIUM
NEMZETGAZDASÁGI MINISZTÉRIUM Minősítés szintje: Érvényességi idő: 2016. 10. 05. 10 óra 00 perc a vizsgakezdés szerint. Minősítő neve, beosztása: Palotás József s.k. Nemzeti Szakképzési és Felnőttképzési
Zh1 - tételsor ELEKTRONIKA_2
Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően
Parciális integrálás
. PARCÁLS NTEGRÁLÁS... Példák Legyenek a f ( ),g( ),f'( ),g'( ) függények folyamatosak az [ a,b] interallmban. Ebből f dg f g' d f g g f' d agy () d d, ahol f, d g' d az integrálandó függény részei. Az
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.
evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles
= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy
Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük
Műveleti erősítők alapkapcsolásai A Miller-effektus
Műveleti erősítők alapkapcsolásai A Miller-effektus Berta Miklós 1. Elméleti összefoglaló A műveleti erősítő (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások
10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások "Elektrós"-Zoli 2013. november 3. 1 Tartalomjegyzék 1. Erősítő fokozatok összekapcsolása
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
MÉSZÁROS GÉZA okl. villamosmérnök villamos biztonsági szakértő
MÉSZÁOS GÉZA okl. villamosmérnök villamos biztonsági szakértő VLLAMOS ALAPSMEETEK villamos ----------- elektromos villamos áram villamos készülék villamos hálózat villamos tér villamos motor villamos
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 08 ÉRETTSÉGI VIZSGA 008. október 0. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ OKTATÁSI ÉS KLTRÁLIS MINISZTÉRIM Az
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elektronika ismeretek középszint 7 ÉETTSÉGI VIZSGA 08. májs 6. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Útmtató
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
Áramkörszámítás. Nyílhurkú erősítés hatása
Áramkörszámítás 1. Thevenin tétel alkalmazása sorba kötött ellenállásosztókra a. két felező osztó sorbakötése, azonos ellenállásokkal b. az első osztó 10k, a következő fokozat 100k ellenállásokból áll
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 06 ÉETTSÉGI VIZSG 007. május 5. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ OKTTÁSI ÉS KTÁIS MINISZTÉIM Teszt jellegű kérdéssor
ELEKTRONIKAI ALAPISMERETEK
ÉETTSÉGI VIZSGA 2016. október 17. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBEI EŐFOÁSOK
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSG 06. május 8. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ EMBEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladatok
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
Példatár az Elektrotechnika elektronika I.-II. (BSc) és az Elektronika elektronikus mérőrendszerek (MSc) c. tárgyakhoz
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék Példatár az Elektrotechnika elektronika I.-II. (BSc) és az Elektronika elektronikus
Tranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Egyenáramú szervomotor modellezése
Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet
Elektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.