Titrálás Elmélet és gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Titrálás Elmélet és gyakorlat"

Átírás

1 Titrálás Elmélet és gyakorlat

2 A titrálás elmélete Bevezetés Jelen füzet történeti, elméleti és gyakorlati szempontból mutatja be a titrálást; először a végponttitrálással, majd pedig az átcsapási pontos titrálással foglalkozunk. Áttekintjük az általános alkalmazási területeket, és hasznos tanácsokat adunk a megfelelő technikák kiválasztásához, a legjobb eredmények érdekében. Miért használjuk a titrálást? A legtöbb gyártó vagy feldolgozó iparágban elengedhetetlen, hogy ismerjük a termék pontos koncentrációját, alkotó elemeit illetve azok kémiai funkcióit annak érdekében, hogy biztosítani tudjuk egy folyamat hatékonyságát vagy a késztermék minőségét. Ezt a következő módon érhetjük el: Megtaláljuk a termék olyan jellemzőjét, amely közvetlenül kapcsolódik a koncentrációjához. Az elemzést végző személy vagy fizikai (kolorimetriás, UV IR spektrofotometriás, láng spektrofotometriás, atomabszorpciós stb.), vagy pedig elektrokémiai módszereket alkalmaz, például polarográfiát. Ezek a módszerek gyakran hosszadalmasak és költségesek, ráadásul dedikált eszközöket és nagy szakértelmet igényelnek. Feloldjuk a vizsgálandó anyagot és reagáltatjuk egy ismert koncentrációjú másik anyaggal (mérőoldattal). Ez az úgynevezett titrálás, amely elvégezhető manuálisan vagy automatikusan. Már csak azt a pontot kell meghatározni, amelyben a titrálószer mennyisége azonos a vizsgálandó anyag mennyiségével. Miután az elemzést végző személy tökéletesen meghatározta a vizsgálandó anyag és a mérőoldat közötti reakciót, egy egyszerű számítással meg lehet határozni a vizsgálandó anyag koncentrációját vagy pontos mennyiségét. A vizsgálandó anyag/mérőoldat egyenértékűségének meghatározása Először is nézzük át röviden az analitikai kémiában használt különféle reakciótípusokat és alkalmazási területeiket. Sav-bázis reakciók Az ilyen reakciókban a H + vagy H 3 O + ionok OH - ionokkal reagálnak, és H 2 O-t alkotnak. Ezek a leggyakoribb reakciók, mind vizes, mind pedig nemvizes közegben, és nap mint nap használják őket széles körben a következők meghatározására: lúgosság meghatározása vízben, bor vagy gyümölcslé savtartalma, tej savtartalma, TAN és TBN a kőolajtermékekben, ehető vagy nem ehető olajok és zsírok, bórsav mennyiségének meghatározása az atomerőművek hűtőfolyadékában, galvanizáló fürdők szabad vagy összes savtartalmának meghatározása, hatóanyagok meghatározása drogokban vagy gyógyszeripari nyersanyagokban, a teljes nitrogéntartalom meghatározása Kjeldahl módszerrel. Redoxi reakciók Ahogy a nevük is mutatja, ezek a reakciók az oxidáló/redukáló párok reakciókészségét használják ki. A reakció alatt az oxidáló ion, függetlenül attól, hogy ő a vizsgálandó anyag vagy a mérőoldat, egy vagy több elektront felvéve redukálódik, miközben a redukáló ion oxidálódik, és egy vagy több elektront veszít. Az ilyen reakciók ritkábbak a sav-bázis reakcióknál, de a mérőoldatok szélesebb választéka használható, például: Oxidáló szerek jód, kálium-dikromát, kálium-permanganát oldatok. Cérium IV-sók, hidrogén-peroxid, oxidált klór, például ClO -, ClO 2. Redukáló szerek Nátrium-tioszulfát oldatok, oxálsav, ammónium-vas(ii)- szulfát (Mohr-só), hidrogén-peroxid, fenilarzin-oxid (PAO). Alkalmazási területek Környezet Víz kémiai oxigénigénye (COD) Víz oxidációs kapacitása (permanganát) 2

3 TITRÁLÁS: ELMÉLET ÉS GYAKORLAT Élelmiszerek és italok A szabad és összes SO 2 mennyiségének meghatározása vízben, borban, alkoholban szárított gyümölcsökben stb. Gyógyszeripar C-vitamin meghatározása Felületkezelés Réz vagy ón titrálása jóddal Króm-VI titrálása Petrolkemikáliák Víz meghatározása szénhidrogénekben Komplexometriás reakciók Ezek elsősorban az olyan kétértékű kationok, mint a kalcium, magnézium, réz, ólom, cink és kadmium, valamint más kationok, például az alumínium koncentrációjának meghatározására szolgálnak. A leggyakrabban használt komplexképzők az etiléndiamin-tetraecetsav (EDTA) és az etilén-bisz(etilénnitrilo) tetraecetsav (EGTA). Bár ezeket a reakciókat könnyű végrehajtani, de jól definiált ph intervallumban kell dolgozni. Alkalmazási területek Környezet Teljes vízkeménység (Ca 2+ és Mg 2+ ) Felületkezelés Cu 2+, Ni 2+, Pb 2+, Zn 2+ meghatározása galvanizáló fürdőkben Cementgyárak Ca 2+ and Mg 2+ meghatározása Csapadékos titrálás Az oldhatatlan sók gyakran előfordulnak a természetben; a csapadékos reakciókat az analitikai kémiában a leggyakrabban halogenidek titrálására használják, különösen a Cl - lecsapatására Ag + ionnal. Alkalmazási területek Igen gyakran használják I -, Br - és Ag + ionok meghatározására. Környezet Klorid meghatározása vízben Élelmiszerek és italok Klorid meghatározása késztermékekben (főtt húsok, befőttek) Klorid meghatározása tejtermékekben Nemesfémek Ezüst meghatározása különféle ötvözetekben (ékszerek) Gyógyszeripar Halogenátok titrálása Színváltozó indikátorok A vizsgálandó anyag/mérőoldat egyenértékűségének elektrokémiai detektálása egy viszonylag új keletű módszer, melyet a 20. század elején dolgoztak ki. Ezt megelőzően az elemzést végző személynek nem volt más műszere, mint a saját szeme, s ez vezetett a színváltozó indikátorok felfedezéséhez és használatához. Ezen indikátorok működése függ az adott reakciótól, de az oldathoz adagolt mennyiségük mindig sokkal kevesebb, mint a titrálandó anyagé. ph mérés (sav-bázis reakciók) Sok színváltozó indikátort még ma is használnak (fenolftalein, metiloranzs, metilvörös stb.). Ezek általában olyan gyenge szerves savak vagy bázisok, amelyek képletében kettős kötés (-C=C-) található. Egy adott ph-tartományban módosul az ilyen indikátorok ionos képlete, és a kettős kötések új elrendezése a színek megváltozását okozza. Redoxi reakciók Az ilyen színváltozó indikátorok képesek elektroncserét végezni. Mivel az indikátorok más színűek oxidált, illetve redukált állapotban, ezért a szín az oldat redoxi potenciáljától függően változik. Hasonlóan a ph-mérésre használt indikátorokhoz, ezek az indikátorok is mv-ban kifejezhető, specifikus színváltozási tartományokkal rendelkeznek. A színváltozó indikátorok használata komplexometriás reakciókban A komplexometriás reakciók segítségével számos kation meghatározható. Az itt használt színváltozó indikátorok szerves molekulák, amelyek képesek olyan színes komplexet alkotni a meghatározandó kationnal, amely kevésbé stabil, mint a megfelelő titrálószer (pl. EDTA) kationjával alkotott komplex. Amikor megtörténik az összes anyag titrálása, megváltozik az indikátor színe. Az ilyen indikátorokat ma is használják (pl. murexid vagy eriokróm-fekete-t). Csapadékos reakciók Az ilyen színváltozó indikátorok gyakran rendkívül színes komplexeket alkotnak a reagens valamelyik alkotórészével. Titrálás közben a csapadékreakció vége azt jelenti, hogy a titrálószer feleslegben van, és ekkor azonnal megjelenik egy színes komplex. A színváltozó indikátorok korlátai Bár könnyen kezelhetők, a színváltozó indikátoroknak is megvannak a maguk korlátai. Nem mindig könnyű megtalálni a megfelelő indikátort egy adott meghatározáshoz, néhány indikátor pedig csak nehézkesen használható, drága, vagy erősen mérgező. A ph-mérésben néha nehéz megtalálni azt az indikátort, amelynek a színváltozási tartománya pontosan megfelel a vizsgálandó anyag/mérőoldat egyenértékűségi pontjában érvényes ph értéknek. 3

4 Bizonyos esetekben a korábban használt indikátor színváltozási tartománya és az igazi ekvivalenciapont közötti szignifikáns eltérés az eredmények szisztematikus hibáihoz vezethet. Hogy össze lehessen hasonlítani a régi és új eredményeket, esetleg olyan értéket kell választani végpontként, amely elektrokémiailag hibás ugyan, de megfelel az alkalmazott módszernek, például az használt indikátor színváltozási tartományának átlagértékét. E infl A színváltozó indikátorok általában fényre és hőmérsékletre érzékeny, szerves festékanyagok. A színváltozások nem mindig szignifikánsak, és függenek az egyéni észleléstől. Nyilvánvaló, hogy a színváltozó indikátorok nem használhatók színes oldatokban vagy nagy lebegőanyag-tartalmú mintákban. Az ekvivalenciapont potenciometriás meghatározása ph-mérés és nulla áramos potenciometria Az analitikai elektrokémia törvényszerűségeinek, különösen az elektródpotenciált meghatározó alapegyenlet (Nernst-egyenlet) felfedezésével, illetve a szükséges műszerek és érzékelők kifejlesztésével egy új módszer áll a rendelkezésünkre a vizsgálandó anyag/titrálószer egyenértékűségének, azaz az ekvivalenciapontnak a meghatározására. Egy ph/millivoltmérő segítségével megrajzolhatjuk az E vagy ph = f(térfogat) titrálási görbét, ha az indikátorelektród (és a referenciaelektród) E potenciálját a reagens hozzáadott térfogata függvényében ábrázoljuk. A ph-mérésbe és a nulla áramos potenciometriában ez a görbe S-alakú, a görbén található átcsapási (inflexiós) pont(ok) pedig az ekvivalenciapont(ok)nak felelnek meg. Rákapcsolt áramos potenciometria (polarizált elektródok) Ez a technika, mely újkeletűbb a nullaáramos potenciometriánál, általában két azonos, elektródot használ mérőelektródként. A két elektródon gyenge egyen- vagy váltakozó áram halad át, és a kapott potenciálkülönbséget mérjük. V ml (infl) 1. ábra: A titrálási görbe általános alakja E infl = a vizsgálandó anyag/mérőoldat egyenértékűsége = az előre beállított végpont értéke Függetlenül az alkalmazott észlelési technikától: Ha az ekvivalenciapontben elért ph vagy potenciál érték könynyen reprodukálható, és a titrálási görbe elegendően éles potenciál- vagy ph-változást mutat, akkor addig adagolhatjuk a mérőoldatot a vizsgálandó anyaghoz, amíg a mérőelektród nem jelzi a potenciál vagy a ph egyenértékpontját: ezt nevezzük előre beállított végponttitrálásnak. Elvégezhetjük úgy is az elemzést, hogy feleslegben adunk titrálószert az oldathoz, majd pedig grafikus vagy matematikai úton határozzuk meg az inflexiós pontot. Ezt nevezzük az inflexiós pont automatikus meghatározásának. ml Ezt a módszert főként redoxi mérésekre használják, különösen a jodometriában. A kapott titrálási görbék hasonlóak a nullaáramos potenciometria görbéihez, de az ekvivalenciaponthoz közeli potenciálértékek élesebben változnak. A dupla platina elektródok ideálisan használhatók az ilyen típusú titráláshoz. 4

5 A titrálás gyakorlati megfontolásai TITRÁLÁS: ELMÉLET ÉS GYAKORLAT A titrálás előkészítése A megfelelő reagens és közeg kiválasztása A kiválasztást a laboratóriumi szokások és a standard módszerek alapján kell elvégezni. A Hach alkalmazási útmutatói nagy segítséget jelenthetnek. A főbb mérőoldatok titrálási módszereit és kalibrálási eljárásait a függelékben ismertetjük. Sav-bázis reakciók Ezek általában meglehetősen egyszerűek, mivel jól ismert reagenseket használnak gyors és teljes reakciókban. Redoxi reakciók Ezek általában erősen savas közegben mennek végbe, és H + ionokat fogyasztanak. Ehhez kénsavat (H 2 SO 4 ) vagy foszforsavat (H 3 PO 4 ) tartalmazó közegre van szükség, amint az alábbi példákban látható: KMnO 4 (kálium-permanganát) Mn 2+ ionná az oxalát-ion (COO - ) 2 hatására 2 MnO C 2 O H + 10 CO Mn H 2 O Fe(II) oxidációja Fe(III) ionná a dikromát-ion (Cr 2 O 7 ) 2- hatására Amikor egy ismeretlen reakcióval van dolgunk, érdemes leírni az egyenletet, hogy megtaláljuk a sztöchiometrikus együtthatókat és megkapjuk a vizsgálandó anyag/mérőoldat fogyását. A komplexometriás és redoxi reakciókban a titrálás sikere nagymértékben függ attól, hogy betartják-e a megfelelő munkakörülményeket az EGÉSZ TITRÁLÁS ALATT. Ha rossz eredményeket kapunk, akkor ellenőrizzük a ph értékét, különösen a vizsgálat elején és végén. Általános szabályként elmondható, hogy ezekhez a reakciókhoz az inflexiós pontos titrálás használható ideálisan. Csapadékos reakciók Ezek a reakciók, amelyek viszonylag könnyen elvégezhetők, ezüst-nitrátot használnak és halogenidek (Cl -, Br -, I - ), illetve az Ag + kation titrálásával járnak. A reakció enyhén savas ph értéken megy végbe (kb. ph = 4,5), és néha szerves oldószereket, például etanolt (C 2 H 5 OH) vagy acetont (CH 3 COCH 3 ) adnak az oldathoz, hogy csökkentsék a képződött csapadék oldhatóságát, és javítsák a titrálási körülményeket. Amikor azonban hígított reagenst alkalmazunk (melynek a koncentrációja kisebb, mint 0,02 M), a csapadék képződése nem elég gyorsan megy végbe, ezért szükség lehet a munkakörülmények optimalizálására (például lassabban adagolják a reagenst az oldathoz). A hidroxidok lecsapódása érzékenyebb folyamat, mivel az oldékonyságuk a közeg ph-jától függően változhat. Komplexometriás reakciók Ezek a reakciók viszonylag jól definiált munkaközeget igényelnek, különösen a ph tekintetében. A titrálandó kation és a komplexképző szer (általában EDTA) között képződött komplexek titrálás közbeni stabilitása függ a közeg ph-jától, és egy adott ph-tartományban lesz optimális. Erre példa a Ca 2+ titrálása, amely ph 9 értéken zajlik puerközegben, amelynek összetétele figyelembe veszi az alkalmazott indikátor elektród viselkedését. Ezzel ellentétes a Zn 2+ vizsgálata, amelyet ugyanazzal a reagenssel titrálunk, de a ph-ja körülbelül 4,5. 5

6 A megfelelő elektród kiválasztása Az indikátor és referencia elektródokat a következő egyszerű kritériumok szerint kell kiválasztani: Olyan indikátor elektródot válasszunk, amely a vizsgált anyag vagy a mérőoldat (illetve mindkettő) növekvő vagy csökkenő koncentrációját méri. Olyan referencia elektródot válasszunk, amelynek a töltete nem okoz zavart a közegben. Az elektród oldata ugyanis a porózus csúcson keresztül nyomokban bejut a vizsgált oldatba. Olyan diafragmát válasszunk a referencia elektród számára, amelynek a viselkedése összeegyeztethető a helyes titrálás előre meghatározott kritériumaival. ph mérés Inkább gyakorlati, mint elméleti okokból fontos, hogy két különálló, vagy egy kombinált elektródot választunk. Az üvegelektródok használhatók leginkább indikátor elektródokként a ph mérés során. Ha az előre beállított végpont ph-ja nagyobb, mint ph = 9, akkor előnyösebb alacsony alkáli hibájú elektródot használni. Ha kombinált elektródot használnak, az Ag/AgCl referencia elem a legtöbb alkalmazáshoz megfelelő. Kivételt képez ez alól a TRIS (THAM) vagy Ag + ionok jelenlétében végzett sav-bázis titrálás. Ilyenkor jobb, ha egy kálium-nitrát hidas, dupla diafragmás referenciaelemet használunk, például hogy elkerüljük a Cl - vagy Ag + ionok zavaró hatását. A sav-bázis titrálás során végzett AgCl lecsapatás megváltoztatja a referencia elektród diafragmájának potenciálját, és így megváltozik az oldat ph-ja a kezdeti kalibráláshoz képest. Ennek hatására hibás eredményt kapunk az előre beállított végpontú titrálás során. Egy ezüst elektród amalgámozásával készíthető olyan higanyelektród, amely reagál az EDTA-ra. A titrálás megkezdése előtt néhány csepp hígított higany-edta komplexet kell az oldathoz adni. Az ezüstpálcás elektródot könnyen lehet amalgámozni, ha 2-3 másodpercig tiszta higanyba merítik, miután az ezüstpálcát finom szemcsés csiszolópapírral (BAO3 vagy BSC3 csíkokkal) megtisztították. Az ilyen elektród használatakor ügyelni kell arra, hogy a reaktív közegben ne legyen túl magas a Cl - ionok koncentrációja, mert azok reagálhatnak a higannyal. Ha a módszer megköveteli az NH 4 OH/NH 4 Cl puer használatát, akkor az NH 4 Cl helyettesíthető NH 4 NO 3 -tal. Csapadékos titrálások Ezt a leggyakoribbban ezüstmérésre használják. Ezüstelektródot használnak egy olyan referencia elektróddal, amely nem juttat be Cl - ionokat az oldatba. Érdemes kombinált elektródot választani. Használjon higany-szulfát referencia elektródot és K 2 SO 4 töltőoldatot, vagy pedig ezüstelektródot olyan referencia elektróddal együtt, amelynek az elektrolitikus hídja feltölthető például vezetőképes KNO 3 oldattal. A referencia elektród diafragmája A porózus csúcs diafragma tökéletesen megfelelő a legtöbb felhasználási célra. Az olyan oldatok esetében azonban, amelyek hajlamosak az eltömítésre vagy ha a csapadékos reakciók oldhatatlan kolloidok képződéséhez vezetnek, érdemesebb nagy folyadékáramú és nagy érintkezési felületű (hüvely vagy gyűrű alakú) diafragmákat alkalmazni. Az ilyen diafragmák minősége nagy mértékben felelős a mérés reprodukálhatóságért és néha a stabilitásáért is. Redoxi mérés Általában mindig ugyanolyan típusú elektródot használnak: egy platina lemez vagy drót elektródot, kombinálva vagy külön, rendszerint egy Ag/AgCl referencia elektróddal vagy kalomel referencia elektróddal együtt. Tömény kénsavban (víz kémiai oxigénigénye), higany-szulfát elektródot kell használni referencia elektródként. Rákapcsolt áramos potenciometria Ez a módszer olyan titrálási görbéket hoz létre, amelyek ideálisak az előre beállított végpontú titráláshoz. Nevezik holtponti végponttitrálásnak is, és főleg a jodometriában használják. A legismertebb felhasználási területe a Karl Fischer víztartalommeghatározás. Általában dupla platina elektródot használnak. Komplexometria A komplexometriában használatos színváltozó indikátorokhoz hasonlóan, az ilyen típusú reakciókban használt indikátor elektródnak szelektívnek kell lennie a titrált ionra, például Cu 2+ vagy Ca 2+. Ha nincs ilyen szelektív elektród, akkor az a megoldás, hogy az elemzett kationnak megfelelő fémből készült elektródot használnak. 6

7 TITRÁLÁS: ELMÉLET ÉS GYAKORLAT Az elektród karbantartása Az előre beállított végponttitrálás esetében fontos, hogy biztosak legyünk az alkalmazott elektródok pontosságában és megbízható reagálásában. A titrálás eredménye közvetlenül kapcsolódik az előre beállított ph-érték vagy potenciál elérése érdekében az oldathoz adott reagens mennyiségéhez, ebben az esetben nem a titrálási görbe alakja a meghatározó, mint az inflexiós pont automatikus észlelésekor. A ph mérési sorozat elvégzése előtt alapvető fontosságú, hogy gondosan kalibráljuk a végponti zónában használt elektródokat. Amikor egy sor azonos elemzést végzünk, az elektródok megbízhatóságát egy ellenőrző minta hozzáadásával ellenőrizzük (minőségellenőrzés), vagy pedig rendszeresen ellenőrizzük az elektród potenciált a titrálás elején. A platinaelektródokat nem lehet kalibrálni, de ismert jellemzőjű redoxi pueroldatokban, illetve minőségellenőrző minta segítségével is lehet őket ellenőrizni. Ugyanez vonatkozik a többi indikátor elektródra is. Ha röviden ellenőrizzük a mérés stabilitását, és hogy mennyi idő alatt éri el a rendszer a stabil értéket, hozzávetőleges képet kaphatunk a referencia elektród diafragmájának állapotáról. Az alapok Az elektród karbantartásával, tárolásával és felhasználásával kapcsolatban a használati utasítás nyújt teljes körű tájékoztatást. Kombinált üveg/referencia elektródok Amikor nem használják az elektródot, mindig az ajánlott oldatban kell tárolni. A telített KCl oldatos, kombinált ph-elektródok esetében a GK ANNEX elektród karbantartókészletet lehet használni, így az elektródok optimális állapotban maradnak. Referencia elektródok Rendszeresen töltse fel az elektródot a javasolt oldattal. Amikor nem használja, mindig az ajánlott oldatban tárolja az elektródot. Üvegelektródok Rendszeresen tisztítsa meg Renovo X vagy Renovo N tisztítószerrel. Amikor nem használja, tárolja desztillált vízben. Fémelektródok Az ezüstelektródokat csak desztillált vízben kell leöblíteni a titrálás után. A platinaelektródok esetében szükség lehet tisztításra, 3 μ vagy 0,3 μ finom szemcsés koptató anyaggal. A dupla platinaelektródok nem igényelnek különösebb karbantartást, de tisztán kell őket tartani. Miért használjuk az automatizált titrálást? A kézzel végzett titrálás, még ha elektrokémiai módszereket is használunk az egyenértékűségi pont kimutatására, mindig jelent bizonyos mértékű nehézséget az elemző személy számára, amely megoldása időigényes lehet. A kézi titrálás korlátjai közül az alábbiakat a legnehezebb leküzdeni: Nehéz lehet értelmezni a pontról pontra felvett görbét, ha egy vagy több rosszul definiált inflexiós pontot tartalmaz, A nem kontrollálható tényezőktől függő eredmények nem reprodukálhatók, Fennáll a veszélye, hogy a feljegyzést végző személyek hibáznak. Az automata titrátor képes mentesíteni az üzemeltetőt az ismétlődő és fáradságos feladatoktól, mint például: ellenőrzi az üzemeltető követelményeinek tökéletesen megfelelő titrálószert és a titrálásánál alkalmazott reakciót, helyesen megméri az elektródjelet, az alkalmazott módszertől függetlenül, garantálja a mérési eredmény biztonságát, hiszen a titrálási görbék kezelése megbízható és reprodukálható matematikai módszerekkel történik, a görbék pedig a mérőoldat térfogata alapján mért potenciál- vagy árampárok formájában tárolódnak a titrátor memóriájában, szükség esetén továbbítja a végeredményeket és a nyers adatokat, a biztonságos a jövőbeli nyomon követés érdekében. Egy modern automatizált titrátor nem csak egyszerűen egy eszköz, amellyel bármilyen titrálás elvégezhető. Sokkal inkább az olyan analitikai laboratóriumok elengedhetetlen eszköze, ahol fontosnak tartják a nyomon követhetőség minőségét és az eredmények rögzítését, a bevált laboratóriumi gyakorlatok (Good Laboratory Practice GLP) szerinti működés érdekében. 7

8 Előre beállított végpontú titrálás Az előre beállított végpontú titrálás egy népszerű analitikai módszer, de pontos és reprodukálható eredményeket csak akkor érhetünk el, ha teljesülnek bizonyos feltételek. Mikor válasszuk az előre beállított végpontú titrálást Ezen módszer során addig adagoljuk a mérőoldatot a vizsgálandó anyaghoz, amíg az indikátor elektród az előre beállított potenciál- vagy ph-értéket nem méri. A hozzáadott mérőoldat térfogata a vizsgálandó anyag és a mérőoldat közötti ekvivalenciapontnak felel meg. Ei+ΔE Ei Ei-ΔE A következő feltételek fontosak: a vizsgálandó anyag és a mérőoldat közötti reakció legyen gyors és teljes, legyen könnyű meghatározni az előre beállított végponti ph/potenciálértéket, megbízható indikátor elektród, az előre beállított végpont potenciál (vagy ph) értékének reprodukálhatósága az egyes vizsgálatok között, jól definiált titrálási görbe az ekvivalenciapont körül. 2A ábra Ei+ΔE V-ΔV V V+ΔV ml A 2A és 2B ábrákon látható, hogyan befolyásolja a titrálási görbe alakja az előre beállított végponti titrálás eredményeinek reprodukálhatóságát. Az ábrákon a két leggyakoribb titrálási görbe látható. A 2A ábra egy gyenge sav vagy bázis erős bázissal vagy savval való tipikus titrálási görbéje, a 2B ábra pedig egy erős sav/ erős bázis titrálási görbéjét mutatja. Ei Ei-ΔE Ezek az ábrák azt mutatják, hogy a 2A ábrán látható titrálás esetében sokkal szigorúbban kell kezelni az előre beállított végpont értékét és reprodukálhatóságát, ahhoz hogy azonos mértékű (v) elfogadható bizonytalansági szintet érjük el. 2B ábra V-ΔV V V+ΔV ml Ha teljesülnek ezek a feltételek, az előre beállított végponti titrálás igen hasznos módszer, mert: könnyen programozható, gyorsan kivitelezhető, gazdaságos, mivel csak a szükséges mennyiségű reagenst használja fel. A fent említett tényezők a Titralab termékcsalád minden titrátorára alkalmazhatók, amelyik képes előre beállított végponttitrálást végezni. 8

9 TITRÁLÁS: ELMÉLET ÉS GYAKORLAT A titrálási paraméterek meghatározása A minta jellemzői (tömeg vagy térfogat) és az eredmény megszerzéséhez szükséges numerikus adatok (mértékegység és a titrálószer koncentrációja) mellett további meghatározandó paraméterek a végpont tényleges értéke és a mérőoldat bürettájának kezelési adatai (kezdeti sebesség és lassulás végpont közelében). 3A Az előre beállított végponti érték meghatározása Ezzel kapcsolatban segíthet a tudományos szakirodalom, illetve alkalmazható az egyszerű laboratóriumi gyakorlat is. A phmérés esetén, ismerve a korábban alkalmazott indikátor színváltozási tartományát, hozzávetőlegesen meg lehet határozni az egyenértékűségi pont ph értékét. ml Egy másik módszer szerint először kézi vagy automatikus titrálást végzünk, megrajzolva a megfelelő görbét, illetve feljegyezve a kapott mérési pontokat. Ha megvizsgáljuk ezeket a pontokat, akkor könnyen meg tudjuk határozni a titrálási görbe inflexiós pontját, amely a legnagyobb mért potenciál- vagy ph-változásnak felel a titrálási térfogat adott lépései esetén (3. ábra). Ept f. ΔE max 3B Ha elég kicsik az adagolási lépések, akkor felírhatjuk az alábbi egyenletet: Ei (végpont) = E(i)+ΔEmax/2 Ha az E(i) a legnagyobb változás előtt feljegyzett utolsó potenciál (vagy ph) érték, akkor ez egyenértékű annak a potenciál vagy ph értéknek a meghatározásával, amely esetében a d(e vagy ph)/d(térfogat) titrálási görbe deriváltja eléri a maximumát. ΔV ΔV = Állandó ml A mérőoldat bürettája Titrálás közben a mérőoldat adagolásakor figyelembe kell venni az elektród reagálását, ami viszont a vizsgált anyag/mérőoldat reakciótól függ. A legtöbb esetben meg kell találni a kompromisszumot az elemzés sebessége és a kapott eredmény pontossága és megbízhatósága között. Fontos, hogy jól ismerjük a titrálási görbét és a titrátor működését, mert csak így tudjuk megfelelően meghatározni a büretta paramétereit. 3A ábra: a titrálási görbe 3B ábra: a feljegyzett pontsorozat ( = f(vol) a mérőoldat állandó adagolása esetén A titrátorban rendelkezésre álló funkcióktól függően lehet indítani a titrálást meglehetősen nagy adagolási sebességen, majd csökkenteni a sebességet, ahogy közeledünk a végpont felé, ahol a mért potenciál már gyorsabban változik. Ily módon a végpont túltitrálása nélkül optimalizálható a titrálási idő. 9

10 A mérőoldat adagolási módja A reagens inkrementális adagolása Ez az adagolási mód reprodukálja azt, amikor az elemzést végző személy kézi bürettával és ph/millivoltmérővel dolgozik: mérjük a mérési elektród/referencia elektród által jelzett potenciált, hozzáadunk egy adagot a reagens-térfogatból, megváruk, amíg stabilizálódik az elektródpotenciál, vagy amíg letelik a beállított maximális késleltetési idő, feljegyezzük a mért potenciálértéket és a bemért térfogatot, hozzáadjuk a reagens-térfogat következő adagját, és így tovább. A mérőoldat minden hozzáadott adagja egy pontot generál a titrálási görbén. Monoton adagolási mód Ez a legegyszerűbb üzemmód. Minden adagolási lépések azonos nagyságú, és a méretük nem függ a mért potenciál változásától (5. ábra). Ez a módszer korlátozza a hozzáadott adagok számát, és bizonyos esetekben minimalizálja a titrálási időt. a titrálási idő teljes körű szabályozása. Mivel az üzemeltető ismeri az adott térfogat eléréséhez szükséges lépések számát, nullára lehet állítani az egyes adagolási lépések közötti stabilizációs kritériumokat, és az egymást követő lépések csak a maximális stabilizációs időt veszik figyelembe, egyszerűbbé válik a titrálási görbe kézi feldolgozása (mivel a térfogat változása monoton, könnyebb lesz a későbbi adatfeldolgozás). Az ekvivalencia pontot azonban pontosabban meg lehet határozni az automatikus titrátorral, ha lecsökkentik az adagolási lépések méretét, ez viszont elkerülhetetlenül a titrálási idő megnövekedéséhez vezet. Dinamikus adagolási mód Az adagolási lépések mérete függ a görbe alakjától. Ezzel a módszerrel optimalizálható a titrálási idő és az egyenértékpont pontossága. Könnyen kezelhető, és ideális az olyan titrálásokhoz, amelyekben csak egy ekvivalenciapont, illetve egymástól jól elkülönülő ekvivalenciapontok vannak. Az ilyen reagens-adagolási módszer a következő esetekben megfelelő: egy új titrálási görbe gyors felvétele, olyan titrálások végzése, amelyekben nem szabályos a reakció sebessége. A leggyakoribb példák erre a kálium-permanganátot (KMnO 4 ) használó titrálások, mert a Mn 2+ ionok jelenléte katalizálja a reakció sebességét. Ezek az önkatalizáló titrálások reakciósebessége viszonylag lassú a titrálás elején, majd a titrálás előrehaladtával egyre gyorsabbá válnak, 5. ábra: Monoton adagolási mód Térfogat 6. ábra: Dinamikus adagolási mód Térfogat 10

11 TITRÁLÁS: ELMÉLET ÉS GYAKORLAT Számítások elvégzése a Titralab AT1000 termékcsaláddal Legyen szó akár az előre beállított végpont, akár az inflexiós pont kimutatásáról, tudnunk kell mérőoldat térfogatát, hogy megkapjuk a végeredményt, vagyis a koncentrációt az üzemeltető által kért mértékegységben. Az AT1000 termékcsalád tartalmazza a mérőoldat koncentrációjának kifejezésére használt gyakori nemzetközi mértékegységeket, a térfogati és gravimetrikus mértékegységeket, valamint a vonatkozó számítási képleteket. A moláris mértékegységek használata Manapság a mérőoldat koncentrációját a leggyakrabban moláris mértékegységben (mol/l vagy mmol/l) fejezik ki. A kezelő a megfelelő eredmény-együttható sorban egyszerűen beírja az reakcióegyenletet, hogy a beprogramozott módszer ismerje a reakció sztöchiometriáját. Íme néhány példa, hogy a folyamat érthetőbb legyen: Egy egyvegyértékű sav koncentrációjának meghatározása NaOH-os titrálással (1 H + reagál 1 OH - ionnal) - Együtthatók: 1 minta és 1 mérőoldat Egy kétvegyértékű sav koncentrációjának meghatározása (2 savfunkciót titrálunk egyszerre (H 2 SO 4 reagál NaOH-dal)) - Együtthatók: 1 minta és 2 mérőoldat Egy kétértékű kation koncentrációjának meghatározása EDTA-val való titrálással (Ca 2+ iont titrálunk EDTA-val). - Együtthatók: 1 minta és 1 mérőoldat A normalitási mértékegységek használata A kérdéses anyag oxidációs számának változásán alapuló normalitás egyre kevésbé népszerű. Ezen elv szerint egy 0,1 M (vagy 0,1 mol/l) koncentrációjú KMnO 4 oldat 0,5 N (vagy 0,5 ekv/l) normalitású lesz, mivel a legtöbb redoxi egyenletben az oxidációs állapota +7-ről +2-re változik. Ebben az esetben, az együttható beírásakor figyelembe kell venni az alkalmazott reakcióban kicserélt elektronok számát. Ezért nem ajánlatos keverni a moláris és az egyenértékűségi mértékegységeket. A fentiek csak egyszerű útmutató irányelvek. Az alkalmazási leírások és műszaki szolgálatunk részletesebb választ adnak a konkrét problémákra. Az egyenletek használata A speciális programozási utasításokat követve az eredményt megkaphatjuk az SI-rendszeren kívüli mértékegységben, illetve egy összetett számítás eredményeként is. Mintakezelés Elemzés előtt a mintát gyakran egy adott térfogatú oldószerben oldják fel mérőpohárban. Azután ennek a térfogatnak egy egységnyi részét használják a titráláshoz. Az automatikus titrátor az eredményt a minta egységben számítja ki, miután megadtuk a minta mennyiségét. Egy kétértékű kation meghatározása a hidroxidjának kicsapásával (Ni 2+ iont titrálunk NaOH-dal). - Együtthatók: 1 minta és 2 mérőoldat Ezek után a moláris tömeg megadásával könnyen megkapjuk az eredményt térfogat vagy tömeg mértékegységben. 11

12 Következtetés Az automatikus titrálás továbbra is az egyik legnépszerűbb elemzési eljárás, amely széles körben alkalmazható a következőkre: savak elemzése vizes vagy nemvizes közegben, redoxi titrálás csapadékos reakciók, komplexometria. Mivel ezt az eljárást viszonylag egyszerű használni, és a költséghatékony módon állítható össze és működtethető, ezért a legtöbb iparágban megtalálható: élelmiszer- és italgyártás, vízvizsgálat, petrolkémia, gyógyszeripar, felületkezelés és galvanizáló fürdők.. A Titralab AT1000 termékcsalád új automata titrálói kiválóan helytállnak mindezen műszaki területeken. A készülékekhez mellékeljük a megfelelő alkalmazáscsomagokat, amelyek tartalmazzák az azonnali kezdéshez szükséges összes tartozékot és elektródot. A részletek, valamint a rendelkezésre álló legfrissebb információk és frissítések megtalálhatók a honlapunkon. Titralab AT1000 termékcsalád Az AT1000 modell egy egyérintéses, automata titrálórendszer, előre beállított módszerekkel a gyors, pontos és megbízható eredményekért. Használatra kész alkalmazáskészletek a víz, élelmiszer, ital és petrolkémiai paraméterek meghatározásához Előre beprogramozott, optimalizált analitikai módszerek Beépített GLP funkciók az eredmények és a kalibrálások nyomon követhetősége érdekében Az adatok és módszerek egyszerűen exportálhatók USB adathordozóra (Excel kompatibilis formátumban) Dedikált KF1000 Karl Fischer modell is rendelhető DOC Jan15

1. Kolorimetriás mérések A sav-bázis indikátorok olyan "festékek", melyek színüket a ph függvényében

1. Kolorimetriás mérések A sav-bázis indikátorok olyan festékek, melyek színüket a ph függvényében ph-mérés Egy savat vagy lúgot tartalmazó vizes oldat savasságának vagy lúgosságának erősségét a H + vagy a OH - ion aktivitással lehet jellemezni. A víz ionszorzatának következtében a két ion aktivitása

Részletesebben

Klasszikus analitikai módszerek:

Klasszikus analitikai módszerek: Klasszikus analitikai módszerek: Azok a módszerek, melyek kémiai reakciókon alapszanak, de az elemzéshez csupán a tömeg és térfogat pontos mérésére van szükség. A legfontosabb klasszikus analitikai módszerek

Részletesebben

KONDUKTOMETRIÁS MÉRÉSEK

KONDUKTOMETRIÁS MÉRÉSEK A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin

Részletesebben

Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás.

Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás. Részletes tematika (14 hetes szorgalmi időszak figyelembe vételével): 1. hét (2 óra) Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás. Kémiai alapjelenségek ismétlése, sav-bázis,

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai Megoldások: 1. Mekkora a ph-ja annak a sósavoldatnak, amelyben a kloridion koncentrációja 0,01 mol/dm 3? (ph =?,??) A sósav a hidrogén-klorid (HCl) vizes oldata, amelyben a HCl teljesen disszociál, mivel

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Környezetvédelemben felhasznált elektroanalitikai módszerek csoportosítása Potenciometria (ph, Li +, F - ) Voltametria (oldott oxigén) Coulometria

Részletesebben

TÁPANYAGGAZDÁLKODÁS. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

TÁPANYAGGAZDÁLKODÁS. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 TÁPANYAGGAZDÁLKODÁS Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Előadás áttekintése 6. A műtrágyák és kijuttatásuk agronómiai ill. agrokémiai szempontjai 6.1. A műtrágyák

Részletesebben

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba 6. A TALAJ KÉMIAI TULAJDONSÁGAI Dr. Varga Csaba Oldódási és kicsapódási reakciók a talajban Fizikai oldódás (bepárlás után a teljes mennyiség visszanyerhető) NaCl Na + + Cl Kémiai oldódás Al(OH) 3 + 3H

Részletesebben

Thermo Orion 925. VILLÁM-titráló. Semlegesítési zóna. a) 1,0 másodperc b) 2,0 másodperc c) 3,0 másodperc d) 4,0 másodperc

Thermo Orion 925. VILLÁM-titráló. Semlegesítési zóna. a) 1,0 másodperc b) 2,0 másodperc c) 3,0 másodperc d) 4,0 másodperc Thermo Orion 925 VILLÁM-titráló Semlegesítési zóna a) 1,0 másodperc b) 2,0 másodperc c) 3,0 másodperc d) 4,0 másodperc 1. deriv. 1. deriv. 1. deriv. 1. deriv. TARTALOMJEGYZÉK Thermo Orion Útmutató a VILLÁM-titrálásokhoz

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás VI

Általános és szervetlen kémia Laborelıkészítı elıadás VI Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók

Részletesebben

b./ Hány gramm szénatomban van ugyanannyi proton, mint 8g oxigénatomban? Hogyan jelöljük ezeket az anyagokat? Egyforma-e minden atom a 8g szénben?

b./ Hány gramm szénatomban van ugyanannyi proton, mint 8g oxigénatomban? Hogyan jelöljük ezeket az anyagokat? Egyforma-e minden atom a 8g szénben? 1. Az atommag. a./ Az atommag és az atom méretének, tömegének és töltésének összehasonlítása, a nukleonok jellemzése, rendszám, tömegszám, izotópok, nuklidok, jelölések. b./ Jelöld a Ca atom 20 neutront

Részletesebben

A TITRÁLÁSOK GYAKORLATA

A TITRÁLÁSOK GYAKORLATA A TITRÁLÁSOK GYAKORLATA készült a DE és SZTE Szervetlen és Analitikai Kémiai tanszékeinek oktatási segédanyagai, illetve Lengyel B.: Általános és Szervetlen Kémiai Praktikum alapján Előkészületek a térfogatos

Részletesebben

Minőségi kémiai analízis

Minőségi kémiai analízis Minőségi kémiai analízis Szalai István ELTE Kémiai Intézet 2016 Szalai István (ELTE Kémiai Intézet) Minőségi kémiai analízis 2016 1 / 32 Lewis-Pearson elmélet Bázisok Kemény Lágy Határestek H 2 O, OH,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal Országos Középiskolai Tanulmányi Verseny Kémia I. kategória 3. forduló Budapest, 2015. március 21. A verseny döntője három mérési feladatból áll. Mindhárom feladat szövege, valamint

Részletesebben

A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni!

A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni! Megoldások A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni! **********************************************

Részletesebben

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL ELTE Szerves Kémiai Tanszék A VÍZ OLDOTT SZENNYEZŐANYAG -TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL Bevezetés A természetes vizeket (felszíni

Részletesebben

A tételhez használható segédeszközöket a vizsgaszervező biztosítja. Jogszabályi változás esetén a vizsgaszervező aktualizálja a mellékleteket.

A tételhez használható segédeszközöket a vizsgaszervező biztosítja. Jogszabályi változás esetén a vizsgaszervező aktualizálja a mellékleteket. A vizsgafeladat ismertetése: Elmagyarázza, és konkrét példákon bemutatja a legfontosabb vegyipari laboratóriumi műveleteket, bemutatja azok végrehajtásának körülményeit, az eredmények kiértékelését Elmagyarázza,

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

v1.04 Analitika példatár

v1.04 Analitika példatár Bevezető A példatár azért készült, hogy segítséget kapjon az a tanuló, aki eredményesen akarja elsajátítatni az analitikai számítások alapjait. Minden feladat végén dőlt karakterekkel megtalálható az eredmény.

Részletesebben

KÉMIA 10. Osztály I. FORDULÓ

KÉMIA 10. Osztály I. FORDULÓ KÉMIA 10. Osztály I. FORDULÓ 1) A rejtvény egy híres ember nevét és halálának évszámát rejti. Nevét megtudod, ha a részmegoldások betűit a számozott négyzetekbe írod, halálának évszámát pedig pici számolással.

Részletesebben

ph mérés indikátorokkal

ph mérés indikátorokkal ph mérés indikátorokkal Általános tudnivalók a ph értékéről és méréséről Egy savat vagy lúgot tartalmazó vizes oldat savasságának vagy lúgosságának erősségét a H + vagy a OH - ion koncentrációval lehet

Részletesebben

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014 Speciálkollégium Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP 4.2.4.A/2-11-1-2012-0001 Nemzeti Kiválóság Program Szeged 2014 A beton öregedése A öregedés egy olyan természetes folyamat

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK 9. osztály A változat Beregszász 2005 A munkafüzet megjelenését a Magyar Köztársaság Oktatási Minisztériuma támogatta A kiadásért felel: Orosz Ildikó Felelıs szerkesztı:

Részletesebben

Jellemző redoxi reakciók:

Jellemző redoxi reakciók: Kémia a elektronátmenettel járó reakciók, melynek során egyidejű elektron leadás és felvétel történik. Oxidáció - elektron leadás - oxidációs sám nő Redukció - elektron felvétel - oxidációs sám csökken

Részletesebben

KÉMIA TANMENETEK 7-8-9-10 osztályoknak

KÉMIA TANMENETEK 7-8-9-10 osztályoknak KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK KÉMIA Elvárt kompetenciák: I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK induktív következtetés (egyedi tényekből az általános törvényszerűségekre) deduktív következtetés (az általános törvényszerűségekből

Részletesebben

2 képzıdése. értelmezze Reakciók tanult nemfémekkel

2 képzıdése. értelmezze Reakciók tanult nemfémekkel Emelt szint: Az s mezı fémei 1. Az alkálifémek és alkáliföldfémek összehasonlító jellemzése (anyagszerkezet, kémiaiés fizikai jellemzık, elıfordulás, elıállítás, élettani hatás). Használja a periódusos

Részletesebben

OKTATÁSI SEGÉDLET. az Általános kémia III. tantárgy laboratóriumi gyakorlatához

OKTATÁSI SEGÉDLET. az Általános kémia III. tantárgy laboratóriumi gyakorlatához OKTATÁSI SEGÉDLET az Általános kémia III. tantárgy laboratóriumi gyakorlatához II. éves nappali tagozatos, környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár Ildikó főiskolai tanár DE-MK,

Részletesebben

Azonosító jel: KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2006. október 31. 14:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2006. október 31. 14:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2006. október 31. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 31. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából

Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon, az alábbi kompetenciák meglétét kell bizonyítania: - a természettudományos

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Klasszikus analitikai módszerek Csapadékképzéses reakciók: Gravimetria (SZOE, víztartalom), csapadékos titrálások (szulfát, klorid) Sav-bázis

Részletesebben

VÍZKEZELÉS Kazántápvíz előkészítés ioncserés sómentesítéssel

VÍZKEZELÉS Kazántápvíz előkészítés ioncserés sómentesítéssel A víz keménysége VÍZKEZELÉS Kazántápvíz előkészítés ioncserés sómentesítéssel A természetes vizek alkotóelemei között számos kation ( pl.: Na +, Ca ++, Mg ++, H +, K +, NH 4 +, Fe ++, stb) és anion (Cl

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. A katalizátorok a kémiai reakciót gyorsítják azáltal, hogy az aktiválási energiát csökkentik, a reakció végén változatlanul megmaradnak. 2. Biológiai

Részletesebben

Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás

Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Redoxi reakciók Például: 2Mg + O 2 = 2MgO Részfolyamatok:

Részletesebben

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban

Részletesebben

Zöld Kémiai Laboratóriumi Gyakorlatok. A ciklohexén előállítása

Zöld Kémiai Laboratóriumi Gyakorlatok. A ciklohexén előállítása Zöld Kémiai Laboratóriumi Gyakorlatok A ciklohexén előállítása Budapesti Zöld Kémia Laboratórium Eötvös Loránd Tudományegyetem, Kémiai Intézet Budapest 2009 (Utolsó mentés: 2009.02.09.) A gyakorlat célja

Részletesebben

1. ábra. Jellegzetes heteropolisav-szerkezetek, a Keggin-, illetve Dawson-anion

1. ábra. Jellegzetes heteropolisav-szerkezetek, a Keggin-, illetve Dawson-anion A szerves kémiai reakciók igen nagy hányadában egyes statisztikai adatok szerint kb. 80%-ában valamilyen katalizátorra van szükség a megfelelő konverzió eléréséhez. Eltekintve a katalitikus redukciótól,

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes

Részletesebben

a NAT-1-1525/2007 számú akkreditálási ügyirathoz

a NAT-1-1525/2007 számú akkreditálási ügyirathoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1525/2007 számú akkreditálási ügyirathoz A Vas Megyei Mezõgazdasági Szakigazgatási Hivatal Növény- és Talajvédelmi Igazgatóság Talajvédelmi Laboratórium

Részletesebben

ismerd meg! A galvánelemekrõl II. rész

ismerd meg! A galvánelemekrõl II. rész annyi pusztulás után. A mérnöki munkában a legfõbb szempont a megoldás, ez az elsõ lépés, a mellékszempontok feledésbe mennek. A második világháború alatt Magyarországon nehéz problémák adódtak a telefonberendezések

Részletesebben

A Talaj-és Növényvizsgáló Laboratórium szolgáltatásai

A Talaj-és Növényvizsgáló Laboratórium szolgáltatásai A Talaj-és Növényvizsgáló Laboratórium szolgáltatásai TALAJVIZSGÁLAT Szűkített talajvizsgálat paraméterei: - ph(kcl) és/vagy ph(h2o) - nitrit-nitrát nitrogén-tartalom (NO2-+NO3-)-N - P2O5 (foszfortartalom)

Részletesebben

2. változat. 6. Jelöld meg, hány párosítatlan elektronja van alapállapotban a 17-es rendszámú elemnek! A 1; Б 3; В 5; Г 7.

2. változat. 6. Jelöld meg, hány párosítatlan elektronja van alapállapotban a 17-es rendszámú elemnek! A 1; Б 3; В 5; Г 7. 2. változat 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Kémia OKTV döntő I. kategória, 1. feladat Budapest, 2012. március 31. Titrálások hipoklorittal

Kémia OKTV döntő I. kategória, 1. feladat Budapest, 2012. március 31. Titrálások hipoklorittal Oktatási Hivatal KÓDSZÁM: Kémia OKTV döntő I. kategória, 1. feladat Budapest, 2012. március 31. Titrálások hipoklorittal A hipoklorition erélyes oxidálószer. Reakciói általában gyorsan és egyértelmű sztöchiometria

Részletesebben

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás

Részletesebben

Műanyagok galvanizálása

Műanyagok galvanizálása BAJOR ANDRÁS Dr. FARKAS SÁNDOR ORION Műanyagok galvanizálása ETO 678.029.665 A műanyagok az ipari termelés legkülönbözőbb területein speciális tulajdonságaik révén kiszorították az egyéb anyagokat. A hőre

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAT-1-1608/2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAT-1-1608/2014 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAT-1-1608/2014 nyilvántartási számú akkreditált státuszhoz A Synlab Hungary Kft. Synlab Kecskeméti Környezetanalitikai Laboratórium (6000

Részletesebben

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY A megyei (fővárosi) forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:...

Részletesebben

A korrózió elleni védekezés módszerei. Megfelelő szerkezeti anyag alkalmazása

A korrózió elleni védekezés módszerei. Megfelelő szerkezeti anyag alkalmazása A korrózió elleni védekezés módszerei Megfelelő szerkezeti anyag kiválasztása és alkalmazása Elektrokémiai védelem A korróziós közeg agresszivitásának csökkentése (inhibitorok alkalmazása) Korrózió-elleni

Részletesebben

800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése

800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése 8 gyak. Konduktometria A gyakorlat célja: Az oldat ionos alkotóinak összegző, nem specifikus mérése (a víz tisztasága), a konduktometria felhasználása titrálás végpontjelzésére. A módszer elve Elektrolitok

Részletesebben

B. feladat elvégzendő és nem elvégzendő kísérletei, kísérletleírásai. 1. Cink reakciói

B. feladat elvégzendő és nem elvégzendő kísérletei, kísérletleírásai. 1. Cink reakciói B. feladat elvégzendő és nem elvégzendő kísérletei, kísérletleírásai 1. Cink reakciói Három kémcsőbe öntsön rendre 2cm 3-2cm 3 vizet, 2 mol/dm 3 koncentrációjú sósavat, rézszulfát-oldatot, és mindegyik

Részletesebben

A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3

A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3 A fém kezelésének optimalizálása zománcozás eltt. Dr. Reiner Dickbreder, KIESOV GmbH EMAIL Mitteilungen, 2005/3 (Fordította: Dr. Való Magdolna) A zománcozás eltti elkezelés egy igen fontos folyamat. A

Részletesebben

Elektrolitok nem elektrolitok, vezetőképesség mérése

Elektrolitok nem elektrolitok, vezetőképesség mérése Elektrolitok nem elektrolitok, vezetőképesség mérése Név: Neptun-kód: mérőhely: Labor előzetes feladatok A vezetőképesség változása kémiai reakció közben 10,00 cm 3 ismeretlen koncentrációjú sósav oldatához

Részletesebben

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel 3. Elem, vegyület, keverék, koncentráció, hígítás elem: azonos rendszámú atomokból épül fel vegyület: olyan anyag, amelyet két vagy több különbözı kémiai elem meghatározott arányban alkot, az alkotóelemek

Részletesebben

ZÁRÓJELENTÉS. Fény hatására végbemenő folyamatok önszerveződő rendszerekben

ZÁRÓJELENTÉS. Fény hatására végbemenő folyamatok önszerveződő rendszerekben ZÁRÓJELENTÉS Fény hatására végbemenő folyamatok önszerveződő rendszerekben Jól megválasztott anyagok elegyítésekor, megfelelő körülmények között másodlagos kötésekkel összetartott szupramolekuláris rendszerek

Részletesebben

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ Oktatási ivatal A versenyző kódszáma: A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja Munkaidő: 300 perc Elérhető pontszám: 100 pont KÉMIÁBÓL I. kategóriában

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

Feladatok haladóknak

Feladatok haladóknak Feladatok haladóknak Szerkesztő: Magyarfalvi Gábor és Varga Szilárd (gmagyarf@chem.elte.hu, szilard.varga@bolyai.elte.hu) A formai követelményeknek megfelelő dolgozatokat a következő címen várjuk 2009.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. október 22. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

A kémiai egyensúlyi rendszerek

A kémiai egyensúlyi rendszerek A kémiai egyensúlyi rendszerek HenryLouis Le Chatelier (1850196) Karl Ferdinand Braun (18501918) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 011 A kémiai egyensúly A kémiai egyensúlyok

Részletesebben

A kén tartalmú vegyületeket lúggal főzve szulfid ionok keletkeznek, amelyek az Pb(II) ionokkal a korábban tanultak szerint fekete csapadékot adnak.

A kén tartalmú vegyületeket lúggal főzve szulfid ionok keletkeznek, amelyek az Pb(II) ionokkal a korábban tanultak szerint fekete csapadékot adnak. Egy homokot tartalmazó tál tetejére teszünk a pépből egy kanállal majd meggyújtjuk az alkoholt. Az alkohol égésekor keletkező hőtől mind a cukor, mind a szódabikarbóna bomlani kezd. Az előbbiből szén az

Részletesebben

Vöröskáposztalé tartalmú természetes indikátor jellemzése és analitikai alkalmazhatósága

Vöröskáposztalé tartalmú természetes indikátor jellemzése és analitikai alkalmazhatósága X. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 27. május 26 27 Vöröskáposztalé tartalmú természetes indikátor jellemzése és analitikai alkalmazhatósága Szerző: Albert Emőke Babeş- Bolyai Tudományegyetem,

Részletesebben

A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja

A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja Általános és szervetlen kémia Laborelőkészítő előadás VII-VIII. (október 17.) Az elektródok típusai A standardpotenciál meghatározása a cink példáján Számítási példák galvánelemekre Koncentrációs elemek

Részletesebben

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6.

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. 1 Az anyagválasztás szempontjai: Rendszerkövetelmények: hőmérséklet

Részletesebben

Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása

Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása Környezet minősítése gyakorlat 1 Az oldott oxigén mérés módszereinek, eszközeinek tanulmányozása Amint azt tudjuk az oldott oxigéntartalom (DO) nagy jelentőségű a felszíni vizek és néhány esetben a szennyvizek

Részletesebben

Ionszelektív elektródok A HANNA Instruments legújabb generációját képviselõ mérõmûszerekhez

Ionszelektív elektródok A HANNA Instruments legújabb generációját képviselõ mérõmûszerekhez A HANNA Instruments legújabb generációját képviselõ mérõmûszerekhez Az ionszelektív elektródok fajtái A HANNA Instruments ionszelektív elektródjai három általános kategóriába sorolhatók felépítésük alapján.

Részletesebben

Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás

Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Kémiai reakció Kémiai reakció: különböző anyagok kémiai összetételének, ill. szerkezetének

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-0988/2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-0988/2014 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-0988/2014 nyilvántartási számú akkreditált státuszhoz A Mertcontrol Metric Minősítő, Fejlesztő és Szolgáltató Korlátolt Felelősségű

Részletesebben

Kémia OKTV 2005/2006. II. forduló. Az I. kategória feladatlapja

Kémia OKTV 2005/2006. II. forduló. Az I. kategória feladatlapja Kémia OKTV 2005/2006 II. forduló Az I. kategória feladatlapja Kémia OKTV 2005/2006. II. forduló 2 T/15/A I. FELADATSOR Az I. feladatsorban húsz kérdés szerepel. Minden kérdés után 5 választ tüntettünk

Részletesebben

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 FÖLDMŰVELÉSTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Előadás Biológiai tényezők és a talajművelés Szervesanyag gazdálkodás I. A talaj szerves anyagai, a szervesanyagtartalom

Részletesebben

Modern műszeres analitika számolási gyakorlat Galbács Gábor

Modern műszeres analitika számolási gyakorlat Galbács Gábor Modern műszeres analitika számolási gyakorlat Galbács Gábor Feladatok a mintavétel, spektroszkópia és automatikus tik analizátorok témakörökből ökből AZ EXTRAKCIÓS MÓDSZEREK Alapfogalmak megoszlási állandó:

Részletesebben

A talajsavanyodás által előidézett egyéb talajdegradációs folyamatok és az ezekre vonatkozó indikátorok kidolgozása Bevezetés Anyag és módszer

A talajsavanyodás által előidézett egyéb talajdegradációs folyamatok és az ezekre vonatkozó indikátorok kidolgozása Bevezetés Anyag és módszer A talajsavanyodás által előidézett egyéb talajdegradációs folyamatok és az ezekre vonatkozó indikátorok kidolgozása OTKA Posztdoktori (D 048592) zárójelentés Bevezetés A talajsavanyodás stádiuma a talaj

Részletesebben

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához

Részletesebben

ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK

ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK Egy tetszőleges vezetőn átfolyó áramerősség (I) és a vezetőn eső feszültség (U) között az ellenállás teremt kapcsolatot (ld. középiskolai fizika): U I R R

Részletesebben

Méréstechnika. Vízben zavarosság, vezetőképesség és oldott oxigéntartalom mérése

Méréstechnika. Vízben zavarosság, vezetőképesség és oldott oxigéntartalom mérése Méréstechnika Vízben zavarosság, vezetőképesség és oldott oxigéntartalom mérése Bagladi Péter (MBGKF1) (vezetőképesség) Kapocsi Dániel (M885FC) (zavarosság) Kovács Ádám (HIWQUO) (zavarosság) Molnár Tamás

Részletesebben

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ BSC ANYAGMÉRNÖK SZAK VEGYIPARI TECHNOLÓGIAI SZÁMÁRA KÖTELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2016 1 Tartalomjegyzék 1. Tantárgyleírás,

Részletesebben

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban?

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban? A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja KÉMIA (II. kategória) I. FELADATSOR 1. Melyik az az elem, amelynek csak egy természetes izotópja van? A) Na

Részletesebben

A mustok összetételének változtatása

A mustok összetételének változtatása Mustjavítás A mustok összetételének változtatása Savtartalom növelése meghatározott régiókban és években alkalmazható az EU országaiban Száraz és meleg éghajlaton vagy évjáratokban válhat szükségessé lelágyulásra

Részletesebben

7.4. Tömény szuszpenziók vizsgálata

7.4. Tömény szuszpenziók vizsgálata ahol t a szuszpenzió, t o a diszperzióközeg kifolyási ideje, k a szuszpenzió, k o pedig a diszperzióközeg sárásége. Kis szuszpenziókoncentrációnál a sáráségek hányadosa elhanyagolható. A mérési eredményeket

Részletesebben

01/2008:40202 4.2.2. MÉRŐOLDATOK

01/2008:40202 4.2.2. MÉRŐOLDATOK Ph.Hg.VIII. Ph.Eur.5.6-6.0-1 4.2.2. MÉRŐOLDATOK 01/2008:40202 A mérőoldatokat a szokásos kémiai analitikai eljárások szabályai szerint készítjük. A mérőoldatok előállításához használt eszközök megfelelő

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A versenyző kódszáma: 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. kategória FELADATLAP Munkaidő: 300 perc Elérhető pontszám: 100 pont ÚTMUTATÓ

Részletesebben

29. Sztöchiometriai feladatok

29. Sztöchiometriai feladatok 29. Sztöchiometriai feladatok 1 mól gáz térfogata normál állapotban (0 0 C, légköri nyomáson) 22,41 dm 3 1 mól gáz térfogata szobahőmérsékleten (20 0 C, légköri nyomáson) 24,0 dm 3 1 mól gáz térfogata

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Aminosavak, peptidek, fehérjék

Aminosavak, peptidek, fehérjék Aminosavak, peptidek, fehérjék Az aminosavak a fehérjék építőkövei. A fehérjék felépítésében mindössze 20- féle aminosav vesz részt. Ezek általános képlete: Az aminosavakban, mint arra nevük is utal van

Részletesebben

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára KÉMIA Kémia a gimnáziumok 9 10. évfolyama számára A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek

Részletesebben

OKTATÁSI SEGÉDLET Környezeti analízis II. c.

OKTATÁSI SEGÉDLET Környezeti analízis II. c. OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár

Részletesebben

Témavezető neve Földiné dr. Polyák lára.. A téma címe Komplex vízkezelés természetbarát anyagokkal A kutatás időtartama: 2003-2006

Témavezető neve Földiné dr. Polyák lára.. A téma címe Komplex vízkezelés természetbarát anyagokkal A kutatás időtartama: 2003-2006 Témavezető neve Földiné dr. Polyák lára.. A téma címe Komplex vízkezelés természetbarát anyagokkal A kutatás időtartama: 2003-2006 A kutatás során laboratóriumi kísérletekben komplex ioncserés és adszorpciós

Részletesebben

Tápanyagfelvétel, tápelemek arányai. Szőriné Zielinska Alicja Rockwool B.V.

Tápanyagfelvétel, tápelemek arányai. Szőriné Zielinska Alicja Rockwool B.V. Tápanyagfelvétel, tápelemek arányai Szőriné Zielinska Alicja Rockwool B.V. Vízfelvétel és mozgás a növényben Vízfelvételt befolyásolja: besugárzás (növény) hőmérséklete Páratartalom (% v. HD) EC (magas

Részletesebben

feladatmegoldok rovata

feladatmegoldok rovata feladatmegoldok rovata Kémia K. 588. Az 1,2,3 al megszámozott kémcsövekben külön-külön ismeretlen sorrendben a következő anyagok találhatók: nátrium-karbonát, nátrium-szulfát, kalciumkarbonát. Döntsd el,

Részletesebben

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák

Részletesebben

(11) Lajstromszám: E 007 802 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 802 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007802T2! (19) HU (11) Lajstromszám: E 007 802 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 06 79176 (22) A bejelentés napja:

Részletesebben

AGROKÉMIA ÉS A NÖVÉNYTÁPLÁLÁS ALAPJAI Oktatási segédlet a műtrágyák felismeréséhez

AGROKÉMIA ÉS A NÖVÉNYTÁPLÁLÁS ALAPJAI Oktatási segédlet a műtrágyák felismeréséhez PANNON EGYETEM GEROGIKON KAR KESZTHELY NÖVÉNYTERMESZTÉSTANI ÉS TALAJTANI TANSZÉK AGROKÉMIA ÉS A NÖVÉNYTÁPLÁLÁS ALAPJAI Oktatási segédlet a műtrágyák felismeréséhez Készítették: Dr. habil. Sárdi Katalin

Részletesebben

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 4 5 6 7 8 9 0 D C C D D A B D D 1 D B E B D D D A A A A B C A D A (C) A C A B XV.. TÁBLÁZATKIEGÉSZÍTÉS Az ammónia és a salétromsav

Részletesebben

OTKA Nyilvántartási szám: T 043410 ZÁRÓJELENTÉS

OTKA Nyilvántartási szám: T 043410 ZÁRÓJELENTÉS OTKA Nyilvántartási szám: T 043410 ZÁRÓJELENTÉS Témavezető neve: Dr. Vágó Imre A téma címe: Talajok könnyen felvehető bórkészletének meghatározására alkalmas kivonószer kidolgozása, az egyes talajtulajdonságok

Részletesebben

Csermák Mihály: Kémia 8. Panoráma sorozat

Csermák Mihály: Kémia 8. Panoráma sorozat Csermák Mihály: Kémia 8. Panoráma sorozat Kedves Kollégák! A Panoráma sorozat kiadványainak megalkotása során két fő szempontot tartottunk szem előtt. Egyrészt olyan tankönyvet szerettünk volna létrehozni,

Részletesebben