Sejt, sejtmembrán, endoplazmás reticulum
|
|
- Magda Barna
- 6 évvel ezelőtt
- Látták:
Átírás
1 Sejt, sejtmembrán, endoplazmás reticulum Dr. Röhlich Pál prof. emeritus ÁOK 2018/2019 I. félév:
2 Az élő szervezetek sejtekből épülnek fel. A sejt az a legkisebb strukturális és funkcionális egység, amely még az alapvető életjelenségeket mutatja, önálló életre képes. (Genetikai programm alapján makromolekulákat szintetizál, a környezetből anyagokat vesz fel, melyeket átalakítva saját felépítésére valamint energia kinyerésére használ fel, alkalmazkodik a környezetéhez, aktív mozgásokat végez, önmagát reprodukálni képes a sejtosztódás révén, miközben genetikai programját hibátlanul átadja, környezetéből felvett részecskéket lebontja, a környezetből felvett jelinformációkat felveszi és azokra válaszol, ) Méretegységek: a sejtek mikroszkópikus kicsinységűek, ezért méretük más méretegységekkel jellemezhető: 1 mikrometer (μm) = 10-3 mm (10-6 m) 1 nanometer (nm) = 10-3 μm (10-9 m) A sejt általában Kétféle sejttípus: prokaryota, primitív sejt, legfontosabb képviselője a baktérium (tok, sejtmembrán, nincsenek sejtorganellumok, sejtmagnak csak előalakja van: pro-karyon, cirkuláris DNS). Nagyság 1 μm. eukaryota, bonyolult szerkezet, valódi sejtmag ( eu-karyon ), sejtorganellumok, membránnal határolt kompartimentumok, nagyság 6-50 μm között. Az emberi szervezet is eukaryota sejtekből áll. Sejttan (cytologia): a sejttel, elsősorban annak szerkezetével foglalkozó klasszikus tudományág Sejtbiológia: integratív tudomány, összesíti, egységbe foglalja a sejtre vonatkozó strukturális, molekuláris, biokémiai, élettani, biofizikai stb. ismereteket. Struktúra és funkció egysége. Oktatása egyetemünkön.
3 Pro- és eukaryota sejt méretbeli különbsége Makrophag (eukaryota) sejt phagocytált baktériumokkal (prokaryota) baktérium (prokaryota) makrophag (eukaryota) Az eukaryota sejt tömege a prokaryota sejtjével összehasonlítva több ezerszeres lehet!
4 Idealizált állati sejt komponensei (fény- és elektronmikroszkópos leltár )
5 Sejtmembrán (plazmamembrán) A sejtet igen vékony, molekuláris méretű hártya (sejtmembrán) borítja be, mely elhatárolja a környezete felé, és biztosítja a környezetétől eltérő belső miliőjét, valamint biztosítja a sejt beilleszkedését és kölcsönhatását a külvilággal. Fénymikroszkópban vékonysága miatt inkább csak sejthető. Vörösvérsejtmembránok hipotóniás oldatban történő kipukkasztás után még éppen láthatók, mint a sejtek szellemképei (ghostok). Elektronmikroszkópban metszeti képe vékony, sötét vonal, nagy EM nagyítással trilamináris szerkezet (két szélső sötét réteg egy közbülső világos réteget fog közre), vastagság: 8 nm.
6 Intracelluláris membránok ER mitochondrium Golgi-app.
7 A membrán molekuláris szerkezete A membránt lipidek, fehérjék és szénhidrátok építik fel. I. Lipidek Fő komponensek: foszfolipidek, koleszterin és egyéb, ritkább lipid molekulák Ún. amfifil természetű molekulák: a molekula nagyobb része hidrofób (víztaszító), kisebb része hidrofil Foszfolipid (foszfatidilkolin) Koleszterin
8 A lipidek elrendeződése vizes környezetben A membrán alapszerkezete: a lipid kettősréteg micella kettősréteg A lipidek vizes közegben kétféle stabil szerkezetet vehetnek fel: a gömbölyű micella ill. a planáris kettősréteg szerkezetet Foszfolipid és koleszterin helyzete a lipidrétegben. A koleszterin mint merev molekula merevíti a kettősréteget.
9 A lipid kettősréteg tulajdonságai: Diffúziós gát: Barrier a folyamatos hidrofób réteg miatt hidrofil molekulák (kisebb-nagyobb poláris molekulák) és ionok számára. A membrán barrier tulajdonságának alapja. Nem diffúziós barrier a hidrofób molekulák (O 2, CO 2, szteroid hormonok, stb.) számára. Vízmolekulák csak nehezen jutnak át. Dinamikus struktúra: a lipid kettősréteg félfolyékony tulajdonságú. Mobilitás, a lipidek a kettősrétegben mozognak: rotálnak, zsírsavláncaik kitérhetnek, oldalirányban diffundálnak, laterális diffúzió, a kettősréteg síkjában nagy sebességgel diffundálnak. Azonban egyik rétegből a másikba csak ritkán billennek át (ritka a flip-flop mozgás), élő sejtben ez speciális enzimek segítségével lehetséges. plaszticitás: a kettősréteg félfolyékony állapota miatt követi a sejt alak- és térfogatváltozásait. fluiditás függ a merevítő koleszterin mennyiségétől, a telítetlen zsírsavaktól és a hőmérséklettől. Lipidek aszimmetriája: A kettősréteg külső ill. belső rétegében más foszfolipidfajták fordulnak elő (pl. a külső rétegben foszfatidilkolin, belsőben foszfatidilszerin, foszfatidiletanolamin, foszfatidilinozitol).
10 Lipid vesiculák. Energetikai okok miatt szabadon lebegő, planáris lipid kettősrétegek nem fordulnak elő, planáris kettősrétegek a lipidmolekulák folyamatos átrendeződése miatt szélükön begörbülnek és hólyagszerű képletekké (vesiculákká) záródnak be. Ugyanezen ok miatt szakadások gyorsan befoltozódnak (a membrán sebgyógyulása ). Lipid vesiculák fúziója: vesiculák egymással és organellumok membránjával összeolvadhatnak (szerepe az ún. vesiculáris transzportban). Mesterséges lipid vesiculák: liposomák. Szerepük a gyógyászatban (hatóanyagoknak a sejtbe juttatásában) Liposoma-preparátum. EM kép, fagyasztva-törés
11 II. A membránfehérjék szabják meg a membránok intelligens tulajdonságait Néhány alapismeret a fehérjeszerkezetről: aminosavak, peptidlánc, 20 különböző oldallánc, 3D szerkezet (tekeredés), összefüggése az aminosavsorrenddel, harmadlagos szerkezet összefüggése a funkcióval. Konformációváltozás és jelentősége. A membrán tömegének 25-75%-a fehérje, 1 fehérjére átlag 50 lipidmolekula esik. A fehérjék helyzete a lipid kettősréteghez viszonyítva: Integráns és perifériás membránfehérjék 1-6 integráns membránfehérje 7-8 perifériás membránfehérje
12 1. Integráns membránfehérjék A membrán integráns részét képezik, a lipid kettősréteg megbontása nélkül nem szedhetők ki a membránból. Transzmembrán fehérjék: ezek teljesen átérik a lipid kettősréteget és mindkét oldalra kinyúlnak. A membránon átérő rész egy vagy több transzmembrán szakaszból áll, itt a kifelé álló oldalláncok többnyire hidrofóbok és jól illeszkednek a lipidek hidrofób környezetébe és így stabilan beágyazódnak a lipid kettősrétegbe. Csak a kettősréteg teljes megbontásával szabadíthatók ki (detergensek). Ilyen a legtöbb fontos membránfehérje, pl. a transzportért felelős fehérjék, membránreceptorok, adhéziós fehérjék, stb. A lipid kettősrétegbe benyúló fehérjék: Hasonlóak a transzmembrán fehérjékhez, de nem érik át át a membránt. Ilyen pl. a caveolin fehérje a caveolákban. caveolin Kihorgonyzott membránfehérjék: sok integráns membránfehérje kihorgonyzódik a lipid kettősréteghez. A horgony lehet zsírsav v. egyéb hidrofób lánc, vagy egy foszfolipidhez kötött rövid lánc (GPI-horgony). A horgony leválasztásával ill. újraképzésével a fehérje ingázhat a membrán és a cytosol között. Ilyen fehérjék találhatók pl. egyes jelátviteli láncokban. GPIhorgony zsírsavhorgony
13 2. Perifériás membránfehérjék perifériás fehérje Integráns membránfehérjéhez gyenge kötésekkel kapcsolódó hidrofil fehérjék a membrán egyik vagy másik oldalán. Innen a lipid kettősréteg megbontása nélkül könnyen leválaszhatók. integráns fehérje III. Szénhidrátok: Glycocalyx (sejtburok) A sejtmembrán extracelluláris felszínén a fehérjékhez és lipidekhez rövidebb-hosszabb szénhidrátláncok kapcsolódnak (glikoproteinek, glikolipidek). Egyes fehérjékhez hosszú glükozaminoglikán (GAG) láncok is társulnak (proteoglikánok). Ez a szénhidrátokban gazdag külső réteg a glycocalyx. Fiziológiai jelentősége még nem eléggé tisztázott (a sejtfelszín védelme? Antigénszerep? Receptorok kötőképessége?). Patológiai jelentőség: egyes baktériumok, vírusok, toxinok kötődhetnek hozzá. Savi csoportokban gazdag, ezért ruténiumvörössel elektronmikroszkóposan láthatóvá tehető.
14 A sejtmembrán mechanikai támasztéka 1. Membránváz A sejtmembránt a belső (cytosol felőli) oldalon egy fibrózus fehérjékből álló, hálózatos réteg erősíti: membránváz. Enélkül a membrán könnyen szétszakadna. A vörösvértest membránváza: spektrin-aktin hálózat, perifériás membránfehérjék rögzítik a membrán belső oldalán kinyúló integráns membránfehérjékhez. Biztosítja a vörösvértest bikonkáv alakját, rugalmasságát, hiányában a vörösvértest szétdarabolódik kis gömbökre. Egyéb sejtekben is kimutattak hasonló submembran hálózatot, ennek alkotásában aktin mikrofilamentumokon kívül a spektrinnel rokon fibrózus fehérjék (pl. fodrin) is részt vesznek. 2. A membrán kihorgonyzása a sejt-cortexhez A sejtváz (cytoskeleton) széli sűrűsödése, a főként aktin-mikrofilamentumokból álló ún. sejt-cortex szintén jelentős támasza a plazmamembránnak, melynek integráns membránfehérjéihez (pl. integrinekhez) különböző adapter fehérjékkel (vinkulin, talin, alfa-aktinin, stb.) rögzül.
15 Membrándomének A membránkomponensek laterális diffúziója miatt a membránban minden strukturelemnek egyenletesen eloszolva kéne lenni. De vannak kitüntetett területek Makrodomének: különleges, eltérő összetételű membránterületek egyes sejttípusokban (fontos szerep a sejt működésében), például apikális és bazolaterális domén hámsejtekben dendritikus és axonális domén idegsejtekben Mi tartja fenn az elkülönülést? Sokszor intramembrán diffúziós gát, mint pl. a zonula occludens (tight junction), vagy membránon kívüli strukturákhoz való kihorgonyzódás. bazolaterális apikális axonális dendritikus Mikrodomének: kis, szigetszerű foltok a membránban, eltérő molekuláris szerkezettel, pl.: lipidtutajok (lipid rafts): szfingomielinben és koleszterinben gazdag apró domének, bizonyos fehérjéket gyűjtenek be. caveolák: lipidtutajok, cytosol oldalon caveolin fehérje, hólyagszerűen begörbült terület, többféle funkcióval.
16 A sejtmembrán funkciói I. Diffúziós gát Megakadályozza számos anyagnak a membránon át történő szabad diffúzióját, és ezzel szabályozott transzportot tesz lehetővé, ami a sejt belső miliőjének állandóságát, szabályozását teszi lehetővé. A barrierfunkció alapja: a folyamatos hydrophob réteg a membrán belsejében. A membrán gátat képez nagyobb poláris molekulákkal és elektromos töltésű részecskékkel (ionok) szemben. Nem gát hydrophob molekulákkal (pl. gázok, mint O 2, CO 2, szteroidhormonok) szemben, ill. részben áteresztő kis poláris molekulák (víz, glicerin, ) számára. A diffúziós gát hiányában, pl. a membrán lehúzása, porózussá tétele esetén, megszűnik a sejt stabil, szabályozott belső környezete és a sejt elpusztul. Példa: az immunrendszer ún. természetes ölősejtjei (natural killer cells) a szervezetbe jutott idegen sejtet annak membránjába épülő, lyukakat képező fehérjemolekulákkal (perforin) pusztítják el.
17 II. Anyagok kontrollált felvétele és leadása A teljesen zárt rendszer nem életképes, az életfolyamatokhoz a sejtnek a környezetével állandó kölcsönhatásban kell lennie, pl. tápanyagokat (energiahordozók és építőanyagok) felvenni és salakanyagokat leadni. Középkori város hasonlat: városfal ellenőrzött városkapukkal. Két fő mechanizmus: 1. Membrántranszport: kis molekulák transzportja a membránon keresztül 2. Endocytosis és exocytosis: makromolekulák, kolloidális és nagyobb részecskék felvétele és leadása vesiculákkal (lásd később).
18 Transzport a membránon keresztül Transzmembrán (integráns) membránfehérjék segítségével. A sejtek fehérjéinek 20-30%-a transzportfehérje. Két nagy csoport: 1. transzporterek (carrierek) és 2. csatornafehérjék kinn 1. Transzporterek Kötőhely (1 v. több) a transzporter (carrier) fehérje egyik oldalán a transzportálandó molekula számára, konformációváltozás, a kötőhelyről a molekula a másik oldalon szabaddá válik (zsiliphez hasonlóan). lipid kettősréteg molekula benn ion konc. gradiens Cotransport: Nemcsak egy, hanem két anyag is transzportálódhat egyszerre A. Facilitált diffúzió A transzportálandó anyag átjutásához nem kell energia, mert az anyag koncentráció-gradiense mentén történik, tehát diffúzió (passzív transzport). COTRANSPORT
19 B. Aktív transzport (pumpa) A transzporter (carrier) koncentrációgradienssel szemben juttat át anyagot (pl. iont) a membránon át. Ehhez energia szükséges (ezért aktív transzport). Az energiafelhasználás két forrása: ATP hasításból vagy koncentrációgrádiensből (szekunder aktív transzport) 1. ATP-vel hajtott pumpa Példák: Na + -K + -pumpa. 3 Na + a sejtből ki, 2 K + be, mindkettő a saját koncentrációgrádiense ellen, ATP-hasításból származó energiával. ABC transzporter: a sejtből kifelé pumpál molekulákat 2 ATP segítségével. Jelentőség: rák kemoterápiában kipumpálja a rákos sejtből a hatóanyagot 2. Szekunder aktív transzport. Koncentrációgrádiens mint potenciális energia. Víztorony hasonlat. Energia a részecskék (itt Na + ) visszaáramlásából szabadul fel. Példa: Na+ - glukóz transzporter elektrokémiai grádiens glukóz grádiens
20 2. Csatornafehérjék a) ioncsatornák Fehérjék hidrofil csatornát képeznek a membránon keresztül, ezen ionok áramolhatnak keresztül. Passzív transzport! Ionszelektivitás (pl. K-csatorna, Na-csatorna, stb.). Igen gyors áramlás: szer gyorsabb a carrierrel történő transzportnál, 1 sec alatt akár 1 millió ion jut át! Jelentőség: különösen ingerületfelvételben, vezetésben, idegi és izommembránokon (itt nem tárgyalhatjuk). Legtöbbjük kinyílása szabályozott. Különböző csatornák különböző hatásokra (konformációváltozással) nyílnak ki: 1. ligand-szabályozott csatornák (egy külső vagy belső jelmolekula: pl. neurotranszmitter, ion, nukleotid kötődése következtében) 2. mechanikusan szabályozott csatornák (mechanikai hatásra, pl. a membrán meghúzódása miatt) 3. feszültség-szabályozott csatornák (a környező elektromos térerő megváltozása miatt) Ligand-szabályozott csatorna (acetylcholin receptor) b) vízcsatornák Intenzív vízátáramlás szükségessége esetén (pl. vesehámsejtben). Hidrofil csatorna az aquaporin fehérje belsejében, intenzív vízáramlás, de ionok nem mennek keresztül (víz-specifikus)! c) Nem-specifikus csatornák mitochondriális porin csatornák a mitochondrium külső membránjában, connexonok két sejt között (gap junction), l. később.
21 III. A sejt és környezete kapcsolata A sejtfelszín az a határfelület, amellyel a sejt a környezetével kapcsolatot tart (soksejtű szervezetbe való beilleszkedésnél, vagy a szervezetnek a tágabb környezethez való adaptációjánál). A sejt arca a környezet felé. 1. Jelbefogadás és feldolgozás. Membránreceptorok (transzmembrán fehérjék) különböző jelek fogadására. Tájékozódás a környezet állapota felől fizikai vagy kémiai jelek révén, más sejtek felől érkező utasítások jelmolekulákkal (pl. hormonok, növekedési faktorok, neurotranszmitterek). A receptor jelátviteli útvonalat indít be a sejt belseje felé. A receptorok specifitása. 2. Sejtek egymás-felismerése. Sejttársulások vagy sejteknek az extracelluláris mátrixhoz való tapadása adhéziós molekulák révén (transzmembrán fehérjék). Ezek jelentősége a szövetek és szervek kialakulásában. Lymphocyták letelepedése nyirokszervekben (homing). Sejtek kontaktusa az immunválaszban (immunológiai identitás MHC-komplex, makrofág-nyiroksejt együttműködése, stb.). Daganatsejtek áttéte (metastasisa) meghatározott szervekbe. 3. Sejtek tartós összekapcsolása: sejtkapcsoló struktúrák. Desmosoma, adhaerens kapcsolat, nexus, zonula occludens, l. később.
22 A sejtmembrán képződési helye: Az endoplasmás reticulum (ER) Szerkezete: csőszerű és lapos zsákszerű elemek (tubulusok ill. cisternák) egymással összefüggő rendszere a cytoplasmában. Az elemek membránból és általa határolt belső térből állnak. Elektronmikroszkóppal fedezte fel Porter és Palade (Nobel díj). Kétféle változat: durva felszínű ER: (a membránokon ribosomák) és sima felszínű ER. EM kép
23 A durva felszínű endoplasmás reticulum (der) Kevésbé fejlett forma: néhány cisterna és tubulus hálózata (lutein sejt részlete) Erősen fejlett forma: sok párhuzamos cisterna: ergastoplasma (hasnyálmirigysejt részlete) EM kép EM kép
24 Mi történik a der-ben? Fő funkció: bizonyos fehérjék szintézise, membránon átjuttatása és módosítása. Ezek a fehérjék: membránfehérjék, szekréciós (export-) fehérjék és lysosomafehérjék. Kotranszlációs transzport (vektoriális transzláció) 1. Ribosomán megindul a fehérjeszintézis, első aminosavnyi szakasz: ER-lokalizációs jel (szignálszekvencia). 2. A jelet egy ribonukleoprotein komplex (signal recognition particle: SRP) ismeri fel. Hozzákötődik, leállítja a transzlációt. 3. SRP maga is jelként szerepel, az azt felismerő receptor a der inegráns membránfehérjéje (SRPreceptor). A ribosoma-srp komplex ezzel a der membránjához kötődik. 4. Az SRP leválik, folytatódik a transzláció, a peptidlánc az ER membrán csatornáján csúszik át. A ribosomát a csatorna köti a membránhoz. 5. A transzláció végén:a szignálpeptidet egy enzim levágja, a csatorna szétesik. szignálszekvencia csatorna
25 A kotranszlációs transzport befejezése: 1. export és lysosomalis fehérjék esetén a peptidlánc teljesen bekerül az ER lumenébe 2. transzmembrán fehérjék esetén a lánc áthaladását a lánc egy hidrofób szakasza, a stop-transzfer szakasz akasztja meg. Ezzel a fehérje a membránban marad. A szignálszekvencia levágódik (szignálpeptidáz enzim) Módosulások a der-ben: Tekeredés, ellenőrzés, korrigálás chaperonokkal N-glikozilálás kezdete (mannózban gazdag cukorlánc rákapcsolása) OH-csoportok felvitele (egyes fehérjéknél) Diszulfidhidak (S-S) kialakítása
26 Sima felszínű endoplasmás reticulum (ser) ER tubulusok vagy cisternák 3D rendszere. Néhol összefügg a der-rel. A nagy intracytoplasmatikus membránfelület számos enzim (és transzportmolekula) elhelyezésére ad lehetőséget. Részlet retina pigmenthámsejtjéből. Sima ER tubulusok elágazó rendszere. EM kép. Részlet luteinsejtből. Sima ER cisternák rendszere. EM kép.
27 I. Általános funkciók. A ser funkciói Lipidszintézis. Foszfolipidek, koleszterin, triacylglycerinek szintéziséhez szükséges enzimek a ser-ben. A sejtmembrán lipid kettősrétege itt keletkezik. II. Speciális funkciók egyes sejttípusokban. 1. Szteroidhormonok szintézise, átalakítása (p450 monooxigenázok, szteroidhormon-módosítások). Mellékvesekéreg, here Leydig-sejtjei, ovarium corpus luteum sejtjei. 2. Méregtelenítés. (p450 monooxigenázok). Hydrophob vegyületek (melyek zsírokban felhalmozódnának, pl. xenobiotikumok, phenobarbitál) hydrophillé átalakítása. OH-csoportok felvitele, ehhez szulfát, glukuronsav is kötődik. Kiválasztható. Helye: elsősorban a májsejt. 3. Glükóz-6-foszfatáz ser membránjában lokalizálódik. Glc-6-P-ról lehasítja a foszfátot. Glukóz kijut a sejtből. Elsősorban májsejtben. 4. Ca-tárolás. Ca-ATPáz a membránban bepumpálja a Ca-ot, ER lumenben Ca-kötő fehérjék (pl. calsequestrin). Ca-csatorna a membránban, Ca-kijutás szabályozott, fontos szerep jelátvitelben. Különleges szerep h.cs. izomban (sarcoplasmaticus reticulum). 5. Retinál-reizomerizáció. A fotoreceptor molekula retinálja itt reizomerizálódik trans-izomerből cisizomerbe. Szerepe a fotorecepcióban. Helye: a retina pigmenthámja, felelős molekula a membránban: p65 (izomerohidroláz).
28 A sejtbiológiai tananyag Az előadási anyag + a Szövettan tankönyv 2. fejezete (kérem, jegyzeteljenek az előadáson!), Segítség: előadási anyag vázlata (ppt) az intézet honlapján
29 Felhasznált illusztrációk forrása: Röhlich: Szövettan, 4. kiadás, Semmelweis Kiadó Budapest, 2014 Alberts Johnson Lewis Raff Roberts Walter: Molecular biology of the cell. 5. kiadás, Garland Science Saját prep. és/vagy felvétel, ill. rajz Campbell Reece: Biologie, Spektrum - Fischer
Biológiai membránok és membrántranszport
Biológiai membránok és membrántranszport Biológiai membránok A citoplazma membrán funkciói: térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis
Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia
Membrántranszport Gyógyszerész előadás 2017.04.10 Dr. Barkó Szilvia Sejt membránok A sejtmembrán funkciói Védelem Kommunikáció Molekulák importja és exportja Sejtmozgás Általános szerkezet Lipid kettősréteg
Kevéssé fejlett, sejthártya betüremkedésekből. Citoplazmában, cirkuláris DNS, hisztonok nincsenek
1 A sejtek felépítése Szerkesztette: Vizkievicz András A sejt az élővilág legkisebb, önálló életre képes, minden életjelenséget mutató szerveződési egysége. Minden élőlény sejtes szerveződésű, amelyek
térrészek elválasztása transzport jelátvitel Milyen a membrán szerkezete? Milyen a membrán szerkezete? lipid kettısréteg, hidrofil/hidrofób részek
Biológiai membránok A citoplazma membrán funkciói: Biológiai membránok és membrántranszport térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek
Folyadékkristályok; biológiai és mesterséges membránok
Folyadékkristályok; biológiai és mesterséges membránok Dr. Voszka István Folyadékkristályok: Átmenet a folyadékok és a kristályos szilárdtestek között (anizotróp folyadékok) Fonal, pálcika, korong alakú
1. Előadás Membránok felépítése, mebrán raftok
1. Előadás Membránok felépítése, mebrán raftok Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis biztosítása Klasszikus folyadékmozaik
Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István
MODELLMEMBRÁNOK (LIPOSZÓMÁK) ORVOSI, GYÓGYSZERÉSZI ALKALMAZÁSA 2012/2013 II. félév II. 7. Szerkezet és funkció kapcsolata a membránműködésben Dr. Voszka István II. 21. Liposzómák előállítási módjai Dr.
Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István
MODELLMEMBRÁNOK (LIPOSZÓMÁK) ORVOSI, GYÓGYSZERÉSZI ALKALMAZÁSA 2015/2016 II. félév Időpont: szerda 17 30-19 00 Helyszín Elméleti Orvostudományi Központ Szent-Györgyi Albert előadóterme II. 3. Szerkezet
TRANSZPORTFOLYAMATOK A SEJTEKBEN
16 A sejtek felépítése és mûködése TRANSZPORTFOLYAMATOK A SEJTEKBEN 1. Sejtmembrán elektronmikroszkópos felvétele mitokondrium (energiatermelõ és lebontó folyamatok) citoplazma (fehérjeszintézis, anyag
A transzportfolyamatok és a sejtek közötti kommunikáció
A transzportfolyamatok és a sejtek közötti kommunikáció A sejtmembrán protektív és szelektív barrier kompartmentalizáció: sejtfelszín és sejtorganellumok borítása 1926 szénhidrát 1943 zsírsav 1972 poláros
A transzportfolyamatok és a sejtek közötti kommunikáció
A transzportfolyamatok és a sejtek közötti kommunikáció A sejtmembrán I.véd II.szelektál (átmenő anyagtranszport szigorúan szabályozott) III.elválaszt (barrier) extracelluláris (sejten kívüli) intracelluláris
CzB 2010. Élettan: a sejt
CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal
Membránszerkezet Nyugalmi membránpotenciál
Membránszerkezet Nyugalmi membránpotenciál 2011.11.15. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej (hidrofil)
1b. Fehérje transzport
1b. Fehérje transzport Fehérje transzport CITOSZÓL Nem-szekretoros útvonal sejtmag mitokondrium plasztid peroxiszóma endoplazmás retikulum Szekretoros útvonal lizoszóma endoszóma Golgi sejtfelszín szekretoros
Eukariota állati sejt
Eukariota állati sejt SEJTMEMBRÁN A sejtek működéséhez egyszerre elengedhetetlen a környezettől való elhatárolódás és a környezettel való kapcsolat kialakítása. A sejtmembrán felelős többek közt azért,
sejt működés jovo.notebook March 13, 2018
1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J
MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK
Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK A membránok minden sejtnek lényeges alkotórészei. Egyrészt magát a sejtet határolják - ez a sejtmembrán vagy
Sejttan. A sejt a földi élet legkisebb szerkezeti és működési egysége, mely önálló működésre képes és életjelenségeket mutat (anyagcsere, szaporodás).
Sejttan A sejt a földi élet legkisebb szerkezeti és működési egysége, mely önálló működésre képes és életjelenségeket mutat (anyagcsere, szaporodás). Vannak olyan organizmusok, mint a baktériumok és egysejtűek,
Transzporterek vizsgálata lipidmembránokban Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest
Transzporterek vizsgálata lipidmembránokban 2016. Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest Membrántranszport fehérjék típusok, lipid-kapcsolatok A membránok szerkezete
A plazmamembrán felépítése
A plazmamembrán felépítése Folyékony mozaik membrán Singer-Nicholson (1972) Lipid kettősréteg Elektronmikroszkópia Membrán kettősréteg Intracelluláris Extracelluláris 1 Lipid kettősréteg foszfolipidek
Az emberi sejtek általános jellemzése
Sejttan (cytológia) Az emberi sejtek általános jellemzése A sejtek a szervezet alaki és működési egységei Alakjuk: nagyon változó. Meghatározza: Sejtek funkciója Felületi feszültség Sejtplazma sűrűsége
7. előadás: A plazma mebrán szerkezete és funkciója. Anyagtranszport a plazma membránon keresztül.
7. előadás: A plazma mebrán szerkezete és funkciója. Anyagtranszport a plazma membránon keresztül. A plazma membrán határolja el az élő sejteket a környezetüktől Szelektív permeabilitást mutat, így lehetővé
Fejlett betüremkedésekből Örökítőanyag. Kevéssé fejlett, sejthártya. Citoplazmában, gyűrű alakú DNS,
1 A sejtek felépítése Szerkesztette: Vizkievicz András A sejt az élővilág legkisebb, önálló életre képes, minden életjelenséget mutató szerveződési egysége. Minden élőlény sejtes szerveződésű, amelyek
Biofizika I. DIFFÚZIÓ OZMÓZIS
1. KÍSÉRLET 1. kísérlet: cseppentsünk tintát egy üveg vízbe Biofizika I. OZMÓZIS 2012. szeptember 5. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet 1. megfigyelés: a folt lassan szétterjed és megfesti az egész
Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45
Élettan előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45 oktató: Dr. Tóth Attila, adjunktus ELTE TTK Biológiai Intézet, Élettani és Neurobiológiai tanszék
Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium
Membránszerkezet, Membránpotenciál, Akciós potenciál Biofizika szeminárium 2013. 09. 09. Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Az ioncsatorna fehérjék szerkezete, működése és szabályozása Panyi György www.biophys.dote.hu Mesterséges membránok
BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS
BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis
AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE
AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE A biológia az élet tanulmányozásával foglalkozik, az élő szervezetekre viszont vonatkoznak a fizika és kémia törvényei MI ÉPÍTI FEL AZ ÉLŐ ANYAGOT? HOGYAN
NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A
NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYI TÁPANYAG TRANSZPORTEREK az előadás áttekintése A tápionok útja a növényben Növényi tápionok passzív és
Glükoproteinek (GP) ELŐADÁSVÁZLAT ORVOSTANHALLGATÓK RÉSZÉRE
Glükoproteinek (GP) ELŐADÁSVÁZLAT ORVOSTANHALLGATÓK RÉSZÉRE SZTE ÁOK Biokémia Intézet összeállította: dr Keresztes Margit Jellemzők - relative rövid oligoszacharid láncok ( 30) (sok elágazás) (1-85% GP
Epitheliális transzport
Biológus Bsc. Sejtélettan II. Epitheliális transzport Tóth István Balázs DE OEC Élettani Intézet 2010. 11. 05. Transzport szempontjából szimmetrikus és aszimmetrikus sejtek Szimmetrikus sejtek: - nincs
Elektronmikroszkópos képek gyűjteménye az ÁOK-s hallgatók részére
Prof. Dr. Röhlich Pál Dr. L. Kiss Anna Dr. H.-inkó Krisztina Elektronmikroszkópos képek gyűjteménye az ÁOK-s hallgatók részére Semmelweis Egyetem, Humánmorfológiai és Fejlődésbiológiai Intézet ny n N L
ANATÓMIA FITNESS AKADÉMIA
ANATÓMIA FITNESS AKADÉMIA sejt szövet szerv szervrendszer sejtek általános jellemzése: az élet legkisebb alaki és működési egysége minden élőlény sejtes felépítésű minden sejtre jellemző: határoló rendszer
Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza
2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék
Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája 1. Receptor fehérje Jel molekula (ligand; elsődleges
a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció
Biológiai membránok és membrántranszport
Biológiai membránok és membrántranszport Szántó G. Tibor 2015.XI.2. TK. 88. 94. oldal TK. 276. 284. oldal A citoplazma membrán fő funkciói IC és EC térrész elválasztása elektromos szigetelés (ellenállás
A T sejt receptor (TCR) heterodimer
Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus
OZMÓZIS, MEMBRÁNTRANSZPORT
OZMÓZIS, MEMBRÁNTRANSZPORT Vig Andrea PTE ÁOK Biofizikai Intézet 2014.10.28. ÁTTEKINTÉS DIFFÚZIÓ BROWN-MOZGÁS a részecskék rendezetlen hőmozgása DIFFÚZIÓ a részecskék egyenletlen (inhomogén) eloszlásának
A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai
A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés
(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.
Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs
Receptorok és szignalizációs mechanizmusok
Molekuláris sejtbiológia: Receptorok és szignalizációs mechanizmusok Dr. habil Kőhidai László Semmelweis Egyetem Genetikai, Sejt- és Immunbiológiai Intézet Sejtek szignalizációs kapcsolatai Sejtek szignalizációs
OZMÓZIS. BIOFIZIKA I Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet
BIOFIZIKA I 2011. Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet Áttekintés 1. Diffúzió rövid ismétlés 2. Az ozmózis jelensége és leírása 4. A diffúzió és ozmózis orvos biológiai jelentősége Diffúzió
A szervezet vízterei
A homeosztázis Bernard (XIX. sz.): belsı környezet fogalma - az élı szervezet egy folyékony belsı közegben (=extracelluláris folyadék) létezik - stabilitását biztosítani kell Canon (1926): homeosztázis
OZMÓZIS, MEMBRÁNTRANSZPORT. Vig Andrea PTE ÁOK Biofizikai Intézet
OZMÓZIS, MEMBRÁNTRANSZPORT Vig Andrea PTE ÁOK Biofizikai Intézet 2013.10.29. ÁTTEKINTÉS DIFFÚZIÓ BROWN-MOZGÁS a részecskék rendezetlen hőmozgása DIFFÚZIÓ a részecskék egyenletlen (inhomogén) eloszlásának
Riboszóma. Golgi. Molekuláris sejtbiológia
Molekuláris sejtbiológia d-er Riboszóma Golgi Dr. habil KŐHIDAI László egyetemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet 2005. október 27. Endoplamatikus = sejten belüli; retikulum
Novák Béla: Sejtbiológia Membrántranszport
Membrántranszport folyamatok A lipid kettos réteg gátat jelent a poláros molekulák számára. Ez a gát alapveto fontosságú a citoszól és az extracelluláris "milieu" közti koncentráció különbségek biztosításában.
Egy idegsejt működése
2a. Nyugalmi potenciál Egy idegsejt működése A nyugalmi potenciál (feszültség) egy nem stimulált ingerelhető sejt (neuron, izom, vagy szívizom sejt) membrán potenciálját jelenti. A membránpotenciál a plazmamembrán
A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával
Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?
MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL. Biofizika szeminárium
MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL Biofizika szeminárium 2012. 09. 24. MEMBRÁNSZERKEZET Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens
POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK
POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék
MULTICELLULÁRIS SZERVEZŐDÉS: SEJT-SEJT (SEJT-MÁTRIX) KÖLCSÖNHATÁSOK 1. Bevezetés (2.)Extracelluláris mátrix (ECM) (Kollagén, hialuron sav,
MULTICELLULÁRIS SZERVEZŐDÉS: SEJT-SEJT (SEJT-MÁTRIX) KÖLCSÖNHATÁSOK 1. Bevezetés (2.)Extracelluláris mátrix (ECM) (Kollagén, hialuron sav, proteoglikánok) (3.)Multiadhéziós fehérjék és sejtfelszíni receptorok
Szignalizáció - jelátvitel
Jelátvitel autokrin Szignalizáció - jelátvitel Összegezve: - a sejt a,,külvilággal"- távolabbi szövetekkel ill. önmagával állandó anyag-, információ-, energia áramlásban áll, mely autokrin, parakrin,
Endocitózis - Exocitózis
Molekuláris sejtbiológia Endocitózis - Exocitózis Dr. habil.. Kőhidai László Semmelweis Egyetem Genetikai, Sejt- és Immnubiológiai Intézet Budapest Endocitózis Fagocitózis szilárd fázishoz közel álló
Biokémiai és Molekuláris Biológiai Intézet. Sejtbiológiai alapok. Sarang Zsolt
Biokémiai és Molekuláris Biológiai Intézet Sejtbiológiai alapok Sarang Zsolt Víz (felnőtt emberi test 57-60%-a víz) Élő szervezetek inorganikus felépítő elemei Anionok (foszfát, klorid, karbonát ion, stb.)
BIOKÉMIA. Simonné Prof. Dr. Sarkadi Livia egyetemi tanár.
BIOKÉMIA Simonné Prof. Dr. Sarkadi Livia egyetemi tanár e-mail: sarkadi@mail.bme.hu Tudományterületi elhelyezés Alaptudományok (pl.: matematika, fizika, kémia, biológia) Alkalmazott tudományok Interdiszciplináris
Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék
Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája Receptor fehérje Jel molekula (ligand; elsődleges
TRANSZPORTFOLYAMATOK 1b. Fehérjék. 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS
1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS DIA 1 Fő fehérje transzport útvonalak Egy tipikus emlős sejt közel 10,000 féle fehérjét tartalmaz (a test pedig összesen
Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét. Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet
Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet Sejtmozgás -amőboid - csillós - kontrakció Sejt adhézió -sejt-ecm -sejt-sejt MOZGÁS A sejtmozgás
Membránpotenciál, akciós potenciál
A nyugalmi membránpotenciál Membránpotenciál, akciós potenciál Fizika-Biofizika 2015.november 3. Nyugalomban valamennyi sejt belseje negatív a külső felszínhez képest: negatív nyugalmi potenciál (Em: -30
DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.
Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)
Membránszerkezet. Membránszerkezet, Membránpotenciál, Akciós potenciál. Folyékony mozaik modell. Membrán-modellek. Biofizika szeminárium
Membránszerkezet, Membránpotenciál, Akciós potenciál Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens kötésekkel összetartott lipidekből
AJÁNLOTT IRODALOM. Tankönyvkiadó, Budpest. Zboray Géza (1992) Összehasonlító anatómiai praktikum I.
A tárgy neve Az állati szervezet felépítése és működése Meghirdető tanszék(csoport) SZTE TTK Állattani és Sejtbiológiai Tanszék Felelős oktató: Dr.Fekete Éva Kredit 2 Heti óraszám 2 típus Előadás Számonkérés
LIPID ANYAGCSERE (2011)
LIPID ANYAGCSERE LIPID ANYAGCSERE (2011) 5 ELİADÁS: 1, ZSÍRK EMÉSZTÉSE, FELSZÍVÓDÁSA + LIPPRTEINEK 2, ZSÍRSAVAK XIDÁCIÓJA 3, ZSÍRSAVAK SZINTÉZISE 4, KETNTESTEK BIKÉMIÁJA, KLESZTERIN ANYAGCSERE 5, MEMBRÁN
Vezikuláris transzport
Molekuláris Sejtbiológia Vezikuláris transzport Dr. habil KŐHIDAI László Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet 2005. november 3. Intracelluláris vezikul uláris transzport Kommunikáció
Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika
Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Panyi György 2014. November 12. Mesterséges membránok ionok számára átjárhatatlanok Iontranszport a membránon keresztül:
Darvas Zsuzsa László Valéria. Sejtbiológia. Negyedik, átdolgozott kiadás
Darvas Zsuzsa László Valéria Sejtbiológia Negyedik, átdolgozott kiadás Írták: DR. DARVAS ZSUZSA egyetemi docens Semmelweis Egyetem Genetikai, Sejtés Immunbiológiai Intézet DR. LÁSZLÓ VALÉRIA egyetemi docens
Az idegi működés strukturális és sejtes alapjai
Az idegi működés strukturális és sejtes alapjai Élettani és Neurobiológiai Tanszék MTA-ELTE NAP B Idegi Sejtbiológiai Kutatócsoport Schlett Katalin a kurzus anyaga elérhető: http://physiology.elte.hu/agykutatas.html
Sejtmag, magvacska magmembrán
Sejtmag, magvacska magmembrán Láng Orsolya Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Kompartmentalizáció Prokaryóta Cytoplazma Eukaryóta Endomembrán Kromatin Plazma membrán Eredménye
1. Bevezetés. Mi az élet, evolúció, információ és energiaáramlás, a szerveződés szintjei
1. Bevezetés Mi az élet, evolúció, információ és energiaáramlás, a szerveződés szintjei 1.1 Mi az élet? Definíció Alkalmas legyen különbségtételre élő/élettelen közt Ne legyen túl korlátozó (más területen
BIOFIZIKA. Membránpotenciál és transzport. Liliom Károly. MTA TTK Enzimológiai Intézet
BIOFIZIKA 2012 10 15 Membránpotenciál és transzport Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria
Tantárgyi kód BIB 1211 Meghirdetés féléve 2 Kreditpont 3 Összóraszám (elm.+gyak) 3+0. Előfeltétel (tantárgyi kód):
Tantárgy neve Sejtbiológia Tantárgyi kód BIB 1211 Meghirdetés féléve 2 Kreditpont 3 Összóraszám (elm.+gyak) 3+0 Számonkérés módja kollokvium Előfeltétel (tantárgyi kód): A tantárgyfelelős neve Kalucza
Élettan. Élettan: alapvető működési folyamatok elemzése, alapvetően kísérletes tudomány
Élettan Élettan: alapvető működési folyamatok elemzése, alapvetően kísérletes tudomány Sejtélettan Környezeti élettan Viselkedésélettan Fejlődésélettan Sportélettan Munkaélettan Kórélettan Ajánlott könyvek:
9. előadás Sejtek közötti kommunikáció
9. előadás Sejtek közötti kommunikáció Intracelluláris kommunikáció: Elmozdulás aktin szálak mentén miozin segítségével: A mikrofilamentum rögzített, A miozin mozgékony, vándorol az aktinmikrofilamentum
Biokémia. Alkalmazott Biotechnológia és Élelmiszer-tudományi Tanszék: Ch épület III.
Biokémia Szarka András szarka@mail.bme.hu 463-3858 Wunderlich Lívius livius@mail.bme.hu 463-1407 Alkalmazott Biotechnológia és Élelmiszer-tudományi Tanszék: Ch épület III. Tantárgyi követelmények A biokémia
Sejtadhézió. Sejtkapcsoló struktúrák
Sejtadhézió Sejtkapcsoló struktúrák Sejtadhézió jelentősége: Sejtlemezek kialakulása Sejtadhézió jelentősége: Többrétegű sejtsorok kialakulása Limfociták kilépése az endotélen Rolling Adhézió Belépés homing
2011. október 11. Szabad János
2011. október 11 Szabad János szabad@mdbio.szote.u-szeged.hu Egy állatsejt szervez dése - Export a sejtmagból a citoplazmába - Import a citoplazmából a sejtmagba - Import a sejtszervecskékbe - A szekréciós
MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet
Molekuláris sejtbiológia: MITOCHONDRIUM külső membrán belső membrán lemezek / crista matrix Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Tudomány-történet
Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció
Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus PERIFÉRIÁS IDEGRENDSZER Receptor
A légzési lánc és az oxidatív foszforiláció
A légzési lánc és az oxidatív foszforiláció Csala Miklós Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet intermembrán tér Fe-S FMN NADH mátrix I. komplex: NADH-KoQ reduktáz
Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.
Vércukorszint szabályozása: Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Szövetekben monoszacharid átalakítás enzimjei: Szénhidrát anyagcserében máj központi szerepű. Szénhidrát
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A LIPIDEK 1. kulcsszó cím: A lipidek szerepe az emberi szervezetben
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A LIPIDEK 1. kulcsszó cím: A lipidek szerepe az emberi szervezetben Tartalék energiaforrás, membránstruktúra alkotása, mechanikai
1. SEJT-, ÉS SZÖVETTAN. I. A sejt
1. SEJT-, ÉS SZÖVETTAN SZAKMAI INFORMÁCIÓTARTALOM I. A sejt A sejt cellula az élő szervezet alapvető szerkezeti és működési egysége, amely képes az önálló anyag cserefolyamatokra és a szaporodásra. Alapvetően
Hámszövet, mirigyhám. Dr. Katz Sándor Ph.D.
Hámszövet, mirigyhám Dr. Katz Sándor Ph.D. HÁMSZÖVET A hámsejtek a bazális membránon helyezkednek el. Oldalai: bazális, laterális és apikális. HÁMSZÖVET Szorosan egymás mellett helyezkednek el és speciális
TRANSZPORTEREK Szakács Gergely
TRANSZPORTEREK Szakács Gergely Összefoglalás A biológiai membránokon keresztüli anyagáramlást számos membránfehérje szabályozza. E fehérjék változatos funkciója és megjelenésük mintázata biztosítja a sejtek
Sejtek membránpotenciálja
Sejtek membránpotenciálja Termodinamikai egyensúlyi potenciál (Nernst, Donnan) Diffúziós potenciál, (Goldman-Hodgkin-Katz egyenlet) A nyugalmi membránpotenciál: TK. 284-285. A nyugalmi membránpotenciál
Bevezetés. Állatélettan előadás Csütörtök: 16:00-18:30 Bólyai terem Déli Tömb Dr. Détári László tanszékvezető egyetemi tanár
Bevezetés Állatélettan előadás Csütörtök: 16:00-18:30 Bólyai terem Déli Tömb 0-821 2/20 Dr. Détári László tanszékvezető egyetemi tanár Élettani és Neurobiológiai Tanszék 1117 Bp., Pázmány Péter sétány
Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál
Membránpotenciál Vig Andrea 2014.10.29. Nyugalmi membránpotenciál http://quizlet.com/8062024/ap-11-nervous-system-part-5-electrical-flash-cards/ Akciós potenciál http://cognitiveconsonance.info/2013/03/21/neuroscience-the-action-potential/
Az élő sejt fizikai Biológiája:
Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai
A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál
A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál 2012.09.25. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej
Membrán, transzport. Tankönyv 3.1 és 3.2 fejezetei. Szabó Gábor, 2016
Membrán, transzport Tankönyv 3.1 és 3.2 fejezetei Szabó Gábor, 2016 Kulcsszavak elektrokémiai gradiens lipid-víz megoszlási hányados fogalma és jelentősége Henderson-Hasselbach egyenlet (jelentése és jelentősége
Vizsgakövetelmények Hasonlítsa össze a prokarióta és az eukarióta sejt szerveződését, lásd még prokarióták. Ismerje föl mikroszkópban és mikroszkópos
1 1 2 Vizsgakövetelmények Hasonlítsa össze a prokarióta és az eukarióta sejt szerveződését, lásd még prokarióták. Ismerje föl mikroszkópban és mikroszkópos képeken a sejtfalat, színtestet, sejtmagot, zárványt.
Biomembránok, membránon keresztüli transzport SZTE ÁOK Biokémiai I.
Biomembránok, membránon keresztüli transzport SZTE ÁOK Biokémiai I. Sejtmembrán és sejtorganellum-membránok - kompartmentek 1-2. sejtmagvacska - sjetmag nucleus 3-5. riboszóma, rer 4. vezikulum 6. Golgi-apparatus
A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál
A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál A sejtmembrán szerkezete Nyugalmi membránpotenciál A Nernst egyenlet Donnan potenciál A Goldman-Hodgkin-Katz egyenlet 2014.11.11. A biológiai membránok
Biofizika I 2013-2014 2014.12.02.
ÁTTEKINTÉS AZ IZOM TÍPUSAI: SZERKEZET és FUNKCIÓ A HARÁNTCSÍKOLT IZOM SZERKEZETE MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSA IZOM MECHANIKA Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet
Biofizika 1 - Diffúzió, ozmózis 10/31/2018
TRANSZPORTFOLYAMATOK ÉLİ RENDSZEREKBEN DIFFÚZIÓ ÉS OZMÓZIS A MINDENNAPI ÉLETBEN Diffúzió, ozmózis Folyadékáramlás A keringési rendszer biofizikája Transzportfolyamatok biológiai membránon keresztül, membránpotenciál
AZ EMBERI TEST FELÉPÍTÉSE
AZ EMBERI TEST FELÉPÍTÉSE Szalai Annamária ESZSZK GYITO Általános megfontolások anatómia-élettan: az egészséges emberi szervezet felépítésével és működésével foglalkozik emberi test fő jellemzői: kétoldali