4. elıadás A KRISTÁLYFIZIKA ALAPJAI
|
|
- Viktória Oroszné
- 8 évvel ezelőtt
- Látták:
Átírás
1 4. elıadás A KRISTÁLYFIZIKA ALAPJAI
2 KRISTÁLYFIZIKA ANIZOTRÓPIA IZOTRÓPIA JELENSÉGE Izotrópia (irányok szerint egyenlı): ha a fizikai sajátságok függetlenek az iránytól. Ide tartoznak a köbös rendszerben kristályosodó kristályok. Anizotrópia (irányok szerint nem egyenlı): ha a fizikai sajátságok függnek az iránytól. Ilyenek az összes többi kristályrendszerbe tartozó ásványok. Azokat a fizikai tulajdonságokat, amelyek függnek az iránytól vektoriális sajátságoknak nevezzük. Vajon hogyan változnak az iránnyal a vektoriális sajátságok? 1/ Triklin, monoklin és rombos rendszereknél: a tér mindhárom irányában eltérıek (háromtengelyő ellipszoid). 2/ Fıtengelyes rendszereknél: a melléktengelyek irányában megegyeznek, a fıtengely és a melléktengelyek között folyamatosan változnak (rotációs ellipszoid). 3/ Köbös rendszerben: a tér minden irányában azonosak (gömb).
3 SŐRŐSÉG A sőrőség térfogategységben foglalt tömegmennyiség. ρ = m/v (g/m 3 ). Nem irányfüggı, ezért skaláris sajátság. A sőrőség alapvetıen a kristályokat alkotó atomok, ionok tömegétıl, a rácsszerkezeti elrendezéstıl, tehát alapvetıen a kristályszerkezettıl függ (lásd alább a polimorf és izomorf módosulatok példáin). A sőrőség meghatározásának különösen nagy jelentısége van a drágaköveknél. izomorf ásványok sőrőségértékeinek változása a kation tömegének függvényében aragonit strontianit witherit cerusszit CaCO 3 SrCO 3 BaCO 3 PbCO 3 40,08 87,62 137,34 207,19 2,94 3,78 4,31 6,58 polimorf ásványok sőrőségértékei gyémánt grafit α-kvarc β-kvarc coesit stishovit 3,52 2,23 2,65 2,53 3,01 4,30
4 MECHANIKAI TULAJDONSÁGOK Minden kristályos anyag rugalmasnak tekinthetı egy határig (annek határa a deformáló erık nagyságától és a kristályos anyag sajátságaitól függ). Plasztikus deformáció: a deformáló erı hatására létrejövı olyan maradandó alakváltozás, melynek során a kristályok folytonossági összefüggései megmaradnak (a kristály nem esik szét darabjaira). A kristályok plaszticitása (képlékenysége) két elemi folyamatra vezethetı vissza: mechanikai transzláció (párhuzamos elmozdulás) és mechanikai ikerképzıdés (ikersiklatás). gipsz és anhidrit plaszticitása kısó plaszticitása
5 MECHANIKAI TRANSZLÁCIÓ A rugalmas alakváltozás határát meghaladó erı hatására plasztikus deformáció jön létre. A rácsrészek meghatározott síkok mentén párhuzamosan elmozdulnak. A transzláció síkját és irányát a kristályrács felépítése szabja meg. jég kısó antimonit MECHANIKAI IKERKÉPZİDÉS Ikerkristályok kialakulása mechanikai behatásra (példa a kalcit ikersiklatása). Mivel a siklatás a kristályrács-síkokhoz képest szimmetrikusan történik, ikerkristály (ún. nyomási iker) jön létre. Nyomási ikrek esetén gyakori a poliszintetikus ikerképzıdés. kalcit ikersiklatása ennek szerkezeti oka
6 HASADÁS Ha mechanikai behatásra (pl. ütés, nyomás) kristálytani irányoktól függı, meghatározott síkok mentén, önálló részekre esik szét a kristály, hasadásról beszélünk. A hasadás milyensége közvetlen összefüggésben van a kristályszerkezettel. A hasadáskor keletkezı sík neve: hasadási lap. Csak térrácsszerkezettel rendelkezı kristályos anyagnak lehet hasadása! A hasadási lap minısége szerint a hasadás lehet: kitőnı (jól tükrözı lapok: csillámok, gipsz) jó (gyengébben tükrözı lapok: földpátok, barit) rossz (csak nyomokban észlelhetı hasadási lap, turmalinok) Ha egyáltalán nincs nyoma hasadási lapnak, a kristály nem hasad (kvarc). amfibol két irányba történı jó hasadása kalcit romboéderes hasadása hasadási idomok
7 TÖRÉS Ha mechanikai behatásra (például ütés, nyomás) kristálytani irányoktól függetlenül (ellentétben a hasadással), egyenetlen felületek mentén önálló darabokra szétesik a kristály, törésrıl beszélünk. A töréskor keletkezı szabálytalan felület a törési felület. A törési felület lehet: sima (többé-kevésbé sík felület) egyenetlen (szabálytalan felület) kagylós (a kagyló héjához hasonlóan ívelt felület) szálkás (kisebb-nagyobb szálkák állnak ki rajta) horgas (horogszerő nyúlványok vannak a felületen) földes (porszerő, morzsalékos a felület). a hasadás és törés közötti különbség szemléltetése az opál kagylós törése
8 KEMÉNYSÉG A keménység az az ellenállóképesség, melyet a kristály a mechanikai behatásokkal szemben kifejt. A keménység vektoriális sajátság, ezért függ az iránytól. A keménység alapvetıen a rácsszerkezettıl, a rácsban lévı kationok és anionok nagyságától, elrendezésétıl, a rácstömöttségtıl, illetve a kémiai kötésektıl függ (gyenge kötések kisebb keménységet eredményeznek). A keménység meghatározása történhet karcolással (pl. Mohs-féle keménységi skála), csiszolással, fúrással, illetve nyomással (Vickers-féle keménység).
9 KEMÉNY ÉS PUHA ÁSVÁNYOK gyémánt berill (smaragd) korund (rubin) gipsz molibdenit
10 TERMIKUS TULAJDONSÁGOK A kristályok termikus viselkedése vektoriális sajátság, tehát irányfüggı. A hıvezetés függ a kristályrácstól, a tömegpontokkal sőrőbben terhelt irányokban jobb (grafit, csillámok példája). A hıvezetés anizotrópiája az alapja a kızetek fizikai mállásának. A kristályok olvadáspontja nagymértékben függ a kristályrácsban lévı kötıerıktıl. Csak azoknak a kristályoknak van határozott olvadáspontjuk, melyeknek az összetétele olvadékban is ugyanaz, mint szilárd halmazállapotban. Az izomorf elegykristályoknak nincs határozott olvadáspontjuk, mert az illetı elegykristály összetételétıl függı hımérséklet-intervallumban olvadnak meg. A kristályvizet vagy zeolitos vizet tartalmazó ásványok hevítésre elveszítik víztartalmukat, a szulfidok kéntartalmukat, míg a karbonátok hevítése közben széndioxid szabadul föl. Egyes ásványok hevítése közben hı szabadul föl (exoterm folyamat), másoknál hı nyelıdhet el (endoterm folyamat). A hıtartalom változásából és regisztrálásából következtethetünk a folyamatok típusaira (termikus analitikai vizsgálatok alapja).
11 MÁGNESES TULAJDONSÁGOK A mágnesesség vektoriális sajátság, tehát irányfüggı. A mágneses sajátságok alapján, a mágneses szuszceptibilitást (ξ) alapul véve, ami ξ = M/H, ahol M a mágneses momentum, H a mágneses térerı, a kristályokat három csoportba soroljuk: diamágneses kristályok: ξ < 0. Ezeket a mágnes taszítja (kısó, kalcit, réz, jég). paramágneses kristályok: ξ > 0. Ezeket a mágnes vonzza, átmenetileg mágnesezhetık is (sziderit, ilmenit, hematit). ferromágneses kristályok: ξ >> 0. Ezek a kristályok maguk is aktív mágnesek lehetnek (magnetit = mágnesvaskı). A ferromágneses egykristályok mágnesezése anizotrop sajátság. A ferromágnesesség (ellentétben a dia- és paramágnesességgel), nem az atomok vagy molekulák sajátsága, hanem a kristályszerkezeté. Mágneses domének szabálytalan és szabályos elrendezıdése (utóbbi eset mágneses tér hatására jön létre) ferromágneses kristályban
12 ELEKTROMOS TULAJDONSÁGOK Az elektromosságot a fémrácsú kristályok (termésfémek és fémgazdag szulfidok) jól vezetik a szabadon mozgó elektronok révén. Vezetıképességük magasabb hımérsékleten azonban csökken. Az abszolút 0 fok körül viszont vezetésük ugrásszerően megnı (szupravezetés). Azok a kristályok, melyek (a fémekkel ellentétben), abszolút 0 fok körül szigetelık, a hımérséklet emelkedésével pedig rohamosan növekvı vezetıképességre tesznek szert, a félvezetık (galenit, kuprit, Si, Ge). Az atomrácsú és molekularácsú kristályok rosszul, vagy nem vezetik az elektromosságot. Az ionrácsú kristályok nem vezetik az elektromosságot, azonban olvadékukban vagy oldatukban vezetık (az ionok ebben az esetben nincsenek helyhez kötve).
13 TERMOELEKTROMOSSÁG Ha két, egymással szorosan érintkezı fém vagy félvezetı szabad végét fémdróttal összekötjük és az érintkezési helyet hevítjük, a dróton elektromosság halad át. Termoelem elıállítható fémekbıl és bizonyos szulfidokból. PIROELEKTROMOSSÁG Olyan nem vezetı, szimmetriaközpont nélküli kristályok mutatnak ilyen sajátságot, melyeknek egy poláros szimmetriatengelyük van. Ha a turmalin kristályait egyenletesen hevítjük, a poláros fıtengely egyik végén pozitív, a másik végén negatív elektromos töltést nyer. PIEZOELEKTROMOSSÁG Szimmetriaközponttal nem rendelkezı kristályok határfelületein, a kristály megfelelı deformálásakor ellentétes elıjelő töltések lépnek föl. A kvarckristályok esetén az egyik poláros melléktengelyre merılegesen kivágott lemezre, ha a poláros melléktengely irányában nyomást gyakorolunk, a lemez egyik lapján pozitív, másik lapján negatív elektromos töltést nyer (kvarcóra elve).
14 RADIOAKTÍV TULAJDONSÁGOK Radioaktív tulajdonságokat a radioaktív (sugárzó) elemeket tartalmazó ásványok mutatnak (kb. 350 ásvány). A radioaktív sajátságok nem irányfüggıek (skaláris sajátság). Ezekben az ásványokban a radioaktív sugárzás miatt a következı jelenségek figyelhetık meg: metamikt átalakulás (az eredeti kristályszerkezet a radioaktív sugárzás miatt bomlásnak indul, ennek elırehaladtával teljesen megsemmisül), pleokroós udvar (a kızetekben lévı, radioaktív elemet tartalmazó, kristályok körül a radioaktív bomlás miatt körkörös elszínezıdés látható, úgyszintén a metamikt átalakulás miatt) A radioaktív sajátságok felhasználása a kristályok korának a meghatározására: radiometrikus kormeghatározás izotópok mennyiségének a mérése alapján, radiometrikus kormeghatározás a metamikt átalakulás nagysága alapján (hasadvány-nyom = fission track kormeghatározás)
15 KRISTÁLYOK A FÉNYBEN, A TÖRÉSMUTATÓ Mi történik, ha fény jut a kristály felszínére? visszaverıdik (ez okozza a kristályok fényét) megtörik, szétszóródik (ez okozza részben a kristályok színét) áthalad rajta, vagy elnyelıdik (ez határozza meg az átlátszóságot és részben a színt). Valamely anyag törésmutatója egyenlı a fény közegbeli sebességének reciprokával: n = 1/v. Például a gyémánt törésmutatója 2,42. Azok az ásványok, melyek törésmutatója 1,5 alatti gyenge, amelyeké 1,5 1,75 között van közepes, és amelyeké 1,75 fölött van erıs fénytörésőek. A törésmutató minden ásványnak jellemzı állandója. Optikailag izotróp közegben a törésmutató minden irányban azonos, mert izotróp közegben a fény sebessége minden irányban azonos értékő. Optikailag anizotróp közegben, a törésmutató szempontjából is, eltérıen viselkednek a fıtengelyes rendszerekben, illetve a triklin, monoklin és rombos rendszerekben kristályosodó ásványok.
16 A FÉNY TERJEDÉSE KRISTÁLYOKBAN A fény izotróp és anizotróp közegben eltérıen viselkedik. Izotróp anyagokban a fény hullámfelülete mindig gömb, míg anizotróp anyagokban bizonyos irányokat kivéve ellipszoid. Kalcit esetén például minden irányban két hullámfelület halad, ez a kettıstörés jelensége. A két hullámfelület egyike gömb, a másik ellipszoid. A két felület két pontban érintkezik egymással, ez az irány az optikai tengely iránya. A kettıstörés révén a beesı fénysugár két sugárra bomlik, egyik a rendes (ordinárius) sugár, másik a rendkívüli (extraordinárius) sugár. kettıstörés elve kalcit kettıstörése
17 A KRISTÁLYOK FÉNYE A kristályok fénye alapvetıen fényvisszaverıdési képességüktıl (R) függ. A beesı fény egy része elnyelıdik, más része szétszóródik. A kristályok fénye legjobban akkor érvényesül, ha a felület sima (kristálylapok, hasadási lapok, vagy polírozási felszín). A visszavert fény erıssége szerint a kristályok fénye: erısen fénylı, kevésbé fénylı és fénytelen (matt). A visszavert fény sajátságai szerint lehet: fémfényő (ahol az R nagy), félig fémfényő és nem fémfényő (R általában kicsi). A nem fémfényő ásványok között az alábbi fénytípusokat különböztetjük meg: gyémántfény, üvegfény, zsírfény, viaszfény, gyantafény, gyöngyházfény, selyemfény. üvegfény fémfény
18 RITKÁBB FÉNYJELENSÉGEK: A LUMINESZCENCIA A fénysugárzás azon eseteit, amikor a fényemisszió a gerjesztést követıen átlagosan sec-nél hosszabb idı múlva következik be lumineszcencia néven foglalják össze (világító ásványok). A gerjesztés történhet fény (fotólumineszcencia), gyors elektronok (katódlumineszcencia), kémiai folyamatok közben fölszabaduló energia (kemolumineszcencia), hıenergia (termolumineszcencia) stb. hatására. Fluoreszcencia esetén a sugárzás megszőnése után azonnal megszőnik a fénykibocsátás. Foszforeszcencia esetén a spontán emisszió hosszabb ideig eltarthat. kalcitkristály fehér és ultraibolya fényben
19 A KRISTÁLYOK ÁTLÁTSZÓSÁGA A kristályok átlátszósága attól függ, hogy milyen mértékben engedik át a fényt. Ezzel ellentétben, hogy milyen mértékben nyelik el (abszorbeálják) a fényt. Az átlátszóság szempontjából a legfontosabb fogalmak: átlátszó: ha a fény legnagyobb részét átengedi. áttetszı: ha a fényt csak részben engedi át. átlátszatlan: ha a fényt nem engedi át. Az átlátszatlan ásványok egy része csak makroszkóposan viselkedik így, de vékony lemezei áttetszıek lehetnek. Más részüknél a vékony lemezkék is átlátszatlanok, ezek az opak ásványok.
20 A KRISTÁLYOK SZÍNE A kristályok színét alapvetıen a szelektív abszorpció (a fehér fény komponenseinek eltérı elnyelése) okozza. Ha a fehér fény minden hullámhossza áthalad a kristályon, akkor az színtelen vagy fehér. Ha a fehér fény minden hullámhosszát elnyeli, így nincs fényátbocsátás, akkor a kristály fekete színő. Ha viszont a különbözı hullámhosszúságú komponenseket nem egyenlı mértékben nyeli el, akkor szelektív abszorpció (szelektív elnyelés) jelensége áll fönn. Ilyen esetben az ember az elnyelt komponensek kiegészítı színeit észleli. rubin abszorpciós spektruma
21 A KRISTÁLYOK SZÍNE A kristályok színét meghatározhatja még a fénytörés és a fényszóródás is. Fontosabb típusok: macskaszemhatás (finom szálas kristályoknál ismert) csillaghatás (orientáltan elhelyezkedı zárványok okozzák) labradorizálás és holdfényhatás (vékony szételegyedési lemezek általi interferenciaszínek okozzák) csillogás (egy kristálylappal párhuzamosan elhelyezkedett csillám- vagy hematit-pikkelyek okozzák) opalizálás (a szétszóródó fehér fény okozza) irizálás (felületi filmszerő bevonatként jelentkezik)
22 A KRISTÁLYOK CSOPORTOSÍTÁSA SZÍNÜK ALAPJÁN 1/ Sajátszínő (idiokrómás) kristályok: színük jellegzetes, általában csak árnyalatokban különbözik. Színük a kémiai alkotók elektronszerkezetére vezethetı vissza (réz által okozott zöld vagy kék színek, a vas általi zöld vagy barna színek stb). 2/ Színtelen kristályok: ezek kémiailag tiszta állapotukban színtelenek (kvarc, gyémánt). 3/ Idegen színő vagy színezett (allokrómás) kristályok: nyomelemek vagy rácshibák okozzák az eredetileg általában színtelen kristályok színét. Az idiokrómás és allokrómás ásványok általában megkülönböztethetık a poruk színe alapján. Amíg az idiokrómás kristályok színe hasonló a porának színéhez, addig az allokrómás kristályok porszíne mindig fehér, illetve halványszürke, tehát nem mutatja a kristály eredeti színét. Az ásványok porának ismerete néhány esetben jól felhasználható az ásvány azonosításához. Az idiokrómás ásványok porát évezredek óta hasznosítja az emberiség festékként a mővészi alkotásokhoz, építészeti vagy kultikus célokra.
23 PLEOKROIZMUS (TÖBBSZÍNŐSÉG) A szín is vektoriális optikai sajátság! Egyes kristályoknak azt a jellegzetességét, hogy különbözı irányokból más és más hullámhosszúságú fényt abszorbeálnak, és így iránytól függıen másmás színt mutatnak pleokroizmusnak (többszínőségnek) nevezzük. Ez a jelenség a legtöbb ásvány esetében csak vékonycsiszolatban figyelhetı meg. Néhány ásványnál (cordierit, zoisit) azonban sokszor makroszkóposan is észlelhetı. Azokat az irányokat, melyekben a színeltérés a legnagyobb, abszorpciós tengelynek nevezzük. rombos piroxén egy zoisitkristály 3 irányból
4. elıadás A KRISTÁLYFIZIKA ALAPJAI
4. elıadás A KRISTÁLYFIZIKA ALAPJAI KRISTÁLYFIZIKA ANIZOTRÓPIA IZOTRÓPIA JELENSÉGE Izotrópia (irányok szerint egyenlı): ha a fizikai sajátságok függetlenek az iránytól. Ide tartoznak a köbös rendszerbe
4. előadás A KRISTÁLYFIZIKA ALAPJAI
4. előadás A KRISTÁLYFIZIKA ALAPJAI KRISTÁLYFIZIKA ANIZOTRÓPIA IZOTRÓPIA JELENSÉGE Izotrópia (irányok szerint egyenlő): a fizikai sajátságok függetlenek az iránytól. Köbös rendszerbe tartozó kristályok.
7. elıadás KRISTÁLYFIZIKAI ALAPOK
7. elıadás KRISTÁLYFIZIKAI ALAPOK ANIZOTRÓPIA IZOTRÓPIA FOGALMA Izotrópia (irányok szerint egyenlı): a fizikai sajátságok függetlenek az iránytól. Ide tartoznak a köbös rendszerben kristályosodó kristályok.
Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri
Ásványtani alapismeretek 3. előadás Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kristályrácsa Polimorf
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 17 KRISTÁLYFIZIkA XVII. Hőtani, MÁGNEsEs, ELEKTROMOs, RADIOAKTÍV TULAJDONsÁGOK 1. Hőtani TULAJDONsÁGOK A hősugarak a színkép vörös színén túl lépnek fel (infravörös
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 18 KRISTÁLYFIZIkA XVIII. OPTIKAI TULAJDONsÁGOK 1. OPTIKAI sajátságok FEHÉR FÉNYBEN A fény olyan elektromágneses sugárzás, mely különböző hullámhosszúságú komponensekből
5. elıadás KRISTÁLYKÉMIAI ALAPOK
5. elıadás KRISTÁLYKÉMIAI ALAPOK KRISTÁLYKÉMIAI ALAPFOGALMAK Atomok: az anyag legkisebb olyan részei, amelyek még hordozzák a kémiai elem jellegzetességeit. Részei: atommag (mely protonokból és neutronokból
1. Mi a drágakő? a. ásványváltozat b. biogén eredetű anyag c. mindkettő lehet. 13. Mit értünk a kristályok külső szimmetriáján?
1. Mi a drágakő? a. ásványváltozat b. biogén eredetű anyag lehet 2. Mit nevezünk ércnek? a. ásvány, amiből fémet nyerhetünk ki b. kőzet, amiből fémet nyerhetünk ki c. kőzet, amiből gazdaságosan fémet nyerhetünk
5. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK
5. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszerezés alapja a kristálykémia. A rendszer vázát az egyszerő és összetett anionok által
3. elıadás A KRISTÁLYKÉMIA ALAPJAI
3. elıadás A KRISTÁLYKÉMIA ALAPJAI KRISTÁLYKÉMIAI ALAPFOGALMAK Atomok: az anyag legkisebb olyan építıelemei, amelyek még hordozzák a kémiai elem jellegzetességeit. Részei: atommag (mely protonokból és
Tesztkérdések az Ásványtani és kızettani alapismeretek tárgyhoz
Tesztkérdések az Ásványtani és kızettani alapismeretek tárgyhoz 1. Mi a drágakı? a. ásványváltozat b. biogén eredető anyag lehet 2. Mit nevezünk ércnek? a. ásvány, amibıl fémet nyerhetünk ki b. kızet,
Kristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
7. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE OXIDOK, HIDROXIDOK, KARBONÁTOK
7. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE OXIDOK, HIDROXIDOK, KARBONÁTOK Oxidok Fémeknek oxigénnel alkotott vegyületei. Szerkezetükben fıleg ionos kötés érvényesül. A koordinációt tekintve a nagy koordinációs
Ásvány- és kőzettan. Kristálytan Ásványtan Kőzettan Magyarország ásványai, kőzetei Történeti áttekintés. Bidló A.: Ásvány- és kőzettan
Ásvány- és kőzettan Kristálytan Ásványtan Kőzettan Magyarország ásványai, kőzetei Történeti áttekintés Ásványok Ásványok fogalma Az ásvány a földkéreg szilárd, homogén, természetes eredetű része kb. 4000
Ásvány- és kzettan. Történeti áttekintés Kristálytan Ásványtan Kzettan Magyarország ásványai, kzetei. Bidló A.: Ásvány- és kzettan
Ásvány- és kzettan Történeti áttekintés Kristálytan Ásványtan Kzettan Magyarország ásványai, kzetei Ásványok Ásványok fogalma Az ásvány a földkéreg (a Hold és más égitestek) szilárd, homogén, természetes
6. elıadás KRISTÁLYKÉMIAI ALAPOK
6. elıadás KRISTÁLYKÉMIAI ALAPOK POLIMORFIA ( több alakúság ) Azokat az ásványokat nevezzük polimorfoknak, melyek azonos kémiai összetétellel, de kettı vagy többféle kristályszerkezettel (ennek megfelelıen
Almandin. Pirit Magnetit. Hexakiszoktaéder
Ásványtani alapismeretek 2. előadás Jellemző kristályformák a monoklin és rombos kristályosztályokban A monoklin rendszer szimmetria ele- mei a maximális szimmetria esetén 1 digír 1 tükörsík 1 inverzíós
3. előadás A KRISTÁLYKÉMIA ALAPJAI
3. előadás A KRISTÁLYKÉMIA ALAPJAI Atom- és ionrádiusz Koordináció: az atomok/ionok elrendezési módja egy centrális atom/ion körül. Koordinációs szám: egy atom/ion közvetlen szomszédjainak száma. A legfontosabb
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 6 KRISTÁLYTAN VI. A KRIsTÁLYOs ANYAG belső RENDEZETTsÉGE 1. A KRIsTÁLYOs ÁLLAPOT A szilárd ANYAG jellemzője Az ásványok néhány kivételtől eltekintve kristályos
8. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE SZULFÁTOK, FOSZFÁTOK, SZILIKÁTOK (NEZOSZILIKÁTOK)
8. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE SZULFÁTOK, FOSZFÁTOK, SZILIKÁTOK (NEZOSZILIKÁTOK) Szulfátok A szulfátok alapvetıen oxigéndús környezetben, a földkéreg felszínhez közeli részein, a litoszféra-bioszféra
6. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE OXIDOK, HIDROXIDOK, KARBONÁTOK
6. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE OXIDOK, HIDROXIDOK, KARBONÁTOK Oxidok Fémeknek oxigénnel alkotott vegyületei. Szerkezetükben főleg ionos kötés érvényesül. Az összetett oxidokban két vagy több kation
ÁSVÁNYTANI ÉS KİZETTANI ALAPISMERETEK
ÁSVÁNYTANI ÉS KİZETTANI ALAPISMERETEK Elıadó: Szakáll Sándor Gyakorlatvezetık: Mádai Ferenc, Mádai Viktor, Szakáll Sándor Ásvány- és Kızettani Tanszék Tel.: 565-111 / 1211 E-mail: askszs@uni-miskolc.hu
9. elıadás Szoro-, ciklo- és inoszilikátok
9. elıadás Szoro-, ciklo- és inoszilikátok Szoro- (csoport-) szilikátok Az SiO 4 tetraéderek közvetlen kapcsolódással 2-, 3-, 4-, 6-os, (ritkábban még több tagból álló) csoportokká főzıdhetnek össze. A
3. elıadás A KRISTÁLYKÉMIA ALAPJAI
3. elıadás A KRISTÁLYKÉMIA ALAPJAI KRISTÁLYKÉMIAI ALAPFOGALMAK Atom- és ionrádiusz Koordináció: az atomok/ionok elrendezési módja egy centrális atom/ion körül. Koordinációs szám: egy atom/ion közvetlen
Kristályos szilárd anyagok
Általános és szervetlen kémia 4. hét Elızı héten elsajátítottuk, hogy a kovalens kötés hogyan jön létre, milyen elméletekkel lehet leírni milyen a molekulák alakja melyek a másodlagos kötések Mai témakörök
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszerezés alapja a kristálykémia. A rendszer vázát az egyszerű és összetett anionok által
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Átmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekIKözgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
3. elıadás KRISTÁLYTANI ALAPOK
3. elıadás KRISTÁLYTANI ALAPOK KRISTÁLYFORMA A kristályforma a kristálylapok azon csoportját jelenti, melyeket a szimmetria megkövetel. Minden egyes kristályforma független! Tehát a kristálylapok száma,
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 30 Műszeres ÁSVÁNYHATÁROZÁS XXX. Műszeres ÁsVÁNYHATÁROZÁs 1. BEVEZETÉs Az ásványok természetes úton, a kémiai elemek kombinálódásával keletkezett (és ma is keletkező),
8. előadás Csoport-, gyűrű- és láncszilikátok
8. előadás Csoport-, gyűrű- és láncszilikátok Csoport- (szoro-) szilikátok Az SiO 4 tetraéderek közvetlen kapcsolódással 2-, 3-, 4-, 6-os, (ritkábban még több tagból álló) csoportokká fűződhetnek össze.
N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:
N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.
Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk
Ásványtani alapismeretek 4. előadás Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk az ásványokat,
Bevezetés az anyagtudományba III. előadás
Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan
2. elıadás A KRISTÁLYTAN ALAPJAI
2. elıadás A KRISTÁLYTAN ALAPJAI TÉRRÁCS ÉS ELEMI CELLA Az elemi cella a térrács azon legkisebb része, amely még rendelkezik a teljes rácsszerkezet tulajdonságaival. Az elemi cellát a rácsállandó jellemzi:
Kristálytan III. rész
1 Kristálytan III. rész elsősorban Koch Sándor és Sztrókay Kálmán: Ásványtan I. (Budapest 1967) című tankönyvéből és Székyné Fux Vilma: Kristálytan című egyetemi jegyzetéből (Budapest 1992) szkennelt és
ÁSVÁNYOK-KİZETKÉPZİDÉS
ÁSVÁNYOK-KİZETKÉPZİDÉS Tartalom Ásvány, kristály, kızet fogalma Elemek gyakorisága a földkéregben Kızetképzıdés folyamata Ásványok tulajdonságai Kızetalkotó ásványok Ásvány természetben elıforduló anyag
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 14 KRISTÁLYkÉMIA XIV. KRIsTÁLYsZERKEZETEK, KRIsTÁLYRÁCsOK 1. A KRIsTÁLYRÁCsOK főbb TÍPUsAI Az atomok, ionok és molekulák fentiekben tárgyalt megszabott elrendeződését
Optika és Relativitáselmélet
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 5. Polarizáció és kristályoptika Cserti József, jegyzet, ELTE, 2007. A polarizáció és a kristályoptika úgy függ össze, hogy kristályokban a törésmutató
Ásványtani alapismeretek
Ásványtani és s kőzettani k alapismeretek Előadók: Dr Molnár Ferenc, egyetemi docens, Ásványtani Tanszék Dr Ditrói Puskás Zuárd, egyetemi docens, Kőzettan-Geokémiai Tanszék Gyakorlatvezetők: Dr Molnár
Anyagi halmazok jellemzıi. 5. hét. Kinetikus gázelmélet. Kinetikus gázelmélet
Anyagi halmazok jellemzıi 5. hét alak térfogat gáz kitölti az edényt folyadék nem határozott alakú, a tárolóedényét veszi fel szilárd határozott, saját alak határozott, saját térfogat részecskék helye
AZ ÉLETTELEN ÉS AZ ÉLŐ TERMÉSZET
AZ ÉLŐ ÉS AZ ÉLETTELEN TERMÉSZET MEGISMERÉSE AZ ÉLETTELEN ÉS AZ ÉLŐ TERMÉSZET Az élőlények és az élettelen természet kapcsolata. Az élettelen természet megismerése. A Földdel foglalkozó tudományok. 1.
ÁSVÁNY vagy KŐZET? 1. Honnan származnak ásványaink, kőzeteink? Írd a kép mellé!
ÁSVÁNY vagy KŐZET? 1. Honnan származnak ásványaink, kőzeteink? Írd a kép mellé! 2. Magmás kőzetek a hevesek A legjobb építőtársak a vulkáni kiömlési kőzetek. Hogy hívják ezt a térkövet?.. A Föld kincseskamrája
2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia)
2. előadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) KRISTÁLY FOGALOM A MÚLTBAN Ókorban: jég (= krüsztallosz), a színtelen
10. előadás Kőzettani bevezetés
10. előadás Kőzettani bevezetés Mi a kőzet? Döntően nagy földtani folyamatok során képződik. Elsősorban ásványok keveréke. Kőzetalkotó ásványok építik fel. A kőzetalkotó komponensek azonban nemcsak ásványok,
OPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:
13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
2. elıadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia)
2. elıadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia) RENDEZETTSÉG A KRISTÁLYOKBAN (ÉS A MŐVÉSZETEKBEN) Egydimenziós
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
1. Terméselemek 2. Szulfidook 3. Oxidok, hidroxidok 4. Szilikátok 5. Foszfátok 6. Szulfátok 7. Karbonátok 8. Halogenidek 9.
1. Terméselemek 2. Szulfidook 3. Oxidok, hidroxidok 4. Szilikátok 5. Foszfátok 6. Szulfátok 7. Karbonátok 8. Halogenidek 9. Szerves ásványok 1. Terméselemek 26 fajta - fémes: Au(szab) arany tisztán található
gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb.
TALAJ KÉMIAI K TULAJDONSÁGAI A talaj kémiai k tulajdonságai gait a vízben v oldható sók k mennyisége és s minısége, a kolloidkémiai reakciók, k, a kémhatk mhatás s határozz rozzák k meg ezek befolyásolj
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2
Optikai alapfogalmak Az anyag és s a fény f kölcsk lcsönhatása Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Visszaverődés, reflexió Törés, kettőstörés, polarizáció Elnyelés, abszorpció,
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
5. elıadás AZ ÁSVÁNYRENDSZERTAN ALAPJAI
5. elıadás AZ ÁSVÁNYRENDSZERTAN ALAPJAI AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszertan alapja a kristálykémia. A rendszer alapvázát az egyszerő és összetett anionok által meghatározott osztályok jelentik.
a.) filloszilikátok b.) inoszilikátok c.) nezoszilikátok a.) tektoszilikátok b.) filloszilikátok c.) inoszilikátok
1. Melyik összetett anion a szilikátok jellemzője? a.) SO 4 b.) SiO 4 c.) PO 4 2. Milyen ásványok a csillámok? a.) filloszilikátok b.) inoszilikátok c.) nezoszilikátok 3. Milyen ásványok az amfibolok?
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok
A Föld kéreg: elemek, ásványok és kőzetek
A Föld kéreg: elemek, ásványok és kőzetek A Föld szerkezete: réteges felépítés... Litoszféra: kéreg + felső köpeny legfelső része Kéreg: elemi, ásványos és kőzettani összetétel A Föld különböző elemekből
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Optika Gröller BMF Kandó MTI
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés, reflexió Törés, kettőstörés, polarizáció
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
- 33 - < Az ásványokról
- 33 - < SZAKTÁRGYAK Soós Károlynéi Az ásványokról Mlllnsr Tivadari "Az ásványok színs" címtf cikkének /Természet Világa 1977. I.szám/ olvasása indított arra, hogy néhány gondolatot írjak az ásványok keletkezéséről,
Reaktortechnika. Anyagismeret
Reaktortechnika Anyagismeret Bevezetés Atomerımővek bonyolult mérnöki létesítmények a berendezések és azok anyagai igen nehéz, esetenként szélsıséges feltételek között (nagy nyomás és hımérséklet, erıs
Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok
Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
11. előadás MAGMÁS KŐZETEK
11. előadás MAGMÁS KŐZETEK MAGMÁS KŐZETEK A FÖLDKÉREGBEN A magmából képződnek az elő- és főkristályosodás során. A megszilárdulás helye szerint: Intruzív (mélységi) kőzetek (5-20 km mélységben) Szubvulkáni
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Ásványtani alapismeretek 6. előadás Kőzetalkotó ásványok Az ásványok olvadékból történő kristályosodásának sorrendje Bowen szerint Kőzetalkotó ásványok: SiO 2 ásványok Kvarc: hexagonális és trigonális
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 9 KRISTÁLYTAN IX. A KRIsTÁLYOK CsOPORTOsÍTÁsA A szimmetriaelemek ALAPJÁN 1. A HÉT KRIsTÁLYRENDsZER Mint az előzőekben már láthattuk, a hét primitív elemi cella
Visszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés Visszaverődés, reflexió Törés, kettőstörés,
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
ÁSVÁNY-KŐZETTAN Előadás
ÁSVÁNY-KŐZETTAN Előadás Földrajz BSc I. évfolyam Dr. Benkó Zsolt benko.zsolt@ttk.nyme.hu Geológia Geográfia Ásványtan Kőzettan Őslénytan Szerkezetföldtan Szedimentológia Nyersanyagkutatás stb. Általános
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
Ábragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat
Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A szerkezeti anyagok tulajdonságai és azok vizsgálata
A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Az ásványtan tárgya, az ásvány fogalma. Geometriai kristálytan. A kristály fogalma. A Bravais-féle elemi cellák.
Tantárgy neve Fejezetek az általános földtan témaköreiből I-II. Tantárgy kódja FDB1307; FDB1308 Meghirdetés féléve 1-2 Kreditpont 3-3 Összóraszám (elm.+gyak.) 2+0 Számonkérés módja kollokvium Előfeltétel
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
3.A 3.A. 3.A Villamos alapfogalmak Ellenállások a gyakorlatban
3.A Villamos alapfogalmak Ellenállások a gyakorlatban Ismertesse szerkezeti felépítés alapján az ellenállások fajtáit és jellemzıit! Ismertesse a gyakorlatban használt legfontosabb ellenállás fajták jellemzı
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül, valamint egy számolási feladatot az év közben
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Katalízis. Tungler Antal Emeritus professzor 2017
Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923
Törmelékkızetek. Törmelékes kızet. Legalább 50%-ban törmelékes alkotórészek. Szemcseméret alapján. kızettöredékek ásványtöredékek detritális mátrix
Törmelékkızetek Törmelékes kızet Legalább 50%-ban törmelékes alkotórészek kızettöredékek ásványtöredékek detritális mátrix Szemcseméret alapján agyag kızetliszt homok durvatörmelék 1 Szemcseméreti skála
Törmelékes kızet. Legalább 50%-ban törmelékes alkotórészek. Szemcseméret alapján. kızettöredékek ásványtöredékek detritális mátrix
Törmelékkızetek Törmelékes kızet Legalább 50%-ban törmelékes alkotórészek kızettöredékek ásványtöredékek detritális mátrix Szemcseméret alapján agyag kızetliszt homok durvatörmelék Szemcseméreti skála