Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel)
|
|
- Endre Rácz
- 8 évvel ezelőtt
- Látták:
Átírás
1 Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) 3. tétel: Vezérlő egységek, programozható logikai eszközök (modell implementáció) Összeállította: Dr. Vörösházi Zsolt
2 Jegyzetek, segédanyagok: Tétel: Informatika / Programtervező Informatikus / Gazdaságinformatikus BSc alapszakos hallgatóknak (2012. május) Könyvfejezetek: Oktatás Tantárgyak Digitális Rendszerek és Sz.gép Arc. / Számítógép Architektúrák (chapter05.pdf) 2
3 Vezérlő egységek általánosan A számítógép vezérlési funkcióit ellátó szekvenciális egység. Feladata: az operatív tárban lévő gépi kódú utasítások értelmezése, részműveletekre bontása, és a szekvenciális (sorrendi) hálózat egyes funkcionális részeinek vezérlése (vezérlőjel- és cím-generálás) Vezérlő egység tervezési lépései: megfelelő technológia, és rendszerkomponensek kiválasztása komponensek összekapcsolása a működési sorrendnek megfelelően RTL leírás alkalmazása az akciók ill. adatátvitel pontos leírására adatút (data-path) megtervezése (legfontosabb!) kívánt vezérlő jelek azonosítása, meghatározása 3
4 Vezérlő egységek fajtái: Huzalozott (klasszikus módszerrel): Mealy-modell, Moore-modell (Példa: FIR szűrő tervezése FSM állapotgép segítségével). Multiplexeres / késleltetéses / Shift-regiszteres megvalósítások Mikroprogramozott (reguláris vezérlési szerkezettel): Horizontális mikrokódos vezérlő, Vertikális mikrokódos vezérlő. Programozható logikai eszközök (PLD): Makrocellás típusok: PLA, PAL, PROM, CPLD, FPGA: Field Programmable Gate Array: tetszőlegesen újrakonfigurálható kapu-áramkörök 4
5 Kombinációs hálózatok (K.H.) Kombinációs logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációk értéke csupán a bemeneti kombinációk pillanatnyi értékétől függ (tároló kapacitás, vagy memória nélküli hálózatok). Inputs Combinational Logic Outputs 5
6 Sorrendi hálózatok: (S.H.) Sorrendi (szekvenciális) logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációt, nemcsak a pillanatnyi bemeneti kombinációk, hanem a korábban fennállt bementi kombinációk és azok sorrendje is befolyásolja. (A szekunder /másodlagos kombinációk segítségével az ilyen hálózatok képessé válnak arra, hogy az ugyanolyan bemeneti kombinációkhoz más-más kimeneti kombinációt szolgáltassanak, attól függően, hogy a bemeneti kombináció fellépésekor, milyen értékű a szekunder kombináció, pl. a State Register tartalma) Vezérlő egységek alapjául szolgáló hálózat! Inputs Combinational Logic Outputs State reg 6
7 Időzítő vezérlő egység: Az időzítő (ütemező) határozza meg a vezérlő jelek előállításának sorrendjét. Egy időzítő-vezérlő egység általános feladata az egyes funkciók megvalósítását végző áramköri elemek (pl. ALU, memória elemek) összehangolt működésének biztosítása. Az időzítő-vezérlő áramkörök szekvenciális rendszerek mivel az áramköri egységek tevékenységének egymáshoz viszonyított időbeli sorrendiségét biztosítják melyek az aktuális kimenet értékét a bemenet, és az állapotok függvényében határozzák meg. 7
8 Az időzítő-vezérlő lehet: huzalozott: áramkörökkel, dedikált összeköttetésekkel fizikailag megvalósított (Mealy, Moore, MUX-os modellek alapján, illetve programozható PLD-k) mikroprogramozott: az adatútvonal (data-path) vezérlési pontjait memóriából (ROM) kiolvasott vertikális- vagy horizontális-mikrokódú utasításokkal állítják be 8
9 Huzalozott vezérlő egységek klasszikus vezérlési struktúrák 9
10 1.) Mealy-modell A sorrendi hálózatok egyik alapmodellje. Késleltetés: a kimeneten az eredmény véges időn belül jelenik meg! Korábbi értékek visszacsatolódnak a bemenetre: kimenetek nemcsak a bemenetek pillanatnyi, hanem a korábbi állapotoktól is függenek. Problémák merülhetnek fel az állapotok és bemenetek közötti szinkronizáció hiánya miatt (változó hosszúságú kimenetet - dekódolás). Ezért alkalmazzuk legtöbb esetben a második, Moore-féle automata modellt. Három halmaza van: (Visszacsatolni az állapotregisztert a késleltetés miatt kell) X a bemenetek, Z a kimenetek, Y az állapotok halmaza. Két leképezési szabály a halmazok között: (Xn,Yn) Yn+1 : következő állapot fgv. (Xn,Yn) Zn : kimeneti fgv. X1 X2 X3 Xn Y(n) Combinational Logic Y(n+1) Z1 Z2 Z3 Zn State Reg. 10
11 2.) Moore-modell A kimenetek közvetlenül csak a pillanatnyi állapottól függenek (bemenettől függetlenek v. közvetve függenek). Tehát a kimenetet nem a bemenetekhez, hanem mindig az aktuális állapotoknak megfelelően szinkronizáljuk. Három halmaza van: X a bemenetek, Input Next-State Present-State Output Z a kimenetek, Y az állapotok halmaza. Két leképezési szabályok (Xn,Yn) Yn+1 : köv. állapot fgv. (Yn) Zn : kimeneti fgv. X1 X2 X3 Combinational Logic Y(n+1) Y(n) Decode State Reg. Logic Z1 Z2 Z3 Xn Zn Y(n) 11
12 Mikrokódos vezérlők reguláris vezérlési struktúrák 12
13 Ismétlés: Vezérlő egységek Általánosságban: a vezérlő egység feladata a memóriában lévő gépi kódú program utasításainak értelmezése (decode), részműveletekre bontása, és ezek alapján az egyes funkcionális egységek vezérlése (a vezérlőjelek megfelelő sorrendben történő előállítása). 13
14 Klasszikus vagy reguláris módszer Eddig a klasszikus, késleltetéses módszereket tárgyaltuk (huzalozott és shift-regiszteres példákkal). A rendszer tervezésekor, miután a feladat elvégzéséhez szükséges vezérlőjeleket definiáltuk, meg kell határozni a kiválasztásuk sorrendjét, és egyéb specifikus információkat (rendszer ismeret, tervezési technikák, viselkedési leírások pl.vhdl) Wilkes (1951): A komplex vezérlési folyamatokat reguláris módszerrel lehet egyszerűsíteni: nevezetesen gyors memória elemeket kell használni az utasítássorozatok tárolásánál. Állapotgépekkel (FSM) modellezik a vezérlő egység működését, és ezt a modellt transzformálják át mikrokódot használva. Az adatútvonal vezérlési pontjait memóriából (ROM) kiolvasott vertikális- vagy horizontálismikrokódú utasításokkal állítják be! 14
15 Reguláris módszer: mikrokódos vezérlés tulajdonságai Mikrokód: gépi kódú utasításokat (IR) alacsonyabb szintű áramköri utasítások sorozatára leképező köztes kód Szerepe: értelmezés (interpreter / translator) a fenti két szint között: A gépi kódú utasítások változtatásának lehetősége (RISC, CISC), anélkül hogy a HW változna Mai rendszerek olvasható mikrokódját gyors memóriában (általában ROM), vagy PLD-ben tárolják (írható esetben RAM, vagy Flash is lehet) 15
16 FSM megvalósítása Memóriával 1.rész 2. rész 1.rész: szabályozza az eszköz működését a megfelelő állapotok sorrendjében 2.rész: szabályozza az adatfolyamot a megfelelő vezérlőjelek beállításával (assertion) az adatúton (vezérlési pontokon) 16
17 FSM megvalósítása Memóriával (folyt) Address Selection: (mint új elem) a következő utasítás (Next State), és beállítani kívánt vezérlőjel (control signal assertion) címére mutat a memóriában. A memória címet (memory address-t) külső bemenő jelek és a present state határozzák meg együttesen. E cím segítségével megkapjuk az adott vezérlő információ pontos helyét a memóriában, ill. ez az információ, mint új állapot betöltődik a vezérlőjel regiszterbe (Control Signal Register). Next-State kiválasztásához szükséges logikai memória méretét az aktuális állapotok száma, az állapotdiagram komplexitása, és a bemenetek száma határozza meg. Control Signal generálásához szükséges logikai memória méretét a bemenetek száma, a függvény (vezérlő jel) komplexitása, és a vezérlőjelek száma határozza meg. 17
18 Általános Mikrokódos vezérlő 18
19 Általános Mikrokódos vezérlő felépítése Micro Instruction Register: a Present State (aktuális állapot) regisztert + a Control Signal regisztert egybeolvasztja (az adatút vezérlővonalainak beállítása / kiválasztása). Mikroutasítások sorrendjében generálódik a vezérlőjel! Microcode Memory: a Control Signal Assertion Logic vezérlőjel generálás/beállítás + Next-State kiválasztása (mikroprogram eltárolása) összevonása Microcode Address Generator: a vezérlő jelet az aktuális mikroutasítások lépéseiként sorban generálja, de címkiválasztási folyamat komplex. Sebesség a komplexitás rovására változhat! (komplexebb vezérlési funkciót alacsonyabb sebességgel képes csak generálni). A következő cím kiválasztása még az aktuálisan futó mikroutasítás végrehajtása alatt végbemegy! Számlálóként működik: egyik címről a másik címre inkrementálódik (mivel a mikroutasításokat tekintve szekvenciális rendszerről van szó). Kezdetben resetelni kell. 19
20 Általános Mikrokódos vezérlők tulajdonságai Egy gépi ciklus alatt egy mikroprogram fut le (amely mikroutasítások sorozatából áll). A műveleti kód (utasítás opcode része) a végrehajtandó mikroprogramot jelöli ki. A mikrokódú memória általában csak statikus módon olvasható gyárilag konfigurált ROM, ha írható is, akkor dinamikus mikroprogramozásról beszélünk. Ha a mikroprogram utasításai szigorúan szekvenciálisan futnak le, akkor a címüket egy egyszerű számláló inkrementálásával megkaphatjuk. Memóriából érkező bitek egyik része a következő cím kiválasztását (Sequence Information), míg a fennmaradó bitek az adatáramlást biztosítják. Mai gyors félvezető alapú memóriáknak köszönhetően kis mértékben lassabb, mint a huzalozott vezérlő egységek, mivel ekkor a memória elérési idejével (~ns) is számolni kell 20 (nem csak a visszacsatolt aktuális állapot késleltetésével.)
21 1.) Horizontális mikrokódos vezérlő Mindenegyes vezérlőjelhez saját vonalat rendelünk, ezáltal horizontálisan megnő a mikro- utasításregiszter kimeneteinek száma, (horizontálisan megnő a mikrokód). Minél több funkciót valósítunk meg a vezérlőjelekkel, annál szélesebb lesz a mikrokód. Ennek köszönhetően ez a leggyorsabb mikrokódos technika, mivel minden bit független egymástól ill. egy mikrokóddal többszörös (konkurens) utasítás is megadható. Pl: a megfelelő regisztereket (memória, ACC) egyszerre, egyidőben tudjuk az órajellel aktiválni, ezáltal egy órajelciklus alatt az információ mindkét irányba átvihető. Növekszik a sebesség, mivel nincs szükség a vezérlőjelek dekódolását végző dekódoló logikára. Így minimálisra csökken a műveletek ciklusideje. Azonban nagyobb az erőforrás szükséglete, fogyasztása. 21
22 Horizontális mikrokódos vezérlő 22
23 2.) Vertikális mikrokódos vezérlő Nem a sebességen van a hangsúly, hanem hogy takarékoskodjon az erőforrásokkal (fogyasztás, mikrokódban a bitek számával), ezért is lassabb. Egyszerre csak a szükséges (korlátozott számú) biteket kezeljük, egymástól nem teljesen függetlenül, mivel közülük egyszerre csak az egyiket állítjuk be (dekódoljuk). A jeleket ezután dekódolni kell (több időt vesz igénybe). A kiválasztott biteket megpróbáljuk minimális számú vonalon keresztül továbbítani. A műveletek párhuzamos (konkurens) végrehajtása korlátozott. Dekódolás: log 2 (N) számú dekódolandó bit -> N bites kimeneti busz. Több mikroutasítás szükségeltetik így a mikrokódú memóriát vertikálisan meg kell növeli. 23
24 Vertikális mikrokódos vezérlő 24
25 Programozható logikai eszközök (PLD) 25
26 Állapotgép FSM tervezés tulajdonságai Két kombinációs logikai hálózatból és egy regiszterből áll Tervezés során az állapot-átmeneteket vesszük figyelembe, DE Hibavalószínűség nagy, Szimulációs eszközök (Tools) hiánya, Hibák lehetségesek a prototípus fejlesztése során is, Könnyen konfigurálható / flexibilis eszközök szükségesek mindezek használunk programozható alkatrészeket Inputs Combinational Logic Status Register Decode Logic Outputs 26
27 Field Programmable Logic Sequencer (FPLS) Logikai sorrendvezérlő Egy vezérlő egység Next-State logikai blokkjának megvalósítása a tervező, gyártó feladata. Általában változó logikát használnak a függvények megvalósításánál. A felhasználó által programozható logikai sorrendvezérlő (Field Programmable Logic Sequencer) programozható alkatrészekből építhető fel, amelyek a következőkben részletesen ismertetésre kerülnek. 27
28 Field Programmable Logic Sequencer (FPLS) Logikai sorrendvezérlő Serial In Clock Működése: Inputs 16 AND Array OR Array REG 8 Outputs - Normál (D-FF), - Debug (Shift Reg.) REG 6 Serial Out A logikai sorrendvezérlőnek 16 külső bemeneti vonala van, 1 RESET és 1 kimenetengedélyező vonala, ill. 8 kimeneti vonala. A regiszterek egy-egy állapotot tárolnak, amelyek az órajel hatására a kimenetre íródnak, vagy a 6 belső, visszacsatoló vonalon keresztül visszacsatolódnak. A Next-State ill. a kimeneti szintek meghatározásánál programozható AND/OR tömböket használnak. 28
29 Felhasználó által definiált logikai implementációk: User defined Custom Logic (implementáció) Semi Custom Custom Programmable Logic Devices Gate Array devices Standard Cell Full Custom Programmable Gate Arrays FPGA Makrocell CPLD, PLA, PAL, PROM * Fontos: Ezek a részek nem találhatóak meg a könyvben! 29
30 Programozható logikai eszközök (PLD-k) két fő típusa: 1.) Makrocellás PLD-k: (Programmable Logic Devices): PLA PAL PROM EPLD, CPLD 2.) FPGA (Field Programmable Gate Array): Programozható Gate Array áramkörök XILINX (Spartan, Virtex) > 50 % Altera, ~ 30 % Actel (főleg űrkutatásban alkalmazott) Lattice, Quicklogic, SiliconBlue, Achronix stb. sorozatok 30
31 Programmable Logic Array (PLA) Mindkét része (AND, OR) programozható Bármely kombinációja az AND / OR-nak előállítható Mintermek OR kapcsolata (DNF) Programozható kapcsolók a horizontális/ vertikális vonalak metszésében Q n Kimeneteken D tárolók! (visszacsat. a bemenetekre) A B C D Programmable AND array Programmable OR array Q0 Q1 Q2 Q3 31
32 Programozásuk (pl. Fuse biztosítékok) segítségével Az összeköttetés mátrix metszéspontjaiban akár kis biztosítékok (fuse) helyezkednek el. Gyárilag logikai 1 -est definiál, tehát vezetőképes. Ha valamilyen spec. programozó eszközzel, a küszöbnél nagyobb feszültséget kapcsolunk rá, átégethető, tehát szigetelővé (nem-vezető) válik, és logikai 0 -át fog reprezentálni. A biztosíték átégetése, csak egyszer lehetséges, utána már csak a programozott állapotot fogja tárolni (OTP One time programmable IC). 32
33 Példa: PLA tervezése A B C D E Programmable OR array Realizálja a következő függvényeket: X C AB AB Közös termek! Y C D E A C D W Z C D E B C D E B D A C D B D C D E C D E Tehát 5 bemenete (A,B,C,D,E) és 4 kimenete (X,Y,W,Z) van. Rajzoljuk fel a kapcsolást! Programmable AND array Mintermek! X Y W Z 33
34 Programmable AND Logic (PAL) A B C D Egy programozható rész - AND / míg az OR fix Véges kombinációja áll elő az AND / OR kapcsolatoknak Metszéspontokban kevesebb kapcsoló szükséges Gyorsabb, mint a PLA Q n kimeneteken D tárolók (visszacsatolódhatnak a bemenetekre) Programmable AND array Fixed OR 34 Q0 Q1 Q2 Q3
35 Programmable Read Only Memory (PROM) Egy programozható rész - OR / míg az AND fix Véges kombinációja áll elő az AND / OR kapcsolatoknak Metszéspontokban kevesebb kapcsoló szükséges Gyorsabb, mint a PLA Q n kimeneteken D tárolók! (visszacsatolódhatnak a bemenetekre) x: programozható : fix 35
36 Complex Programmable Logic Device (CPLD) Logikai Blokk-ban ~ PAL / PLA Regiszterek (D-FF) I/O Blokkok Logic Block Programozható összeköttetések (Interconnect) Teljes (Full-crossbar), vagy Részleges összeköttetés hálózat Logic Block I/O Logic Block Logic Block Logic Block Programmable interconnect Logic Block Logic Block Logic Block I/O 36
37 Programozási technikák (összeköttetésekben) a.) SRAM b.) MUX c.) Antifuse d.) Floating Gate e.) EPROM/EEPROM/Flash /? RC ns ps 37
38 a.) SRAM cellás Tulajdonságai: (pl Xilinx, Altera, Lattice etc.) végtelen sokszor újraprogramozható (statikus RAM) táp kikapcsolása után az SRAM elveszti tartalmát bekapcsoláskor (inicializáláskor) a programot be kell tölteni, fel kell programozni az SRAM cellára egy áteresztő tranzisztor van csatolva. A tranzisztor vagy kinyit (vezet), vagy lezár. Az SRAM értéke, ami egy bitet tárol ( 0 vagy 1 ) letölthető. Összeköttetéseket, vagy MUX-ok állását is eltárolja. 1 bit tárolása az SRAM-ban (min. 6 tranzisztorból áll) sok tranzisztor (standard CMOS), nagy méret, nagy disszipáció nem kell frissíteni az SRAM-ot nagy kω átmeneti ellenállás nagy femtof parazita kapacitás 38
39 b.) MUX - multiplexeres Tulajdonságai: az SRAM-ban tárolt 0 vagy 1 értéket használunk a Multiplexer bemeneti vonalának kiválasztásához. (Működése hasonló az SRAM celláéhoz.) /Bemenetek közül választ a szelektáló SRAM-beli érték segítségével és a kimenettel köti össze./ S 0 =0/1 output 39
40 c.) Antifuse A tranzisztor Gate-jét amorf kristályos Si alkotja, amelyet relatíve nagy feszültség (kb 20-30V) hatására átkristályosítunk (átolvasztás), így vezetővé válik véglegesen. Pl. Texas Instruments, Actel, QuickLogic alkalmazza ezt a technológiát. Tulajdonságai: A dielektrikum átégetése irreverzibilis folyamat, nem lehet újraprogramozni csak egyetlen egyszer programozható (OTP) kis méreten megvalósítható, kis disszipáció kis átmeneti ellenállás 300 Ω kis parazita kapacitás femtof előállításához sok maszkréteg szükséges, drága technológiát igényel Típusai ONO (Oxid-Nitrid-Oxid) Amorf Si 40
41 d.) Floating gate Két-gates tranzisztor, melynek középső gate-je a lebegő gate, tárolja az információt. A másik gate fix (control vagy érzékelő gate), biztostja az írást, olvasást. Programozható összeköttetéseknél, csomópontokban használatos. Tulajdonságai: Programozása/írás: control gate segítségével töltéseket viszünk fel a lebegő Gate-re, kinyit a tranzisztor többször törölhető (kis ablakon keresztül UV fénnyel) kikapcsoláskor is megőrzi tartalmát (nonvolatile, akár 99 évig), töltések nem sülnek ki nagy 2-4 kω átmeneti ellenállás nagy femtof parazita kapacitás PL. Intel, Actel, Lattice 41
42 e.) EPROM / EEPROM / Flash Tulajdonságai: Floating-gate technológiát alkalmazza! 10000x szer programozható Megőrzi tartalmát (Non-volatile) UV-fénnyel törölhető (EPROM) Elektromosan törölhető (EEPROM / Flash) Nagy felület Nagy átmeneti ellenállás, nagy parazita kapacitás További CMOS gyártási lépések (sok maszk réteg) szükségesek drága Pl: Altera (3000, első sorozatai) 42
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 6. előadás: Vezérlő egységek II. - Programozható logikai eszközök Előadó: Dr. Vörösházi Zsolt
Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (Levelező BSc) 4. előadás: Szekvenciális Hálózatok: Vezérlő egységek, Programozható
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 5. előadás: Szekvenciális Hálózatok Vezérlő egységek I.: klasszikus és reguláris módszerek
Digitális Rendszerek és Számítógép Architektúrák
Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek és Számítógép Architektúrák 4. előadás: Vezérlő egységek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu Jegyzetek, segédanyagok:
Beágyazott Rendszerek és Programozható Logikai Eszközök (Villamosmérnök BSc)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Beágyazott Rendszerek és Programozható Logikai Eszközök (Villamosmérnök BSc) 1. előadás: Programozható logikai eszközök (PLD-k).
Digitális Rendszerek és Számítógép Architektúrák (VEMKKN3214A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (VEMKKN3214A) 5. előadás: Vezérlő egységek: huzalozott, mikroprogramozott módszerek
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István
Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
elektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
12. hét: Kombinációs hálózatok megvalósítása LSI/MSI áramkörökkel (PAL, PLA, PROM, CPLD), VLSI (FPGA) áramkörökkel és memóriával.
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 12. hét: Kombinációs hálózatok megvalósítása LSI/MSI áramkörökkel (PAL, PLA, PROM,
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák
Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak
Digitális rendszerek. Mikroarchitektúra szintje
Digitális rendszerek Mikroarchitektúra szintje Mikroarchitektúra Jellemzők A digitális logika feletti szint Feladata az utasításrendszer-architektúra szint megalapozása, illetve megvalósítása Példa Egy
PAL és s GAL áramkörök
Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák
Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak
Rendszertervezés FPGA eszközökkel
Rendszertervezés FPGA eszközökkel 1. előadás Programozható logikai eszközök 2011.04.13. Milotai Zsolt Tartalom Bevezetés: alkalmazási lehetőségek Nem programozható és programozható eszközök összehasonlítása
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Elvonatkoztatási szintek a digitális rendszertervezésben
Budapest Műszaki és Gazdaságtudományi Egyetem Elvonatkoztatási szintek a digitális rendszertervezésben Elektronikus Eszközök Tanszéke eet.bme.hu Rendszerszintű tervezés BMEVIEEM314 Horváth Péter 2013 Rendszerszint
Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor
Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív
A Xilinx FPGA-k. A programozható logikákr. Az FPGA fejlesztés s menete. BMF KVK MAI, Molnár Zsolt, 2008.
A Xilinx FPGA-k A programozható logikákr król általában A Spartan-3 3 FPGA belső felépítése Az FPGA fejlesztés s menete BMF KVK MAI, Molnár Zsolt, 2008. A programozható logikák k I. Logikai eszközök: -
DIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK
IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK Irányítástechnika Az irányítás olyan művelet, mely beavatkozik valamely műszaki folyamatba annak: létrehozása (elindítása)
Kombinációs hálózatok Adatszelektorok, multiplexer
Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
A fealdatot két részre osztjuk: adatstruktúrára és vezérlőre
VEZÉRLŐK Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. A fealdatot
PLA és FPLA áramkörök
Programozható logikai áramkörök PLA és FPLA áramkörök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,
VEZÉRLŐEGYSÉGEK. Tartalom
VEZÉRLŐEGYSÉGEK Tartalom VEZÉRLŐEGYSÉGEK... 1 Vezérlőegységek fajtái és jellemzői... 2 A processzor elemei... 2 A vezérlés modellje... 2 A vezérlőegységek csoportosítása a tervezés módszere szerint...
2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok
F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)
65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az
Számítógép architektúra
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application
DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
DIGITÁLIS TECHNIKA. Szabó Tamás Dr. Lovassy Rita - Tompos Péter. Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar LABÓRATÓRIUMI ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Szabó Tamás Dr. Lovassy Rita - Tompos Péter DIGITÁLIS TECHNIKA LABÓRATÓRIUMI ÚTMUTATÓ 3. kiadás Mikroelektronikai és Technológia Intézet Budapest, 2014-1
Újrakonfigurálható eszközök
Újrakonfigurálható eszközök 5. A Verilog sűrűjében: véges állapotgépek Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Icarus Verilog Simulator:
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Digitális Rendszerek és Számítógép Architektúrák
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák 6. előadás: Programozható logikai eszközök: CPLD, FPGA. HLS: magas szintű szintézis
SZORGALMI FELADAT. 17. Oktober
SZORGALMI FELADAT F2. Tervezzen egy statikus aszinkron SRAM memóriainterfész áramkört a kártyán található 128Ki*8 bites memóriához! Az áramkör legyen képes az írási és olvasási műveletek végrehajtására
Integrált áramkörök/5 ASIC áramkörök
Integrált áramkörök/5 ASIC áramkörök Rencz Márta Elektronikus Eszközök Tanszék 12/10/2007 1/33 Mai témák Az integrált áramkörök felosztása Integrált áramkörök létrehozása Integrált áramkörök tervezése
Digitális áramkörök és rendszerek alkalmazása az űrben 3.
Budapest Universit y of Technology and Economics Digitális áramkörök és rendszerek alkalmazása az űrben 3. Csurgai-Horváth László, BME-HVT 2016. Fedélzeti adatgyűjtő az ESEO LMP kísérletéhez European Student
Digitális rendszerek tervezése FPGA áramkörökkel
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel Fehér Béla Szántó Péter,
A PLÁ k programozhatóságát biztosító eszközök
Programozható logikai áramkörök A PLÁ k programozhatóságát biztosító eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
Digitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint MEMÓRIÁK
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint
DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS MEMÓRIÁK PROGRAMOZHATÓ LOGIKÁK MIKROPROCESSZOR MIKROPROCESSZOROS RENDSZER
Digitális rendszerek tervezése FPGA áramkörökkel
Rendszerspecifikáció BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális rendszerek tervezése FPGA áramkörökkel
Digitális eszközök típusai
Digitális eszközök típusai A digitális eszközök típusai Digitális rendszer fogalma Több minden lehet digitális rendszer Jelen esetben digitális integrált áramköröket értünk a digitális rendszerek alatt
PROGRAMOZHATÓ LOGIKAI ESZKÖZÖK. Elıadó: Dr. Oniga István Egytemi docens
PROGRAMOZHATÓ LOGIKAI ESZKÖZÖK Elıadó: Dr. Oniga István Egytemi docens A tárgy weboldala http://irh.inf.unideb.hu/user/onigai/ple/programozhato_logika.html Adminisztratív információk Tárgy: Oktató: Dr.
Digitálistechnika II. 1. rész
Digitálistechnika II. 1. rész Oktatási cél: A tárgy keretében a Digitális technika I. tárgyban szerzett elméleti ismeretek elmélyítésére kerül sor. A hallgatók gyakorlati feladat-megoldások segítségével
DIGITÁLIS ADATTÁRAK (MEMÓRIÁK)
DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) A digitális berendezések a feladatuk ellátása közben rendszerint nagy mennyiségű adatot dolgoznak fel. Feldolgozás előtt és után rendszerint tárolni kell az adatokat ritka
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat
XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek
LOGIKAI TERVEZÉS. Előadó: Dr. Oniga István Egytemi docens
LOGIKAI TERVEZÉS PROGRAMOZHATÓ ÁRAMKÖRÖKKEL Előadó: Dr. Oniga István Egytemi docens A tárgy weboldala http://irh.inf.unideb.hu/user/onigai/ltpa/logikai_tervezes.htmltervezes.html Adminisztratív információk
Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez
Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Benesóczky Zoltán 217 1 digitális automaták kombinációs hálózatok sorrendi hálózatok (SH) szinkron SH aszinkron SH Kombinációs automata Logikai
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A digitális tervezésben gyakran szükséges a logikai jelek változását érzékelni és jelezni. A változásdetektorok készülhetnek csak egy típusú változás (0 1, vagy
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
11.2.1. Joint Test Action Group (JTAG)
11.2.1. Joint Test Action Group (JTAG) A JTAG (IEEE 1149.1) protokolt fejlesztették a PC-nyák tesztelő iapri képviselők. Ezzel az eljárással az addigiaktól eltérő teszt eljárás. Az integrált áramkörök
10. Digitális tároló áramkörök
1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
6. hét: A sorrendi hálózatok elemei és tervezése
6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder
Jelfeldolgozás a közlekedésben
Jelfeldolgozás a közlekedésben 2015/2016 II. félév 8051 és C8051F020 mikrovezérlők Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu Aláírás feltétele:
Bepillantás a gépházba
Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt
A számítógép egységei
A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén
Dr. Oniga István DIGITÁLIS TECHNIKA 4
Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Készítette: Oláh István mestertanár
BME Automatizálási és Alkalmazott Informatikai Tanszék Villamos laboratórium 1. PLC-k programoza sa Mérési útmutató Készítette: Oláh István mestertanár (olah.istvan@aut.bme.hu) 2014. szeptember Bevezetés
Mérési jegyzőkönyv. az ötödik méréshez
Mérési jegyzőkönyv az ötödik méréshez A mérés időpontja: 2007-10-30 A mérést végezték: Nyíri Gábor kdu012 mérőcsoport A mérést vezető oktató neve: Szántó Péter A jegyzőkönyvet tartalmazó fájl neve: ikdu0125.doc
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Kombinációs LABOR feladatok Laborfeladat: szavazatszámláló, az előadáson megoldott 3 bíró példája Szavazat példa specifikáció Tervezz
DIGITÁLIS TECHNIKA feladatgyűjtemény
IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki
I+K technológiák. Beágyazott rendszerek Dr. Aradi Szilárd
I+K technológiák Beágyazott rendszerek Dr. Aradi Szilárd Bevezetés Az ipar és a közlekedés különböző területein nagy számban fordulnak elő mikrokontrolleres vezérlőegységek (beágyazott rendszerek) Közúti
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
8.3. AZ ASIC TESZTELÉSE
8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata
Programozható logikai vezérlő
PROGRAMABLE LOGIC CONTROLLER Programozható logikai vezérlő Vezérlés fejlődése Elektromechanikus (relés) vezérlések Huzalozott logikájú elektronikus vezérlések Számítógépes, programozható vezérlők A programozható
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA01) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
DIGITÁLIS TECHNIKA II
IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Máté: Számítógép architektúrák
Kívánalom: sok kapu kevés láb Kombinációs áramkörök efiníció: kimeneteket egyértelműen meghatározzák a pillanatnyi bemenetek Multiplexer: n vezérlő bemenet, 2 n adatbemenet, kimenet z egyik adatbemenet
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
Számítógép fajtái. 1) személyi számítógép ( PC, Apple Macintosh) - asztali (desktop) - hordozható (laptop, notebook, palmtop)
Számítógép Számítógépnek nevezzük azt a műszakilag megalkotott rendszert, amely adatok bevitelére, azok tárolására, feldolgozására, a gépen tárolt programok működtetésére alkalmas emberi beavatkozás nélkül.