Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz.
|
|
- Adrián Török
- 9 évvel ezelőtt
- Látták:
Átírás
1 8. Internet Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz. A technológiai cél: egymástól eltérő fizikai architectúrájú hálózatok összekapcsolása annak érdekében, hogy a hálózatban szereplő gépek egymással kommunikálni tudjanak 8.1 ábra. Eltérő technológiák kapcsolódása az Interneten. Az Internet alapvetően a TCP/IP rétegmodellre épül. A hivatkozási modell rétegeit, és szerepüket más hivatkozási modellekhez képest az 1. fejezet 1.10 és 1.11 ábrán szemléltettük. Az egyes rétegekben működő protokollok áttekintését 8.2 ábrán láthatjuk. A protokollok listája nem teljes, csak néhány jellegzetes elemet tartalmaz. 167
2 Web browser Other user Applications Application protocols: HTTP,SMTP,FTP,DNS.. USER space Applications Application Programming Interface (API) Transport Network ICMP TCP IP UDP RIP OS kernel ARP Data Link RARP FDDI WAN technology LAN technology Ethernet 8.1. A működés modellje 8.2.ábra. TCP/IP protocol stack A hálózatban egyedi, egymástól független "csomagok" haladnak, melyeknek a célhoz vezető útvonalát a csomagban lévő cím alapján keressük. Nem biztos, hogy van ilyen útvonal, vagy ha létezik, akkor biztosan megtaláljuk meghatározott időn belül! A hálózat csomópontjain "routerek" vannak, melyek táblázatokat (Routing tables) tartanak fenn a célokhoz vezető útvonalakról. Belátható, hogy elegendő azoknak a szomszédos csomópontoknak a tárolása, ami a célhoz vezet, nem kell a teljes útvonalat tárolni. Gyakorlatban elképzelhetetlen egy olyan táblázat, ami a világ összes hosztját tartalmazza a hozzá vezető optimális útvonallal együtt. Egy részhálózatról azonban elképzelhető, hogy pontosan ismert minden tulajdonsága, és ez az ismeret felhasználható a legjobb útvonal meghatározására. Léteznek természetesen olyan útvonalak is, melyeket előre, pontosan meghatároznak a forrástól a célig. Ha egy routernek 4 "lába" van, akkor egy beérkező csomag a 3 kimenet valamelyikén továbbítható. Csak azt kell eldöntenünk, hogy melyiken a 3 közül. A további útvonal meghatározása a következő router feladata. 168
3 DA = Destination Address ( cél cím) SA = Source Address ( forrás cím) 8.3 ábra. Routerek a hálózatban A 8.3 ábrán az x című állomás küld csomagot az y címűnek. A csomagok fejléce tartalmazza yx-et. A routerek az "y" címhez tárolják azoknak a szomszédaiknak a címét, melyeken keresztül "y" a legkedvezőbben elérhető. (Legkevesebb ugrás, legkisebb költség, legrövidebb idő, stb.) A szolgáltatás datagram jellegű: A csomagok ezért elveszhetnek többszöröződhetnek beérkezési sorrendjük megváltozhat A biztonságos átvitelről a felettes rétegeknek kell gondoskodni. Az útválasztás folyamatát a 8.4 fejezetben tárgyaljuk Az Internet protokolljai A nagy hálózatok összekapcsolásának valódi alapja az Internet Protocol (IP). Eleve a különböző hálózatok összekapcsolására tervezték. Optimális továbbítást biztosít a datagramok számára a forrásgéptől a célgépig. 169
4 Az alkalmazás a szállítási rétegnek adja át az adatokat. A szállítási réteg max. 64kbyte hosszú darabokra tördeli az üzenetet. Az üzeneteket a hálózati réteg esetleg tovább darabolva továbbítja. A célgépen a hálózati réteg visszaállítja a datagramot, és átadja a szállítási rétegnek. A szállítási réteg protokoll vermeket tart fenn a különböző protokolloknak. Általában négyféle protokoll vermet tartanak fenn az operációs rendszerek. Ha az útvonal más jellegű hálózaton is áthalad, akkor az alagút típusú átvitelt használhatjuk (Pl. SNA hálózatokban). A csomagot tartalmazó keretet beburkoljuk egy az adott hálózaton használatos keretbe, az alagút végén pedig kicsomagoljuk. Hasonló a folyamat ahhoz, ahogy a gépkocsikat berakjuk vasúti kocsikba az alagút előtt, az alagút után pedig az autók saját erőforrásaikkal haladnak tovább Ipv4 protokoll Hálózataink jelenleg ezt a protokollt használják ábra. Ipv4 csomagformátum A mezők jelentése: Version (Verzió) Biztosítja, hogy a régebbi verzióval működő gépek csomagjait is megfelelően dolgozzuk fel az átmeneti időszakban. Az átmeneti idő, míg az új verzió elterjed, éveket is jelenthet. IHL - fejrész hossza 32 bites szavakban adja meg a fejrész hosszát. Legkisebb értéke 5. Maximális értéke 15. Ez a fejrész hosszát 60 bájtra korlátozza. 170
5 Az opciós mező így legfeljebb 40 bájt lehet. Néhány opcióhoz ez túl kicsi. (Lásd: opciók) Type of service - szolgálat típusa lehetővé teszi, hogy a hoszt megadja az általa kért szolgálat jellegét. A sebesség és megbízhatóság különböző kombinációit adhatjuk meg. 1 tulajdonsághoz 1 bit tartozik. Pl. hangátvitelnél a sebesség, fájl átvitelnél a megbízhatóság lehet a fontos. Ha a bitenkénti értelmezés helyett a kombináció számértékét adjuk meg, akkor az alábbi táblázat írja le a szolgáltatásokat: TOS mező értékei: Ø normál szolgála 1 minimális költség 2 maximális megbízhatóság 3 maximális átbocsátás 4 minimális késleltetés Precedence mező Ø-7 értékkel jelöli a csomag fontosságát. Ø a legalacsonyabb prioritás 7 a legmagasabb prioritást jelöli, a hálózati vezérlő csomagok szintje. Flags 3 bitet tartalmaz Az első bit használaton kívüli. A Don't fragment annak a jelzésére szolgál, hogy a csomag nem darabolható. Ennek a jelzőnek a beállítása veszélyeket is hordoz. Ha a routerek nem tudnak olyan méretű csomagokat továbbítani, mint amit küldünk, akkor "az útvonal nem létezik" jelzéssel leállhat az adatforgalom. Egy másik lehetőség, hogy a rövidebb csomagok továbbítására alkalmas rendszerszakaszon mégis feldaraboljuk a csomagot, továbbítjuk, és a szakasz végén helyreállítjuk. A lényeg az, hogy nem a célállomásra bízzuk a darabok összeállítását, hanem a szakasz végén lévő routerre. A szakasz után a csomag olyan, mintha nem daraboltuk volna fel. A célállomás a fel nem darabolható csomagok egymás közötti sorrendjével foglalkozik csak. 171
6 M - More fragments bit azt jelzi, hogy a feldarabolt csomagnak nem ez az utolsó darabja. Ha megkaptuk azt a darabot, ahol M=Ø, akkor tudjuk, hogy ez az utolsó, és ismerjük a "Fragment offset" értékét. Ennek birtokában ellenőrizhető, hogy minden darab megérkezett-e. Fragment offset (Darabeltolás) megadja, hogy a darab hova tartozik a datagramban. A címzésre 13 bit áll rendelkezésre, így a teljes datagram címezhetősége érdekében az eltolást 8 bájtos egységekben adja meg. A 8192 *8 bájt 1-el több mint amit a teljes hossz (Total length) le tud írni. Identification mező szolgál a datagram azonosítására. Egy datagram minden darabja ugyanazt az azonosítót tartalmazza. Ez teszi lehetővé, hogy a cél - hoszt azonosítsa az egy datagramhoz tartozó darabokat. Time to live mező a darab maximális élettartamát adja meg másodpercekben. A 8 bit maximum 255 másodpercet jelent. A számláló értékét minden másodpercben, illetve minden routeren való áthaladáskor csökkentjük 1-el. A routerek sokszor eltérnek ettől a szabálytól, és csak az áthaladáskor csökkentik a számlálót, az időt figyelmen kívül hagyják. Az indok az, hogy a pufferben tárolt adatokra nehézkes a megvalósítás. Az adatokon túl tárolnunk kellene a pufferbe való elhelyezés időpontját is. A csomagjaink tehát nem maradnak végtelen ideig a hálózatban. Az élettartam mező kezdőértéke beállítható. Általában közötti érték a szokásos. Gyors hálózatokban 10 körüli érték megadása is indokolt lehet, hogy ne fordulhasson elő az élettartamon belül két azonos sorszám. "Protocol" mező A hálózati réteg összeállítja a datagramot, és a protokoll mezőben meghatározott szállítási folyamatnak adja át. A folyamat általában TCP vagy UDP, de más is lehet. A protokollok számozása egységes, az RFC 1700 definiálja. Header checksum (fejrész ellenőrző összege). Csak a fejrészt ellenőrzi, a tartalmat nem. Képzése rendkívül egyszerű. 1-es komplemens módon összeadjuk a beérkező fél-szavakat (16 bit), és képezzük az eredmény 1-es komplemensét. 172
7 Az ellenőrző összeget minden routeren újra kell számolni, mert az élettartam mező mindig megváltozik. Source Address, Destination address Forrás és cél címe 32 biten. (Az IP címek szerkezetét, és címfeloldást lásd később.) Options mező 0-40 bájt hosszú lehet. Eddig 5 opciót definiáltak. A biztonság opció az információ titkosságának fokára utal. Használata gyakorlatban nem célszerű, mert felhívja a figyelmet a fontos információra. Eredményesebb álcázás, ha a fontos adatok eltűnnek a lényegtelenek tömegében. Szigorú forrás általi forgalomirányítás IP címek sorozataként megadja a teljes útvonalat Laza forrás általi forgalomirányítás lényegében az útvonal irányát jelöli ki. (Az információ bizonyos országokon ne haladjon át, ne hagyja el az országot, stb) Útvonal feljegyzése opció főként a routerek üzemeltetőinek fontos..lehetővé teszi a hibák felderítését.(miért ment USA-n keresztül a szomszéd épületbe címzett üzenet?) A mai körülmények között sokszor kevés a 40 bájt az útvonal tárolására. Az időbélyeg opció az IP cím mellé egy 32 bites időbélyeget is feljegyez. Főként a router algoritmusok hibakeresésénél hasznos eszköz IP címzési rendszer A címzési módokat az RFC791 (1981) írja le. Az Ipv4 cím két részből áll: hálózati cím + hoszt cím. Egy hoszt egyszerre több hálózathoz is csatlakozhat. Ekkor minden hálózatban külön IP címe van. A címet megjeleníthetjük binárisan, vagy decimális formában. Szokásos az u.n. "Dotted decimal" formátum. A 32 bit 4 bájtnak felel meg. Minden bájt decimális értékét írjuk ki, pontokkal elválasztva. Pl.:
8 Az egy hálózatba tartozó gépek száma igen tág határok között változhat, ezért cím - osztályokat alakítottak ki. A címosztályoknak az információ továbbítása során is fontos szerepe van. A címtartomány korlátozottsága miatt (mindössze 32 bit, és ez sem osztható ki maradéktalanul) belátható időn belül szükség lesz a módosítására az Internet rohamos terjedése miatt. Számos javaslat született a megoldásra, és van szabvány javaslat is (Ipv6), de az áttérés jelentős költségei miatt egyelőre várat magára az áttörés. Valószínű, hogy az Ipv4 világban Ipv6 szigetek jönnek létre, melyeket a meglévő kapcsolatokon keresztül alagút jelleggel kapcsolnak össze mindaddig, míg az Ipv6 általánossá válik Címosztályok az Ipv4-ben A címosztály a cím bitje alapján határozható meg. 32 bit Osztály A 0 Hálózat Hoszt tól ig B 10 Hálózat Hoszt tól ig C 110 Hálózat Hoszt tól ig D 1110 Többesküldési cím tól ig E Jővőbeni alkalmazásokhoz fenntartva tól ig 8.5. ábra IP címosztályok. A címek egy része speciális célokra foglalt. A címmel indul minden hoszt, majd a hálózati paraméterek betöltése után többet nem használja. A 127.xx.yy.zz címek a visszacsatolások címzésére vannak fenntartva. A a hoszt saját maga. A helyi adatszórást jelent. Az adatszórás csak az alhálózaton belülre szól. Egy távolabbi hálózatban is végezhetünk adatszórást, ha egy helyes hálózati cím mögé csupa 1-eket írunk. 174
9 Hálózati cím A helyi alhálózatunkban egy hosztot úgy is megcímezhetünk, hogy nem adjuk meg a teljes címet, csak az alhálózaton belüli hoszt címet hoszt cím Egy HOST-ot egyértelműen azonosít az IP cím. Ha ez igaz, akkor mi szükség van a címosztályokra? Egyszerűsíti és gyorsítja a csomagok irányítását. A helyi hálózatból kilépve az eszközök csak a célhálózat elérésével foglalkoznak. A hoszt cím célhálózaton belüli értelmezésére csak a fogadóoldali router után van szükség. A címnek a hálózati cím része a címosztályt jelző bitek alapján leválasztható, és a csomagirányításhoz csak ezt a részt kell használni Alhálózatok. A nagyszámú géppel rendelkező felhasználó hamar szembe kerül azzal a problémával, hogy az adminisztráló szervezettől szeretne egy összefüggő címtartományt kapni, ugynakkor ezt a címtartományt szeretné kisebb, külön-külön managelhető tartományra bontani. A hálózati cím és a hoszt cím szétválasztására alkalmas eszköz a netmaszk. A netmaszk a hálózati cím-pozíciókban 1-et, a hoszt - cím helyén Ø-kat tartalmaz. A címosztály meghatározza, hogy a hálózati cím hány bites. Kívülről csak a hálózat címezhető,az alhálózatunk nem, mert a továbbított csomagokban nincs benn a netmaszk. A helyi hálózatunkban azonban valamennyi eszköz tartalmazza a netmaszk-ot, és így kiderül, hogy a csomag melyik alhálózatnak szól. A hoszt címeket egy EXOR művelettel választhatjuk le a teljes címből. (teljes cím) EXOR (netmaszk) = (hoszt cím) Példaként hozzunk létre alhálózatot egy C osztályú címen belül. Az alhálózat max. 32 gépet tartalmaz. A címtartomány legyen:
10 Alhálózat IP cím Hálózat címe Hoszt cím "C" osztályú a cím Hoszt cím a külső hálózat számára A külső hálózat nem látja az alhálózati maszkot, csak a "C" osztályt ismeri fel!! Alhálózati maszk Decimálisan: Példa: alhálózati cím leválasztása a címből Az alhálózat címe: ÉS = ábra. Alhálózat címzése Az alhálózati maszkot valójában a router használja. A kérdés az, hogy egy bejövő üzenetet melyik kimenetre továbbítja az eszköz. Ha C osztályú címünket 8 db 32 címet tartalmazó részre osztottuk, mint a példánkban, akkor ez azt jelenti, hogy a bejövő üzeneteket 8 alhálózati szegmens felé tudjuk irányítani. A maszkban az utolsó nyolc bit Ennek decimális értéke 224. A maszk hatására az 1-es portra kerülnek 0-31 végződésű címek, a 2-es portra végződésű címek, és így tovább. A router kimenetén a teljes cím információ megjelenik. A maszk azt dönti el, hogy melyik kimenetre kerül a csomag. Az alhálózatból érkező csomag esetén a router azt tudja eldönteni, hogy a célcím az alhálazaton belül, vagy kívül van. Ha célcím az alhálózaton belül van, akkor routernek nincs tennivalója, nem továbbítja a csomagot. Ha nem az adott alhálózathoz tartozó forráscímet tartalmazó csomagot kap, azt szintén nem továbbítja. 176
11 Maszk Cím ÉS A csomagot az 1-es portra továbbítja Maszk Cím ÉS A csomagot az 2-es portra továbbítja Maszk Cím ÉS A csomagot az 5-ös portra továbbítja Ha a tartományt csak 2 részre szeretnénk osztani, akkor a HOST címből egy bitet kell csak elvennünk. A maszk utolsó 8 bitje ekkor A teljes maszk decimálisan A címtartományok részekre osztásának a B osztályú címeknél van igazán jelentősége. Egy nagyvállalat a B osztályú címtartományát szabadon oszthatja fel, változtathatja anélkül, hogy a címtartományokat nyilvántartó hivatalhoz kellene kellene fordulnia. CIDR (Classless Internet Domain Routing (RFC 4632) A valós világban ma A vagy B osztályú címhez jutni gyakorlatilag lehetetlen. A C osztályú címek túl kevés hoszt egységes kezelését teszik lehetővé a hálózatokat üzemeltető cégeknek. A nagy hálózatokat szolgáltató szervezetek (Internet Service Provider, ISP) működtetik, és a protokollok tervezésénél ezt figyelembe kell venni. A CIDR a gyakorlati igényekhez jobban alkalmazkodó címzési séma, mint a cím-osztályos megoldás. A CIDR rendszerben a hálózat-azonosító a cím bármekkora része lehet. A hálózati cím hosszát az un. CIDR prefix határozza meg. Az előtagot szokás változó hosszúságú alhálózati maszknak (Variable Length Subnet Mask, VLSM) is nevezni. A CIDR általánosítja az alhálózati címzési rendszert. Tizes számrendszerben megadott címeknél a címet jelölő számsor után, egy / jelet követően adjuk meg a hálózati címet tartalmazó bitek számát. Ezzel a módszerrel 177
12 egyszerűsíthető egy C osztályú hálózat alhálózatának megadása is. Megadhatunk 24-nél nagyobb bitszámot is. Egy 25 bites hálózati cím pl.: /25 CIDR formátum megfelel a címnek, alhálózati maszkkal. A maszk utolsó bájtja binárisan, tehát a 25. bittel végzett hálózati címet leválasztó ÉS művelet nem befolyásolja a cím 25. bit tartalmát, ami az alhálózatot jelöli ki (Két részre osztottuk a C osztályú címtartományt. A cím 25.-dik bitje 0 vagy 1 lehet). A két címtartomány: /25 Broadcast: / /25 Broadcast: /25 A CIDR lehetővé teszi az egymást követő C osztályú címtartományok összevonását is egy logikai címtartománnyá. A CIDR előtag azt jelenti más megközelítésben, hogy a címek hány bitje azonos egy logikai csak, ha a címtartomány folytonos. Nem folytonos címtartományok is kiszolgálhatók ezzel a technológiával. Ilyenkor mindegyik tartományt meghirdeti a tartomány kiszolgáló. A hálózat a leghosszabban illeszkedő prefix felé fogja továbbítani a csomagokat. Egy B osztályú címen belül (pl /20). A megoldás igazi előnyeit az INTERNET szolgáltatók szerint felépített modelljében fogjuk látni, ahol a szolgáltató cégek hierarchikusan kapcsolódnak egymáshoz, és kis szolgáltatók egy-egy zárt csoportot szolgálnak ki Címblokkok kiosztása Egy zárt, saját tulajdonú hálózatban olyan IP címeket használunk amilyet akarunk. A saját címek megválasztásánál is célszerű az ajánlásokban szereplő címtartományokat betartani, mivel ezek a címeket nem adják ki publikus IP címként. A privát IP címek soha nem jelenhetnek meg a publikus interneten. Ha ki akarunk lépni az internetes világba, akkor regisztrált és engedélyezett címekre van szükségünk. A címek adminisztrációját korábban a NIC (Network Information Center) végezte óta az ICANN (Internet Corporation for Assigned Names and Numbers) utalja ki a cím - tartományokat. A tényleges címkiosztást regionális címnyilvántartó hivatalok (Addres Supporting Organization ICANN).) végzik. Jelenleg öt régió van meghatározva. Az EU-ban a RIPE NCC (Réseaux IP Européens Network Coordination Centre) a regionális hivatal. Jelenleg (2013) Magyarországon a HUNGARNET jogosult címtartományok engedélyezésére. A 2009-ben elfogadott módosítások (pl. díj ellenében tetszőleges zárótag alkalmazható a szövegesen megadott címben) nehezen kezelhető helyzetet hoztak létre. Sze- 178
13 rencsére az alkalmazók nem éltek ezzel a lehetőséggel, és a címzési rendszer stabil maradt. (lásd :Domain Name Server fejezet): Hoszt címek kiosztása A hosztoknak a hálózatban egyedi azonosítóval kell rendelkezni, hogy egyértelműen azonosíthassuk őket. A hálózati eszközök egy részéhez a rendszergazda fix IP címeket rendel, az intézménynél rendelkezésre álló címtartományból. Az eszközök egy másik csoportjához dinamikusan rendelünk IP címet a tartományból. A dinamikus IP cím az üzemeltetők számára számos szempontból előnyös: ha nincs minden felhasználó állandóan a hálózatra kapcsolódva, akkor több felhasználót tudunk kiszolgálni azonos méretű címtartománnyal; azonos névkiszolgálóhoz tartozó alhálózatok között lehet barangolni, nem kell újra konfigurálni a hosztot (lehetővé tehetjük például, hogy az egyetem területén belül lehessen barangolni az alhálózatok között). Különösen hasznosnak tűnő tulajdonság ez a rádiós hálózatoknál, ahol eleve arra számítunk, hogy a felhasználók mozognak, és csak rövid időre kapcsolódnak egy-egy alhálózathoz. A hoszt-címek kiosztásának automatizálására fejlesztett protokoll a DHCP, Dynamik Host Configuration Protocol (RFC 2131). A DHCP automatizálja az IP címek kiosztását. A DHCP konfigurációjától függően egy host kaphat fix IP címet minden bejelentkezéskor új címet meghatározott ideig állandó címet lehetőség szerint állandó címet. A lehetőleg állandó azt jelenti, hogy nem írjuk felül, ha van még kiosztható IP címünk. Ha változik a hoszt IP címe, akkor ezt az útvonalon található valamennyi forgalomirányító eszköznek be kell jegyezni az új címet a saját táblázataiba. Tehát olcsóbb, az IP címek állandóságára törekedni. A DHCP egy kliens-szerver protokoll, ahol a kliens az újonnan csatlakozó hoszt, és van valahol egy DHCP szerver. Ha a DHCP szerver az alhálózaton belül van, akkor kliens egy adatszórásos üzenettel megtalálhatja a szervert. Ha az alhálózaton kívül van,akkor további lépésekre van szükség. A hoszt nem ismeri az alhálózat címét 179
14 amiben saját maga van, nem ismeri a DHCP szerver IP címét, de még a sajátját sem, hiszen ez után fogja megkapni. Ha a DHCP szerver más alhálózatban van, akkor szükség van egy olyan eszközre, ami ismeri az alhálózathoz tartozó DHCP szerver címét. Ezt a szerepet (DHCP relay agent) gyakran egy útválasztó látja el. (RFC1542 kompatibilis útválasztók). A kapcsolódás lépései: DHCP szerver felderítése A belépő eszköz generál egy DHCP felderítés üzenetet, a 67-es portra; saját címként címet tüntet fel. A válasz egy DHCP ajánlat üzenet (DHCP offer message). Az üzenet tartalmazza a tranzakció azonosítóját,kliens számára ajánlott IP címet, az alhálózati maszkot, és az IP- cím bérleti időt (address lease time, vagyis az érvényesség idejét. A DHCP szerver ismerheti a kérést küldő fizikai címét, így elvileg egyes-küldéses keretben tud válaszolni. Ez felel meg a ajánlásnak. A gyakorlati esetek többségében a DHCP szerver nem a kérést küldő gép alhálózatában van, így szükség van egy DHCP továbbító ügynökre. Az ügynök ismeri a DHCP szerver címét. A DHCP ügynök és a DHCP ügyfél ugyanabban az alhálózatban van, a válasz üzenetszórásos is lehet (nem az ajánlásnak megfelelő megoldás). Egyes megvalósítások csak az üzenetszórásos változatot tartalmazzák. Egy kérésre több DHCP szerver is válaszolhat, amiből a kliens választhat. DHCP kérés A kliens az ajánlat-üzenetre egy DHCP kérés üzenettel (DHCP request message) válaszol.a válasz tartalmazza az üzenetből kimásolt, kliens által kért paramétereket. A válasz RFC1541 szerint üzenetszórásos, hogy azok a DHCP szerverek, melyeknek az ajánlatát nem kéri a kliens, a címet felszabadíthassák. A valóságban nem minden kliens küld üzenetszórásos választ. Az igénybe nem vett címek ilyenkor egy időzítés után szabadulnak fel. DHCP nyugtaüzenet (DHCP ACK message) A szerver DHCP nyugtaüzenettel válaszol, és megerősíti a paramétereket. 180
15 A DHCP megoldás automatizálja a címkiosztást, ezzel sok gondot megold. Hátrányai is vannak azonban. Ha barangolunk az alhálózatok között (kezünkben egy tablettel átmegyünk egy másik alhálózatba) akkor a TCP kapcsolatok megszakadnak. A rádiós hálózatoknál a mobil-ip oldja meg a problémát, ahol az alhálózatok közötti váltásnál az IP címünk állandó maradhat Hálózati címfordítás (Network Address Translation, RFC 2663,RFC 3022) A hálózaton lévő valamennyi IP-t támogató eszköznek rendelkeznie kell IP címmel. A kisméretű hálózatok egyszerű adminisztrációja és az IP címekkel való takarékoskodás egyaránt azt sugallja, hogy egy alhálózatot tudjunk egyetlen IP címmel üzemeltetni. Ha egy otthoni hálózatot bővíteni akarunk, akkor ne kelljen a szolgáltatóhoz fordulnunk további IP címekért. Ha az alhálózati címek kiosztására van automatizálási lehetőség (DHCP), akkor vélhetően ez a feladat is megoldható. A megoldás a NAT. A NAT fogalmát az irodalom meglehetősen önkényesen használja. Az RFC 2663 több altípust különböztet meg aszerint, hogy a kapcsolat jellege egy az egyhez (oneto-one), több az egyhez (many-to-one). Egy az egyhez kapcsolatra akkor van szükség, ha címzési szempontból inkompatibilis hálózatokat kapcsolunk össze, vagy a privát hálózat egyes gépeit közvetlenül címezhetővé akarjuk tenni a külső hálózatról. Ezt nevezi az ajánlás NAT-nak, vagy statikus NAT nak. A használt további kifejezések: NAPT (network address and port translation), cím és port fordítás. Hasonló értelemben használt kifejezések: PAT (port address translation) IP masquerading, IP elfedés; NAT Overload (CISCO konfigurációs állományokban); many-to-one NAT. Valamennyi kifejezés több az egyhez kapcsolatot jelöl, és általában ezt szokás egyszerűen NAT-nak nevezni. Az alhálózat a külvilág felé általában egyetlen IP címmel rendelkezik. Ha van több statikus NAT cím is, akkor minden ilyen belső címhez tartozik egy további külső, WAN oldali cím is. A belső, privát címek nem jelennek meg a nyilvános interneten. A statikus NAT általában biztonsági célokat szolgál. A külvilág és a belső un. privát hálózat között elhelyezkedő útválasztó kívülről nem útválasztónak, hanem egyetlen 181
16 (+ a statikus NAT címek) eszköznek tűnik. A privát hálózatok számára fenntartott címtatományok: / / /16 A több az egyhez működés azon alapul, hogy az útválasztó az egyes kapcsolatokhoz port-számot is hozzárendel, és a hozzárendelést a NAT címfordító táblában tárolja. A külvilág felé egyetlen IP cím jelenik meg, ahonnan különböző port-számokról indítanak folyamatokat. Elvileg a 16 biten leképezhető, mínusz a foglalt portok számú kapcsolat hozható létre. A portszám kiválasztása véletlenszerű, de nem lehet un. ismert port, vagy használatban lévő port sem. Példaként tételezzük fel, hogy szerver 80-as portjáról akarunk egy WEB oldalt lekérni. A kérést előállító gép belső címmel rendelkezik. A kliens a kérést önkényesen pl.: 4301 porton továbbítja. A NAT útválasztó önkényesen kijelölheti a külvilág felé a kérést előállító portszámot, pl.: A kérés elküldésekor az útválasztó a saját WAN oldali címét és az 5002-es portszámot tünteti fel a kérésen, mikor :80 as címhez fordul. A beérkező válaszhoz megkeresi a NAT címfordító táblában az 5002-es bejegyzéshez tartozó belső IP címet és portszámot. Sokan bírálják a NAT-os megoldásokat, mivel több hálózatos alapelvet is sért a megoldás (végponttól-végpontig elv, a port cím folyamatokhoz rendelt és nem hoszt címzésre való, ). Problémát akkor jelent a NAT, ha az alhálózatba szervert szeretnénk üzemeltetni,ami a jól ismert port -számokon várja a kéréseket. A NAT zavarja a P2P hálózatok működését, mivel a NAT mögött lévő eszköz nem tud szerverként működni. A probléma megkerülhető az un. NAT áthidalás alkalmazásával. Igazi megoldás az alkalmazás szintű átjárók (Gateway) használata (pl.: SKYPE átjátszók), vagy áttérés az IPv6 protokollra. Más megközelítése a problémának, amikor a privát hálózat és a külvilág közé olyan eszközt telepítünk, ami több publikus IP címmel rendelkezik. A privát hálózat éppen aktív hosztjai egy az egyhez kapcsolattal csatlakozhatnak a külvilághoz. A lehetséges egyidejű kapcsolatok száma a publikus IP címek számával egyezik meg. 182
17 UPnP (Universal Plug and Play) protokoll A protokoll a NAT áthidalására létrehozott eszköz. A működés feltétele, hogy mind a hoszt, mind az útválasztó implementálja a protokollt, mindkettő UPnP kompatibilis legyen. Az alapgondolat az, hogy az útválasztó által meghirdetett portszámot az alkalmazás határozza meg, ne az útválasztó. Ez lehetővé teszi, hogy az alkalmazás meghirdesse az elérhetőségét. Az alkalmazás tehát azt kéri az útválasztótól, hogy hozzon létre leképzést a privát IP cím, privát portszám és egy nyilvános IP cím, nyilvános portszám között. Ha ez megtörtént a hálózaton lévő csomópontok képesek lesznek TCP vagy UDP kapcsolat kialakítására. Pl.: egy BitTorrent alkalmazás meghirdetheti a nyomkövetőjének (tracker, a résztvevő partnerek nyilvántartása), hogy milyen publikus címen érhető el. Legyen a BitTorrent alkalmazás privát címe :4301. Az útválasztó publikus címe Az alkalmazás által választott port Az alkalmazás azt kéri, hogy az útválasztó feleltesse meg (írja be a NAT táblájába) :5201 és a :4301 megfeleltetést, hirdesse meg :5201 címet. A külső hosztok most már kezdeményezhetnek kapcsolatot (küldhetnek TCP SYN szegmenst tartalmazó csomagot) a NAT mögötti hosztnak. A megoldás hatékony, és megbízhatóan működik. A NAT azonban számos biztonsági és megvalósítási problémát takar, (DNS szerver bejegyzések a NAT mögött üzemelő kiszolgálókról, biztonsági kérdések,kapcsolat a hitelesítő szerverekkel) melyek tárgyalása túlmutat a félév anyagán. Sok hasznos ismeretet találhatunk az upnp.org fórumon, vagy a CISCO NAT fórumon is. Irodalom: Routing with NAT -Part of the documentation for the IBM iseries Az IP új generációja: IPv6 A fejlesztés céljai: Nagyszámú hoszt támogatása (>10 12 ) Forgalomirányító táblázatok méretének csökkentése Protokollok egyszerűsítése, gyorsabb feldolgozás a routereken Hitelesség és titkosság biztosítása 183
18 Jobb alkalmazkodás a szolgáltatás típusához, valós idejű adatok jobb kezelése Többesküldés lehetősége, hatósugarak megadásának lehetősége Mozgó hosztok jobb támogatása IPv4 és IPv6 együttélésének biztosítása hosszabb távon is. Az IPV6 fejlesztés között folyt intenzíven. A javaslatban az eredeti megnevezése Simple Internet Protocol Plus volt. Az IPv6 jelölést azért kapta, mert az IPv5 már foglalt volt egy kísérleti fejlesztés számára. Az IPv6 nem kompatíbilis az IPv4-el, de a protokollok legnagyobb részével igen (TCP, UDP, ICMP, IGMP, OSFP, BGP és DNS). A hálózat vezérlésével és a névfeloldással kapcsolatos protokollok tehát kompatibilisek. Az IPv6 magyarországi mérföldkövei ( Idézet Wikipedia szócikkből) A BME Folyamatszabályozási Tanszékén már 1997-ben folytak kutatások a IPv6 hálózatok kiépítésének tesztelésére. A NIIF által üzemeltetett és fejlesztett felsőoktatási és kutatói hálózaton ben kezdődtek meg az IPv6-os kísérletek és 2005 óta szolgáltatásként elérhető az IPv6 az egyetemek, kutatóintézetek és közgyűjtemények számára. Az Externet május 19-én zárta le a közel egy éves tesztidőszakot és azóta nyújtja rendes szolgáltatásként az IPv6-ot. A Magyar Telekom november 2-án kezdte meg hálózatában az IPv6 nyilvános tesztelését. [5][6] A Magyar Telekom június 3-án kapcsolta be az IPv6 hálózatát. Az IPv6 előnyei a végfelhasználó számára Az IPv6 amellett, hogy a jelenlegi dinamikus IP-cím kiosztás helyett minden végfelhasználó kaphat egy fix IP-címet, a biztonság terén is hoz újításokat a jelenleg használt IPv4-hez képest. A 128 bites címtartomány több ezer milliárd eszköz számára biztosíthat IP-címet, így gyakorlatilag kimeríthetetlen a kapacitása. Lefordítva ezt a háztartásokra, az otthonokban minden internetképes eszköz önálló IP-címet kaphat, így azok zavar nélkül kommunikálhatnak egymással. Ha az eszközök az internethez kapcsolódnak, akár a fűtőberendezéseket vagy a mosógépet is bekapcsolhatjuk mobiltelefonunkon keresztül. Sokan magát az IPv6-ot tekintik killer application -nek, mint ami megteremti a hálózatcentrikus világ létrehozásának lehetőségét. Ideális esetben az IPv6 használata a végfelhasználó számára láthatatlan marad. Az egyetlen változás, 184
19 hogy az internetezés egyes esetekben egyszerűbbé válhat, illetve megjelennek majd olyan szolgáltatások/alkalmazások melyek IPv4 alapon csak igen bonyolult módon lennének nyújthatóak. Az IPv6 a végfelhasználó szempontjából egy ajtó, mely megteremti a lehetőséget a változásra. Éppen úgy, mint ahogyan anno a vezetékes világban a DSL, vagy a mobil világában a 3G megjelenése indított el egy-egy kommunikációs forradalmat. IPv6 szabványok és migrációs stratégiák [szerkesztés] Az IPv6-ra vonatkozó, annak alapvető működését rögzítő szabványok az IETF szervezetében születnek. [10] Ugyanakkor érdemes nyomon követni más szabványosítási szervezetek munkáját is, hiszen fontos irányelveket fogalmaznak meg például a Broadband Forum (BBF) munkacsoportjai, melyek a meglévő szabványokon alapuló szolgáltatói környezet tekintetében rögzítenek ajánlásokat. [11] Az IPv6-bevezetési megoldások tekintetében számos eltérő a szabványosítás különböző fázisában lévő metódus látott napvilágot (pl. 6to4, 6rd, DS-lite, Softwire, Carrier Grade NAT, stb.). Az egyes megoldásoknak természetesen eltérő előnyei ill. hátrányai vannak, így folyamatos vitatémát biztosítanak a szakértők számára. Egyetértés van azonban a tekintetében, hogy a felhasználók számára egyidejűleg kell mind IPv4, mind IPv6 kapcsolódást biztosítani. Az ilyen megoldást nevezik dualstack elérésnek. A dual-stack [12] megoldás egyik fő előnye, hogy nincs szükség IPv4 és IPv6 hálózati átjárók létrehozására, melyek segítségével a csak egyik vagy másik verziót támogató végpontok kommunikálni tudnának egymással Az IPv6 föbb tulajdonságai: 128 bitre növelt címtartomány. Új címzési séma. Hatékonyabb és flexibilisebb csomagformátum, egyszerűbb fejrész A továbbfejlesztés lehetősége az opcionális fejrészek bevezetésével A biztonsági mechanizmusok beépültek a protokollba (hitelesítés, titkosítás) Névfeloldás és a csoportmenedzsment része a protokollnak Az ARP (Address Resolution Protocol) és az IGMP (Internet Group Management Protocol) kikerült a rendszerből. Szolgáltatások a jobb támogatása 185
20 32 bit verzió prioritás folyamatcímke Adat mező hossza Következő fejrész Átugrás korlát Forrás címe (16 byte) Cél címe (16 byte) 8.7.ábra. IPv6 fejrész A verzió mező az IPv4-nél mindig 4, az IPv6-nál mindig 6. A prioritás mezőben a 0-7 értékek olyan alkalmazásokhoz tartoznak, melyek képesek lassítani egy esetleges torlódásnál. A 8-15 értékek real-time folyamatokhoz tartoznak. Ezek az alkalmazások akkor sem lassítanak, ha minden csomag elvész. (Élő beszéd, mozgókép). Az alkalmazás szintjén természetesen más a helyzet. Egy videó átvitelnél esetleg tudom rontani a képpontok számát, a színmélységet, a képváltások számát, stb. Ez azonban nem a hálózat feladata, és nem is tudja befolyásolni. Mindkét csoporton belül az alacsonyabb szám alacsonyabb prioritást jelent. A folyamatcímke címke a virtuális áramkörök előnyei próbálja becsempészni a datagram típusú rendszerekbe. Az összeköttetést a forrás és célcím, valamint a folyamatcímke együttesen azonosítja. Ez lehetővé teszi, hogy több folyamat legyen aktív egy időben két IP cím között. Az egyes címkékhez különleges elbánást is rendelhetünk a routerekben, ami hasonló hatású lehet, mint a virtuális áramkörök létrehozása. Az adatmező hossza a tényleges adatmező hosszát jelöli, nem számolják bele a 40 byte hosszú fejrészt ( IPv4-nél bele számít!). A következő fejrész azt mutatja, hogy milyen további opcionális fejrészek vannak a csomagban, ha vannak. Az opcionális fejrész bevezetése tette lehetővé a kötelező fejrész jelentős egyszerűsítését. A kiegészítő fejrészek az átugrási opciókra forgalomirányításra darbolásra 186
Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz.
8. Internet Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz. A technológiai cél: egymástól eltérő fizikai architectúrájú hálózatok
Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz.
8. Internet Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz. A technológiai cél: egymástól eltérő fizikai architectúrájú hálózatok
Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez
Számítógép-hálózatok Gyakorló feladatok a 2. ZH témakörének egyes részeihez IPV4 FELADATOK Dr. Lencse Gábor, SZE Távközlési Tanszék 2 IP címekkel kapcsolatos feladatok 1. Milyen osztályba tartoznak a következő
Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.
IPV4, IPV6 IP CÍMZÉS Egy IP alapú hálózat minden aktív elemének, (hálózati kártya, router, gateway, nyomtató, stb) egyedi azonosítóval kell rendelkeznie! Ez az IP cím Egy IP cím 32 bitből, azaz 4 byte-ból
Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz.
8. Internet Az "Internet" napjainkban nem egy technológia a sok közül, hanem önálló életre kelt, a társadalmat befolyásoló eszköz. A technológiai cél: egymástól eltérő fizikai architectúrájú hálózatok
Gyakorló feladatok a 2. ZH témakörének egyes részeihez. Számítógép-hálózatok. Dr. Lencse Gábor
Gyakorló feladatok a 2. ZH témakörének egyes részeihez Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu IPV4 FELADATOK Dr. Lencse Gábor,
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 4. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer Interfész konfigurációja IP címzés: címosztályok, alhálózatok, szuperhálózatok,
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Kelenföldi Szilárd 2015.03.05. Routing Route tábla kiratása: route PRINT Route tábla Illesztéses algoritmus:
Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban
Rétegek kommunikáció a hálózatban Alhálózatok kommunikációs alhálózat Alk Sz H Ak F Hol? PDU? Bevezetés IP protokoll Internet hálózati rétege IP (Internet Protocol) Feladat: csomagok (datagramok) forrásgéptől
Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés
Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú
Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont
Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. Kocsis Gergely, Supák Zoltán
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása Kocsis Gergely, Supák Zoltán 2016.02.23. TCP/IP alapok A Microsoft Windows alapú hálózati környezetben (csakúgy, mint más hasonló
Hálózati architektúrák és Protokollok GI - 9. Kocsis Gergely
Hálózati architektúrák és Protokollok GI - 9 Kocsis Gergely 2016.11.28. IP, MAC, ARP A B csomópontból az A-ba küldünk egy datagramot. Mik lesznek az Ethernet keretben található forrás és a cél címek (MAC
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Supák Zoltán 2017.03.08. TCP/IP alapok IPv4 IP cím: 32 bites hierarchikus logikai azonosító. A hálózaton
Internet Protokoll 6-os verzió. Varga Tamás
Internet Protokoll 6-os verzió Motiváció Internet szédületes fejlődése címtartomány kimerül routing táblák mérete nő adatvédelem hiánya a hálózati rétegen gépek konfigurációja bonyolódik A TCP/IPkét évtizede
IV. - Hálózati réteg. Az IP hálózati protokoll
IV. - Hálózati réteg IV / 1 Az IP hálózati protokoll IP (Internet Protocol) RFC 791 A TCP/IP referenciamodell hálózati réteg protokollja. Széles körben használt, az Internet alapeleme. Legfontosabb jellemzői:
Az Internet működésének alapjai
Az Internet működésének alapjai Második, javított kiadás ( Dr. Nagy Rezső) A TCP/IP protokollcsalád áttekintése Az Internet néven ismert világméretű hálózat működése a TCP/IP protokollcsaládon alapul.
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 5. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer: ARP Útválasztás: route IP útvonal: traceroute Parancsok: ifconfig, arp,
Hálózati architektúrák és Protokollok GI 8. Kocsis Gergely
Hálózati architektúrák és Protokollok GI 8 Kocsis Gergely 2018.11.12. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat
Planet-NET Egy terjeszkedés alatt álló vállalat hálózatának tervezésével bízták meg. A vállalat jelenleg három telephellyel rendelkezik. Feladata, hogy a megadott tervek alapján szimulációs programmal
Transzport Réteg. Transzport réteg protokollok
Transzport Réteg VI / 1 Transzport réteg protokollok UDP - User Datagram Protocol RFC 768 Összeköttetés mentes, nem megbízható transzport réteg protokoll. TCP - Transmisson Control Protocol RFC 793 Összeköttetés
4. Hivatkozási modellek
4. Hivatkozási modellek Az előző fejezetben megismerkedtünk a rétegekbe szervezett számítógépes hálózatokkal, s itt az ideje, hogy megemlítsünk néhány példát is. A következő részben két fontos hálózati
21. tétel IP címzés, DOMAIN/URL szerkezete
21. tétel 1 / 6 AZ INTERNET FELÉPÍTÉSE, MŰKÖDÉSE A világháló szerver-kliens architektúra szerint működik. A kliens egy olyan számítógép, amely hozzáfér egy (távoli) szolgáltatáshoz, amelyet egy számítógép-hálózathoz
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 8. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Domain Name System Mire való? IP címek helyett könnyen megjegyezhető nevek használata. (Pl. a böngésző címsorában)
Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői
Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító
Léteznek nagyon jó integrált szoftver termékek a feladatra. Ezek többnyire drágák, és az üzemeltetésük sem túl egyszerű.
12. Felügyeleti eszközök Néhány számítógép és szerver felügyeletét viszonylag egyszerű ellátni. Ha sok munkaállomásunk (esetleg több ezer), vagy több szerverünk van, akkor a felügyeleti eszközök nélkül
Internet Protokoll 4 verzió
Internet Protokoll 4 verzió Vajda Tamás elérhetőség: vajdat@ms.sapientia.ro Tankönyv: Andrew S. Tanenbaum Számítógép hálózatok Az előadás tartalma Ocionális fe IPv4 fejrész ismétlés Az opciók szerkezete:
Számítógépes Hálózatok 2011
Számítógépes Hálózatok 2011 10. Hálózati réteg IP címzés, IPv6, ARP, DNS, Circuit Switching, Packet Switching 1 IPv4-Header (RFC 791) Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of
1. A számítógép-hálózatok ISO-OSI hivatkozási modelljének hálózati rétege 1.a Funkciói, szervezése
Forgalomirányítás: Követelmények, forgalomirányítási módszerek, információgyűjtési és döntési módszerek, egyutas, többutas és táblázat nélküli módszerek. A hálózatközi együttműködés heterogén hálózatok
Hálózat Dynamic Host Configuration Protocol
IBM Systems - iseries Hálózat Dynamic Host Configuration Protocol V5R4 IBM Systems - iseries Hálózat Dynamic Host Configuration Protocol V5R4 Megjegyzés Mielőtt a jelen leírást és a vonatkozó terméket
Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei
Tartalom Hálózati kapcsolatok felépítése és tesztelése Bevezetés: az OSI és a Általános tájékoztató parancs: 7. réteg: DNS, telnet 4. réteg: TCP, UDP 3. réteg: IP, ICMP, ping, tracert 2. réteg: ARP Rétegek
Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban
Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben
Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg
Dr. Wührl Tibor Ph.D. MsC 04 Ea IP kapcsolás hálózati réteg IP kapcsolás Az IP címek kezelése, valamint a csomagok IP cím alapján történő irányítása az OSI rétegmodell szerint a 3. rétegben (hálózati network
Windows hálózati adminisztráció
Windows hálózati adminisztráció Tantárgykódok: MIN6E0IN 4. Göcs László mérnöktanár KF-GAMF Informatika Tanszék 2016-17. tanév tavaszi félév NAT (Network Address and Port Translation) NAT (Network Address
Hálózati réteg - áttekintés
Hálózati réteg - áttekintés Moldován István BME TMIT Rétegződés Az IP Lehetővé teszi hogy bármely két Internetre kötött gép kommunikáljon egymással Feladata a csomag eljuttatása a célállomáshoz semmi garancia
Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) Deák Kristóf Címfeloldás ezerrel Azt eddig tudjuk, hogy egy alhálózaton belül switchekkel oldjuk meg a zavartalan kommunikációt(és a forgalomirányítás is megy, ha egy
Adatátviteli rendszerek Mobil IP. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet
Adatátviteli rendszerek Mobil IP Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet IP alapok Lásd: Elektronikus hírközlési hálózatok OSI rétegmodell; IPv4; IPv6; Szállítási protokollok;
* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg
ét * Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő Kapcsolati réteg A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Point-to-Point Protocol kifejezésből) egy magas szintű
VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK
Mérési utasítás IPv6 A Távközlés-informatika laborban natív IPv6 rendszer áll rendelkezésre. Először az ún. állapotmentes automatikus címhozzárendelést (SLAAC, stateless address autoconfiguration) vizsgáljuk
4. előadás. Internet alapelvek. Internet címzés. Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban?
4. előadás Internet alapelvek. Internet címzés Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban? A hálózati réteg fontos szerepet tölt be a hálózaton keresztüli adatmozgatásban,
2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM. IP címzés. Számítógép hálózatok gyakorlata
IP címzés Számítógép hálózatok gyakorlata ÓBUDAI EGYETEM 2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL Az IP cím 172. 16. 254. 1 10101100. 00010000. 11111110. 00000001 Az IP cím logikai címzést tesz
ARP ÉS DHCP. Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült. Dr. Lencse Gábor
ARP ÉS DHCP Médiakommunikációs hálózatok (VIHIM161) 2013. évi fóliái alapján készült 2017. március 16., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Hálózati Rendszerek és Szolgáltatások Tanszék
2011 TAVASZI FÉLÉV 10. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM NAT/PAT. Számítógép hálózatok gyakorlata
NAT/PAT Számítógép hálózatok gyakorlata ÓBUDAI EGYETEM 2011 TAVASZI FÉLÉV 10. LABORGYAKORLAT PRÉM DÁNIEL Címkezelés problematikája Az Internetes hálózatokban ahhoz, hogy elérhetővé váljanak az egyes hálózatok
SZAKDOLGOZAT ÓBUDAI EGYETEM. Neumann János Informatikai kar Alba Regia Egyetemi Központ
ÓBUDAI EGYETEM Neumann János Informatikai kar Alba Regia Egyetemi Központ SZAKDOLGOZAT OE-NIK Hallgató neve: Berencsi Gergő Zsolt 2010. Törzskönyvi száma: T 000123/FI38878/S-N Tartalomjegyzék Tartalmi
Hálózati architektúrák és Protokollok Levelező II. Kocsis Gergely
Hálózati architektúrák és Protokollok Levelező II Kocsis Gergely 2016.04.29. Route tábla Lekérdezése: $ route -n $ netstat -rn Eredmény: célhálózat átjáró netmaszk interfész Route tábla Útválasztás: -
A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással
A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha
Tisztelt Telepítő! 2. Ellenőrizze, hogy a modul engedélyezve van-e: Szekció [382] Opció 5 (alternatív kommunikátor) BE.
Tisztelt Telepítő! A PowerSeries NEO GO alkalmazás segítségével távolról vezérelhetőek a NEO központok. Ehhez a központokat valamely TL280/TL2803G/3G2080 modullal kell bővíteni. A modul verziószámának
Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
A TCP/IP számos adatkapcsolati réteggel együtt tud működni:
lab Vezetékes átvitel Adatkapcsolati réteg Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Adatkapcsolati réteg Feladata: IP datagrammokat küld és fogad az IP modulnak
Adatkapcsolati réteg. A TCP/IP számos adatkapcsolati réteggel együtt tud működni: Ethernet, token ring, FDDI, RS-232 soros vonal, stb.
lab Vezetékes átvitel Adatkapcsolati réteg Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Adatkapcsolati réteg Feladata: IP datagrammokat küld és fogad az IP modulnak
OSI-modell. 9.Tétel. A fizikai réteg (physical layer)
9.Tétel OSI-modell A számítógép hálózatok - a megvalósításuk bonyolultsága miatt - tehát rétegekre osztódnak. A hálózatokra vonatkozó rétegmodellt 1980-ban fogalmazta meg az ISO (International Standards
Hálózatok II. A hálózati réteg funkciói, szervezése
Hálózatok II. A hálózati réteg funkciói, szervezése 2007/2008. tanév, I. félév r. Kovács Szilveszter -mail: szkovacs@iit.uni-miskolc.hu Miskolci gyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így
BajaWebNet hálózatfeladat Egy kisvállalat hálózatának tervezésével bízták meg. A kisvállalatnak jelenleg Baján, Egerben és Szolnokon vannak irodaépületei, ahol vezetékes, illetve vezeték nélküli hálózati
A TCP/IP modell hálózati rétege (Network Layer) Protokoll-készlet: a csomagok továbbítása. Legjobb szándékú kézbesítés
A hálózati réteg feladatai A TCP/ modell hálózati rétege (Network Layer) A csomagok szállítása a forrásállomástól a cél-állomásig A hálózati réteg protokollja minden állomáson és forgalomirányítón fut
Hálózati architektúrák és Protokollok PTI 6. Kocsis Gergely
Hálózati architektúrák és Protokollok PTI 6 Kocsis Gergely 2018.04.11. Hálózati konfiguráció $ ifconfig Kapcsoló nélkül kiíratja a csomópont aktuális hálózati interfész beállításait. Kapcsolókkal alkalmas
Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak
Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és
III. előadás. Kovács Róbert
III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.
Tisztelt Telepítő! A központ és az alkalmazás összehangolását a következőképpen hajthatja végre:
Tisztelt Telepítő! A PowerSeries NEO GO alkalmazás segítségével távolról vezérelhetőek a NEO központok. Ehhez a központokat valamely TL280/TL2803G/3G2080 modullal kell bővíteni. A leírás a v5.x modul verziókhoz
IPV6 TRANSITION. Számítógép-hálózatok (BMEVIHIA215) Dr. Lencse Gábor
IPV6 TRANSITION Számítógép-hálózatok (BMEVIHIA215) 2014. április 9., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Hálózati Rendszerek és Szolgáltatások Tanszék lencse@hit.bme.hu Tartalom Az IPv4
Hálózati réteg, Internet
álózati réteg, Internet álózati réteg, Internet Készítette: (BM) Tartalom z összekapcsolt LN-ok felépítése. z Ethernet LN-okban használt eszközök hogyan viszonyulnak az OSI rétegekhez? Mik a kapcsolt hálózatok
5. Hálózati címzés. CCNA Discovery 1 5. fejezet Hálózati címzés
5. Hálózati címzés Tartalom 5.1 IP-címek és alhálózati maszkok 5.2 IP-címek típusai 5.3 IP-címek beszerzése 5.4 IP-címek karbantartása IP-címek és alhálózati maszkok 5.1 IP-címek Az IP-cím egy logikai
SZÁMÍTÓGÉP HÁLÓZATOK BEADANDÓ ESSZÉ. A Windows névfeloldási szolgáltatásai
SZÁMÍTÓGÉP HÁLÓZATOK BEADANDÓ ESSZÉ A Windows névfeloldási szolgáltatásai Jaszper Ildikó jaszper.ildiko@stud.u-szeged.hu Jaszper.Ildiko@posta.hu Budapest, 2007. május 19. - 1 - TARTALOMJEGYZÉK 1. Névfeloldás...
Névfeloldás hosts, nsswitch, DNS
Forrás: https://hu.wikipedia.org/wiki/hosts_fájl http://tldp.fsf.hu/howto/nis-howto-hu/nisplus.html https://hu.wikipedia.org/wiki/domain_name_system https://hu.wikipedia.org/wiki/dns-rekordt%c3%adpusok_list%c3%a1ja
Tájékoztató. Használható segédeszköz: -
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 52 481 02 Irodai informatikus Tájékoztató A vizsgázó az első lapra írja fel a nevét!
Tűzfalak működése és összehasonlításuk
Tűzfalak működése és összehasonlításuk Készítette Sári Zoltán YF5D3E Óbudai Egyetem Neumann János Informatikai Kar 1 1. Bevezetés A tűzfalak fejlődése a számítógépes hálózatok evolúciójával párhuzamosan,
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. október 28. Internet topológia IGP-EGP hierarchia előnyei Skálázhatóság nagy hálózatokra Kevesebb prefix terjesztése Gyorsabb konvergencia
IP anycast. Jákó András BME TIO
IP anycast Jákó András jako.andras@eik.bme.hu BME TIO Tematika Mi az IP anycast? Hogy működik? Mire használható? Alkalmazási példa Networkshop 2011. IP anycast 2 IP...cast IP csomagtovábbítási módok a
4. Vállalati hálózatok címzése
4. Vállalati hálózatok címzése Tartalom 4.1 IP-hálózatok hierarchikus címzési sémája 4.2 A VLSM használata 4.3 Az osztály nélküli forgalomirányítás és a CIDR alkalmazása 4.4 NAT és PAT használata IP-hálózatok
[SZÁMÍTÓGÉP-HÁLÓZATOK]
Mérési utasítás WireShark használata, TCP kapcsolatok analizálása A Wireshark (korábbi nevén Ethereal) a legfejlettebb hálózati sniffer és analizátor program. 1998-óta fejlesztik, jelenleg a GPL 2 licensz
Hálózati architektúrák és Protokollok PTI 5. Kocsis Gergely
Hálózati architektúrák és Protokollok PTI 5 Kocsis Gergely 2013.03.28. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
Elnevezési rendszerek. A névtér elosztása (2) 4. előadás. A névfeloldás implementálása (1) A névfeloldás implementálása (2)
6. előadás A névtér elosztása (1) Elnevezési rendszerek 2. rész A DNS-névtér felosztása (három rétegre), amely az interneten keresztül elérhető állományokat is tartalmaz. A névtér elosztása (2) A névfeloldás
Az IP hálózati protokoll
Az IP hálózati protokoll IP (Internet Protocol) RFC 791 A TCP/IP referenciamodell hálózati réteg protokollja. Széles körben használt, az Internet alapeleme. Legfontosabb jellemzői: IP fejrész szerkezete.
Számítógép hálózatok
Számítógép hálózatok Számítógép hálózat fogalma A számítógép-hálózatok alatt az egymással kapcsolatban lévő önálló számítógépek rendszerét értjük. Miért építünk hálózatot? Információ csere lehetősége Központosított
ALKALMAZÁSOK ISMERTETÉSE
SZE INFORMATIKAI KÉPZÉS 1 SZE SPECIFIKUS IT ISMERETEK ALKALMAZÁSOK ISMERTETÉSE A feladat megoldása során valamely Windows Operációs rendszer használata a javasolt. Ebben a feladatban a következőket fogjuk
Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992
Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. október 29. Link-state protokollok OSPF Open Shortest Path First Első szabvány RFC 1131 ( 89) OSPFv2 RFC 2178 ( 97) OSPFv3 RFC 2740 (
Hálózati architektúrák és Protokollok GI 7. Kocsis Gergely
Hálózati architektúrák és Protokollok GI 7 Kocsis Gergely 2017.05.08. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
IPv6 Elmélet és gyakorlat
IPv6 Elmélet és gyakorlat Kunszt Árpád Andrews IT Engineering Kft. Tematika Bevezetés Emlékeztető Egy elképzelt projekt Mikrotik konfiguráció IPv6 IPv4 kapcsolatok, lehetőségek
21. fejezet Az IPv4 protokoll 1
21. fejezet Az IPv4 protokoll 1 Hálózati réteg az Interneten Az Internet, ami mára már az életünk részévé vált, többek közt annak köszönheti sikerét, hogy tervezőinek sikerült megfelelő elvek mentén építkezniük.
IBM i. Hálózatkezelés DHCP 7.1
IBM i Hálózatkezelés DHCP 7.1 IBM i Hálózatkezelés DHCP 7.1 Megjegyzés A kiadvány és a tárgyalt termék használatba vétele előtt olvassa el a Nyilatkozatok, oldalszám: 57 szakasz tájékoztatását. Ez a kiadás
WS 2013 elődöntő ICND 1+ teszt
WS 2013 elődöntő ICND 1+ teszt 14 feladat 15 perc (14:00-14:15) ck_01 Melyik parancsokat kell kiadni ahhoz, hogy egy kapcsoló felügyeleti célból, távolról elérhető legyen? ck_02 S1(config)#ip address 172.20.1.2
DNS és IPv6. Jákó András jako.andras@eik.bme.hu BME TIO
DNS és IPv6 Jákó András jako.andras@eik.bme.hu BME TIO Agenda IPv6 információ a DNS-ben DNS használata IPv6 felett Networkshop 2009. DNS és IPv6 2 Forward DNS bejegyzések domain név IP cím AAAA resource
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó az első lapra írja
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika A vizsga leírása: A vizsga anyaga a Cisco Routing and Switching Bevezetés a hálózatok világába (1)és a Cisco R&S:
Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék
Routing Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Út(vonal)választás - bevezetés A csomagok továbbítása általában a tanult módon,
8. Hálózati réteg. 8.1. Összeköttetés nélküli szolgálat megvalósítása
8. Hálózati réteg A hálózati réteg feladata, hogy a csomagokat a forrástól egészen a célig eljuttassa. Ehhez esetleg több routeren is keresztül kell a csomagnak haladnia, ill. előfordulhat, hogy egy másik
routing packet forwarding node routerek routing table
Az útválasztás, hálózati forgalomirányítás vagy routing (még mint: routeing, route-olás, routolás) az informatikában annak kiválasztását jelenti, hogy a hálózatban milyen útvonalon haladjon a hálózati
UTP vezeték. Helyi hálózatok tervezése és üzemeltetése 1
UTP vezeték A kábeleket kategóriákba sorolják és CAT+szám típusú jelzéssel látják el. A 10Base-T és 100Base-TX kábelek átvitelkor csak az 1, 2 (küldésre) és a 3, 6 (fogadásra) érpárokat alkalmazzák. 1000Base-TX
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Supák Zoltán 2016.03.02. TCP/IP alapok A Microsoft Windows alapú hálózati környezetben (csakúgy, mint más
Az Internet. avagy a hálózatok hálózata
Az Internet avagy a hálózatok hálózata Az Internet története 1. A hidegháború egy fontos problémája Amerikában a hatvanas évek elején: Az amerikai kormányszervek hogyan tudják megtartani a kommunikációt
2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
Tavasz 2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 5. gyakorlat Ethernet alapok Deák Kristóf S z e g e d i T u d o m á n y e g
Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe
Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg A hálózati kártya (NIC-card) Ethernet ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton
Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching
Számítógépes Hálózatok ősz 2006 10. Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching 1 Inter-AS-Routing Inter-AS routing Inter-AS-Routing nehéz... between A and B C.b Gateway B Szervezetek
Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)
Kommunikációs rendszerek programozása Routing Information Protocol (RIP) Távolságvektor alapú útválasztás Routing Information Protocol (RIP) TCP/IP előttről származik (Xerox Network Services) Tovább fejlesztve
Department of Software Engineering
Tavasz 2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 8. gyakorlat IP címzés Somogyi Viktor, Bordé Sándor S z e g e d i T u d o m
DNS és IPv6. Pásztor Miklós. 2012. május, Budapest ISZT, PPKE. Pásztor Miklós (ISZT, PPKE) DNS és IPv6 2012. május, Budapest 1 / 21
DNS és IPv6 Pásztor Miklós ISZT, PPKE 2012. május, Budapest Pásztor Miklós (ISZT, PPKE) DNS és IPv6 2012. május, Budapest 1 / 21 Miről lesz szó? 1 Amikor az IPv6 a DNS üzenetek tárgya 2 Amikor az IPv6
III. Felzárkóztató mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK
Mérési utasítás ARP, ICMP és DHCP protokollok vizsgálata Ezen a mérésen a hallgatók az ARP, az ICMP és a DHCP protokollok működését tanulmányozzák az előző mérésen megismert Wireshark segítségével. A mérés
SzIP kompatibilis sávszélesség mérések
SZIPorkázó technológiák SzIP kompatibilis sávszélesség mérések Liszkai János Equicom Kft. SZIP Teljesítőképesség, minőségi paraméterek Feltöltési sebesség [Mbit/s] Letöltési sebesség [Mbit/s] Névleges
Routing update: IPv6 unicast. Jákó András BME EISzK
Routing update: IPv6 unicast Jákó András goya@eik.bme.hu BME EISzK Változatlan alapelvek: IPv4 IPv6 prefixek a routing table-ben különféle attribútumokkal a leghosszabb illeszkedő prefix használata kétszintű