Számítógépes Hálózatok
|
|
- Elemér Horváth
- 6 évvel ezelőtt
- Látták:
Átírás
1 Számítógépes Hálózatok 5. Előadás: Adatkapcsolati réteg III. Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki
2 2 Közeg hozzáférés vezérlése Media Access Control (MAC)
3 Mi az a közeg hozzáférés? 3 Ethernet és a Wifi is többszörös hozzáférést biztosító technológiák Az átviteli közegen több résztvevő osztozik Adatszórás (broadcasting) Az egyidejű átvitel ütközést okot Lényegében meghiúsítja az átvitelt Követelmények a Media Access Control (MAC) protokolljaival szemben Szabályok a közeg megosztására Stratégiák az ütközések detektálásához, elkerüléséhez és feloldásához
4 MAC alréteg 4 Eddigi tárgyalásaink során pont-pont összeköttetést feltételeztünk. Most az adatszóró csatornát (angolul broadcast channel) használó hálózatok tárgykörével foglalkozunk majd. Kulcskérdés: Melyik állomás kapja a csatornahasználat jogát? A csatorna kiosztás történhet: 1. statikus módon (FDM, TDM) 2. dinamikus módon a) verseny vagy ütközés alapú protokollok (ALOHA, CSMA, CSMA/CD) b) verseny-mentes protokollok (bittérkép-alapú protokollok, bináris visszaszámlálás) c) korlátozott verseny protokollok (adaptív fa protokollok)
5 Statikus csatornakiosztás 5 Frekvenciaosztásos nyalábolás N darab felhasználót feltételezünk, a sávszélet N egyenlő méretű sávra osztják, és minden egyes sávhoz hozzárendelnek egy felhasználót. Következésképpen az állomások nem fogják egymást zavarni. Előnyös a használata, ha fix számú felhasználó van és a felhasználók nagy forgalmi igényt támasztanak. Löketszerű forgalom esetén használata problémás. Időosztásos nyalábolás N darab felhasználót feltételezünk, az időegységet N egyenlő méretű időrésre úgynevezett slot-ra osztják, és minden egyes réshez hozzárendelnek egy felhasználót. Löketszerű forgalom esetén használata nem hatékony.
6 Dinamikus csatornakiosztás 1. Állomás modell N terminál/állomás Annak a valószínűsége, hogy Δt idő alatt csomag érkezik λδt, ahol λ az érkezési folyam rátája. 2. Egyetlen csatorna feltételezés Minden állomás egyenrangú. Minden kommunikáció egyazon csatornán zajlik. Minden állomás tud ezen küldeni és fogadni csomagot. 3. Ütközés feltételezés Ha két keret egy időben kerül átvitelre, akkor átlapolódnak, és az eredményül kapott jel értelmezhetetlenné válik. Ezt nevezzük ütközésnek. 4. Folytonos időmodell VS diszkrét időmodell 5. Vivőjel értékelés VS nincs vivőjel érzékelés
7 Dinamikus csatornakiosztás Time Time Használt időmodell Kétféle időmodellt különböztetünk meg: a) Folytonos Mindegyik állomás tetszőleges időpontban megkezdheti a küldésre kész keretének sugárzását. b) Diszkrét Az időt diszkrét résekre osztjuk. Keret továbbítás csak időrés elején lehetséges. Az időrés lehet üres, sikeres vagy ütközéses. Vivőjel érzékelési képesség Az egyes állomások vagy rendelkeznek ezzel a tulajdonsággal vagy nem. a) Ha nincs, akkor az állomások nem tudják megvizsgálni a közös csatorna állapotát, ezért egyszerűen elkezdenek küldeni, ha van rá lehetőségük. b) Ha van, akkor állomások meg tudják vizsgálni a közös csatorna állapotát a küldés előtt. A csatorna lehet: foglalt vagy szabad. Ha a foglalt a csatorna, akkor nem próbálják használni az állomások, amíg fel nem szabadul. Megjegyzés: Ez egy egyszerűsített modell!
8 Hogyan mérjük a hatékonyságot? Átvitel [Throughput] (S) A sikeresen átvitt csomagok/keretek száma egy időegység alatt Késleltetés [Delay] Egy csomag átviteléhez szükséges idő Fairség [Fairness] Minden állomás egyenrangúként van kezelve
9 Átvitel és terhelés Terhelés (G) A protokoll által kezelendő csomagok száma egy időegység alatt (beérkező kérések) G>1: túlterhelés A csatorna egy kérést tud elvezetni Ideális esetben Ha G<1, S=G Ha G 1, S=1 Ahol egy csomag kiküldése egy időegységet vesz igénybe.
10 (Tiszta) ALOHA Az algoritmust a 70-es években a Uni. of Hawaii fejlesztette Ha van elküldendő adat, akkor elküldi Alacsony költségű, nagyon egyszerű megoldás
11 ALOHA 11 Topológia: broadcast rádió több állomással Protokoll: Az állomások azonnal küldenek A fogadók minden csomagot nyugtáznak Nincs nyugta = ütközés, véletlen ideig vár, majd újraküld Egyszerű, de radikális megoldás Korábbi megoldások, mind felosztották a csatornát TDMA, FDMA, etc. Kévés küldő esetére készült A B C
12 Teljesítmény elemzés -Poisson Folyam A véletlen érkezések egyik ünnepelt modellje a sorban-állás elméletben a Poisson folyam. A modell feltételezései: Egy érkezés valószínűsége egy rövid Δt intervallum alatt arányos az intervallum hosszával és nem függ az intervallum kezdetétől (ezt nevezzük memória nélküli tulajdonságnak) Annak a valószínűsége, hogy több érkezés történik egy rövid Δt intervallum alatt közelít a nullához.
13 Teljesítmény elemzés Poisson eloszlás Annak a valószínűsége, hogy k érkezés történik egy t hosszú intervallum során: P() t k ( t) k e k! t ahol λ az érkezési ráta. Azaz ez egy egy-paraméteres modell, ahol csak λ-át kell ismernünk.
14 Poisson Eloszlás példák 14
15 ALOHA vizsgálata Jelölés: T f = keret-idő (feldolgozási, átviteli és propagációs) S: A sikeres keret átvitelek átlagos száma T f idő alatt; (throughput) G: T f idő alatti összes átviteli kísérletek átlagos száma D: Egy keret küldésre kész állapota és a sikeres átvitele között eltelt átlagos idő Feltételezéseink Minden keret konstans/azonos méretű A csatorna zajmentes, hibák csak ütközések miatt történnek A keretek nem kerülnek sorokba az egyedi állomásokon Egy csatorna egy Poisson folyamként viselkedik
16 ALOHA vizsgálata Mivel S jelöli a jó átviteleket egy keret idő alatt és G jelöli az összes átviteli kísérletet egy keret idő alatt, így a következő összefüggést írhatjuk: S = S(G) = G (A jó átvitelek valószínűsége) A sebezhetőségi idő egy keret sikeres átviteléhez: 2T f Azaz a jó átvitel valószínűsége megegyezik annak a valószínűségével, hogy a sebezhetőségi idő alatt nincs beérkező keret.
17 ALOHA vizsgálata 17 Ütközés a kék keret elejével van átfedés t Ütközés a kék keret végével van átfedés t 0 t 0 + t t 0 + 2t t 0 + 3t Sebezhetőség Idő Sebezhetőségi időintervallum a kékkel jelölt kerethez
18 ALOHA vizsgálata Tudjuk, hogy: P k ( t) ( k t) e k! t Azaz most t = 2T f és k = 0 (t legyen a seb. Idő, k=0, hogy ne érkezzen új keret a kék küldése során) 2 0 ( 2 Tf ) e 2G P0 (2 Tf ) e 0! G becasue. Thus, S G e T f T f 2G
19 ALOHA vizsgálata 19 S(G) = Ge -2G függvényt G szerint deriválva és az eredményt nullának tekintve az egyenlet megoldásával megkapjuk a maximális sikeres átvitelhez tartozó G értéket: G = 0.5, melyre S(G) = 1/2e = Azaz a maximális throughput csak 18%-a a teljes kapacitásnak!!!
20 S(G) ALOHA vs TDMA 20 A TDMA esetén minden állomás vár a saját körére A várakozási idő arányos az állomások számával Az Aloha esetén minden állomás azonnal küldhet Sokkal kisebb várakozási idő De sokkal kisebb csatorna kihasználtság Sender A Sender B ALOHA Keret ALOHA Keret Idő G Maximálisan a csatorna kapacitás kb. 18%-a érhető el
21 Réselt ALOHA 21 A csatornát azonos időrésekre bontjuk, melyek hossza pont egy keret átviteléhez szükséges idő. Átvitel csak az időrések határán lehetséges Algoritmus: Amikor egy új A keret küldésre kész: Az A keret kiküldésre kerül a (következő) időrés-határon
22 A réselt ALOHA vizsgálata A sebezhetőségi idő a felére csökken!!! Tudjuk, hogy: P k ( t) ( k t) e k! t Ez esetben t = T f és továbbra is k = 0, amiből kapjuk, hogy: 0 ( Tf ) e G P0 ( Tf ) e 0! G because. Thus, S G e T f T f G
23 S(G) Réselt ALOHA 23 Protokoll Ugyanaz, mint az ALOHA Folytonos időmodell helyett diszkrét idő Csak időrés elején küldhetünk Azaz a keretek vagy teljesen ütköznek, vagy egyáltalán nem 37% átvitel vs. 18% (az tiszta ALOHA esetén) Azonban az állomásoknak egymáshoz szinkronizált órával kell rendelkezniük G
24 Repeater Adatszóró (Broadcast) Ethernet 24 Eredetileg az Ethernet egy adatszóró technológia volt Terminator 10Base2 Tee Connector 10BaseT és 100BaseT T jelzi a csavart érpárt (Twisted Pair) Hub Hubok és repeaterek mind 1. rétegbeli eszközök (csak fizikai)
25 Vivőjel érzékelés Carrier Sense Multiple Access (CSMA) További feltételezés Minden állomás képes belehallgatni a csatornába és így el tudja dönteni, hogy azt más állomás használja-e átvitelre
26 1-perzisztens CSMA protokoll 26 Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába. Folytonos időmodellt használ a protokoll Algoritmus Keret leadása előtt belehallgat a csatornába: a) Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens) b) Ha szabad, akkor küld. Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását. Tulajdonságok A terjedési késleltetés nagymértékben befolyásolhatja a teljesítményét. Jobb teljesítményt mutat, mint az ALOHA protokollok.
27 Nem-perzisztens CSMA protokoll 27 Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába. Folytonos időmodellt használ a protokoll Mohóság kerülése Algoritmus Keret leadása előtt belehallgat a csatornába: a) Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens) b) Ha szabad, akkor küld. Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását. Tulajdonságok Jobb teljesítményt mutat, mint az 1-perzisztens CSMA protokoll. (intuitív)
28 p-perzisztens CSMA protokoll 28 Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába. Diszkrét időmodellt használ a protokoll Algoritmus Adás kész állapotban az állomás belehallgat a csatornába: a) Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust. b) Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna. Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.
29 CSMA áttekintés 29 Nem-perzisztens 1-perzisztens p-perzisztens Foglalt csatorna Konstans v. változó Késleltetés CSMA perzisztencia Nem-perzisztens: Átvitel ha szabad Különben: késleltetés, újrapróbáljuk Idő Kész 1-perzisztens: Átvitel amint a csatorna szabad Ütközés esetén visszalépés, majd újrapróbáljuk p-perzisztens: Átvitel p valószínűséggel, ha a csatorna szabad Különben: várunk 1 időegységet és újrapróbáljuk
30 CSMA és ALOHA protokollok összehasonlítása 30 Nem 1- Egyszerű Réselt perzisztens ALOHA CSMA 0,5- perzisztens CSMA 0,01-0,1- perzisztens CSMA Forrás: [1]
31 CSMA/CD - CSMA ütközés detektálással (CD = Collision Detection) Ütközés érzékelés esetén meg lehessen szakítani az adást. ( Collision Detection ) Minden állomás küldés közben megfigyeli a csatornát, ha ütközést tapasztal, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét. Mikor lehet egy állomás biztos abban, hogy megszerezte magának a csatornát? Az ütközés detektálás minimális ideje az az idő, ami egy jelnek a két legtávolabbi állomás közötti átviteléhez szükséges.
32 CSMA/CD Egy állomás megszerezte a csatornát, ha minden más állomás érzékeli az átvitelét. Az ütközés detektálás működéséhez szükséges a keretek hosszára egy alsó korlátot adnunk Ethernet a CSMA/CD-t használja
33 CSMA/CD 33 Carrier sense multiple access with collision detection Alapvetés: a közeg lehetőséget ad a csatornába hallgatásra Algoritmus 1. Használjuk valamely CSMA variánst 2. A keret kiküldése után, figyeljük a közeget, hogy történik-e ütközés 3. Ha nem volt ütközés, akkor a keretet leszállítottuk 4. Ha ütközés történt, akkor azonnal megszakítjuk a küldést Miért is folytatnánk hisz a keret már sérült 5. Alkalmazzuk az bináris exponenciális hátralék módszert az újraküldés során (binary exponential backoff)
34 Idő CSMA/CD Ütközések 34 Ütközések történhetnek Az ütközéseket gyorsan észleljük és felfüggesztjük az átvitelt Mi a szerepe a távolságnak, propagációs időnek és a keret méretének? Az állomások térbeli helye A B C D t 0 t 1 Ütközés érzékelése és küldés felfüggesztése
35 Binary Exponential Backoff 35 Bináris exponenciális hátralék Ütközés érzékelésekor a küldő egy ún. jam jelet küld Minden állomás tudomást szerezzen az ütközésről Binary exponential backoff működése: Válasszunk egy k [0, 2 n 1] egyenletes eloszlás szerint, ahol n = az ütközések száma Várjunk k időegységet (keretidőt) az újraküldésig n felső határa 10, 16 sikertelen próbálkozás után pedig eldobjuk a keretet A hátralék idő versengési résekre van osztva Remember this number
36 Binary Exponential Backoff 36 Tekintsünk két állomást, melyek üzenetei ütköztek Első ütközés után: válasszunk egyet a két időrés közül A siker esélye az első ütközés után: 50% Átlagos várakozási idő: 1,5 időrés Második ütközés után: válasszunk egyet a négy rés közül Sikeres átvitel esélye ekkor: 75% Átlagos várakozási idő: 2,5 rés Általában az m. ütközés után: A sikeres átvitel esélye: 1-2 -m Average delay (in slots): 0,5 + 2 (m-1)
37 Minimális keretméret 37 Miért 64 bájt a minimális keretméret? Az állomásoknak elég időre van szüksége az ütközés detektálásához Mi a kapcsolat a keretméret és a kábelhossz között? 1. t időpont: Az A állomás megkezdi az átvitelt 2. t + d időpont: A B állomás is megkezdi az átvitelt 3. t + 2*d időpont: A érzékeli az ütközést A Propagation Delay (d) B Alapötlet: Az A állomásnak 2*d ideig kell küldenie!
38 CSMA/CD CSMA/CD három állapota: versengés, átvitel és szabad. Ahhoz, hogy minden ütközést észleljünk szükséges: T f 2T pg ahol T f egy keret elküldéséhez szükséges idő és T pg a propagációs késés A és B állomások között
39 Minimális keretméret 39 Az A küldésének 2*d ideig kell tartania Min_keret = ráta (b/s) * 2 * d (s) de mi az a d? propagációs késés, melyet a fénysebesség ismeretében 10 Mbps ki tudunk Ethernet számolni Propagációs A keretméret késés (d) = és távolság a kábelhossz (m) / fénysebesség változik (m/s) Azaz: a gyorsabb szabványokkal Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s) Azaz a kábel összhossza. Távolság = min_keret * fénysebesség /(2 * ráta) (64B*8)*(2*10 8 mps)/(2*10 7 bps) = 5120 méter
40 Minimális keretméret 40 Az A küldésének 2*d ideig kell tartania Min_keret = ráta (b/s) * 2 * d (s) de mi az a d? propagációs késés, melyet a fénysebesség ismeretében ki tudunk számolni Propagációs késés (d) = távolság (m) / fénysebesség (m/s) Azaz: Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s) Azaz a kábel összhossza. Távolság = min_keret * fénysebesség /(2 * ráta) (64B*8)*(2*10 8 mps)/(2*10 7 bps) = 5120 méter
41 Kábelhossz példa 41 min_keret*fénysebesség/(2*ráta) = max_kábelhossz (64B*8)*(2*10 8 mps)/(2*10mbps) = 5120 méter Mi a maximális kábelhossz, ha a minimális keretméret 1024 bájtra változik? 81,9 kilométer Mi a maximális kábelhossz, ha a ráta 1 Gbps-ra változik? 51 méter Mi történik, ha mindkettő változik egyszerre? 819 méter
42 Maximális keretméret 42 Maximum Transmission Unit (MTU): 1500 bájt Pro: Hosszú csomagokban levő biz hibák jelentős javítási költséget okozhatnak (pl. túl sok adatot kell újraküldeni) Kontra: Több bájtot vesztegetünk el a fejlécekben Összességében nagyobb csomag feldolgozási idő Adatközpontokban Jumbo keretek 9000 bájtos keretek
43 43 Köszönöm a figyelmet!
Számítógépes Hálózatok
Számítógépes Hálózatok 7. Előadás: Adatkapcsolati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki CRC
Számítógépes Hálózatok. 4. gyakorlat
Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet
Számítógépes Hálózatok
Számítógépes Hálózatok 5. Előadás: Adatkapcsolati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Adatkapcsolati
Számítógépes Hálózatok 2010
Számítógépes Hálózatok 2010 5. Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA 1 Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben Statikus multiplexálás
Számítógépes Hálózatok. 5. gyakorlat
Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet
Számítógépes Hálózatok 2013
Számítógépes Hálózatok 2013 5. Adatkapcsolati réteg MAC, Statikus multiplexálás, dinamikus csatornafoglalás, ALOHA, CSMA 1 Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben
Számítógépes Hálózatok ősz Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA
Számítógépes Hálózatok ősz 2006 7. Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA 1 Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben Statikus
Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben. Számítógépes Hálózatok ősz 2006
Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben Számítógépes Hálózatok ősz 2006 7. Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA Statikus multiplexálás
Számítógépes Hálózatok 2010
Számítógépes Hálózatok 2010 6. Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA 1 Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben Statikus multiplexálás
Számítógépes Hálózatok és Internet Eszközök
Számítógépes Hálózatok és Internet Eszközök 2008 12. datkapcsolati réteg, MC alréteg CSM, versenymentes protokollok, korlátozott verseny 1 Vivő-érzékelés (Carrier Sensing) (Slotted) LOH egyszerű, de nem
Számítógépes Hálózatok
Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring
Bevezetés. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék
Bevezetés Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Tartalom Alapfogalmak, definíciók Az OSI és a TCP/IP referenciamodell Hálózati
Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat
Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat Erdős András (demonstrátor) Debreceni Egyetem - Informatikai Kar Informatikai Rendszerek és Hálózatok Tanszék 2016 9/20/2016 9:41 PM 1 Adatkapcsolati
MAC alréteg. Számítógépes Hálózatok persistent CSMA. Vivő-érzékelés (Carrier Sensing)
MC alréteg Számítógépes Hálózatok 2008 7. datkapcsolati réteg, MC CSM, versenymentes protokollok, korlátozott verseny, Ethernet; Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. február 23. Bemutatkozás Vida Rolland egyetemi docens, tárgyfelelős IE 325, vida@tmit.bme.hu 2 Fóliák a neten Tárgy honlapja: http://www.tmit.bme.hu/vitma341
Számítógépes Hálózatok és Internet Eszközök
Számítógépes Hálózatok és Internet Eszközök 2008 13. Adatkapcsolati réteg, MAC alréteg Ethernet, WiFi 1 MAC alréteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok Verseny-mentes
Egyszerű simplex protokoll nyugtákkal
Egyszerű simplex protokoll nyugtákkal Számítógépes Hálózatok 2008 6. Adatkapcsolati réteg utólagos hibajavítás, csúszó ablakok, MAC, Statikus multiplexálás, (slotted) Aloha Simplex üzemmód: csomagok küldése
Számítógépes Hálózatok 2008
Számítógépes Hálózatok 2008 6. Adatkapcsolati réteg utólagos hibajavítás, csúszó ablakok, MAC, Statikus multiplexálás, (slotted) Aloha 1 Egyszerű simplex protokoll nyugtákkal Simplex üzemmód: csomagok
Adatkapcsolati réteg 1
Adatkapcsolati réteg 1 Főbb feladatok Jól definiált szolgáltatási interfész biztosítása a hálózati rétegnek Az átviteli hibák kezelése Az adatforgalom szabályozása, hogy a lassú vevőket ne árasszák el
AST_v3\ 4. 4.2.1. A közeg-hozzáférési alréteg (Media Access Control MAC)
AST_v3\ 4. 4.2.1. A közeg-hozzáférési alréteg (Media Access Control MAC) A hálózatok (több más csoportosítási lehetőség mellett) két nagy csoportra oszthatók, az adatszóró (Broadcast) illetve a pont-pont
MACAW. MAC protokoll vezetéknélküli LAN hálózatokhoz. Vaduvur Bharghavan Alan Demers, Scott Shenker, Lixia Zhang
MACAW MAC protokoll vezetéknélküli LAN hálózatokhoz Vaduvur Bharghavan Alan Demers, Scott Shenker, Lixia Zhang készítette a fenti cikk alapján: Bánsághi Anna programtervező matematikus V. 2009. tavaszi
Számítógépes Hálózatok 2008
Számítógépes Hálózatok 2008 7. datkapcsolati réteg, MC korlátozott verseny, WLN, Ethernet; LN-ok összekapcsolása 1 MC alréteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok
Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek
Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A
14. fejezet Többszörös hozzáférésű protokollok 2
14. fejezet Többszörös hozzáférésű protokollok 2 Időszeletelt, vagy réselt ALOHA Az egyszerű ALOHA kihasználtsággal kapcsolatos problémái leginkább arra vezethetők vissza, hogy az adók bármely időpillanatban
Számítógépes Hálózatok ősz Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása
Számítógépes Hálózatok ősz 2006 8. Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása 1 MAC sub-réteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú
MAC alréteg. Számítógépes Hálózatok Protokollok korlátozott versennyel. Adaptív fa bejárás protokoll
MC alréteg Számítógépes Hálózatok 2011 6. datkapcsolati réteg, MC korlátozott verseny, adaptív fa bejárás, Ethernet; LN-ok összekapcsolása Statikus Multiplexálás inamikus csatorna foglalás Kollízió alapú
Kollízió felismerés (collision detection) CSMA/CD. Számítógépes Hálózatok CSMA/CD periódusai. Mi a teendő kollízió esetén? B Idle!
Számítógépes Hálózatok 2013 6. datkapcsolati réteg, MC CSM/CD, versenymentes protokollok, korlátozott verseny, Ethernet; LN-ok összekapcsolása Kollízió felismerés (collision detection) CSM/CD Ha két csomag
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így
Rohonczy János: Hálózatok
Rohonczy János: Hálózatok Rohonczy János (ELTE) 2005 v.1.0 1 Topológia fa csillag gyűrű busz busz / gerinc Rohonczy János (ELTE) 2005 v.1.0 2 Kiterjedés LAN MAN WAN Rohonczy János (ELTE) 2005 v.1.0 3 Fizikai
Számítógépes Hálózatok 2013
Számítógépes Hálózatok 2013 6. datkapcsolati réteg, MC CSM/CD, versenymentes protokollok, korlátozott verseny, Ethernet; LN-ok összekapcsolása 1 Kollízió felismerés (collision detection) CSM/CD Ha két
Hálózati alapismeretek
Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet
A Component-Base Architechture for Power-Efficient Media Access Control in Wireless Sensor Networks
A Component-Base Architechture for Power-Efficient Media Access Control in Wireless Sensor Networks MAC=Media Access Control, Közeghozzáférés vezérlés Lényegében azt irányítja, melyik mote mikor adjon,
MAC sub-réteg. Számítógépes Hálózatok ősz Protokollok korlátozott versennyel. Adaptív fa protokoll
MC sub-réteg Számítógépes Hálózatok ősz 2006 8. datkapcsolati réteg, MC korlátozott verseny, Ethernet, WLN; LN-ok összekapcsolása Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok
Hálózati architektúrák és Protokollok Levelező képzés - 1. Kocsis Gergely
Hálózati architektúrák és Protokollok Levelező képzés - Kocsis Gergely 26.4.8. Számítógéphálózat Számítógéprendszerek valamilyen információátvitellel megvalósítható célért történő összekapcsolása Erőforrásmegosztás
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing 1 Az Ethernet példája Gyakorlati példa: Ethernet IEEE 802.3 standard
Szenzorhálózatok és alkalmazásaik. Adatkapcsolati réteg. MAC megoldások.
Szenzorhálózatok és alkalmazásaik Adatkapcsolati réteg. MAC megoldások. IoT versenyfelhívás A pályaműveket 2016. március 10-ig küldhetitek be az iot-palyazat@tmit.bme.hu címre Egyszemélyes vagy 2-4 fős
Hálózat szimuláció. Enterprise. SOHO hálózatok. Más kategória. Enterprise. Építsünk egy egyszerű hálózatot. Mi kell hozzá?
Építsünk egy egyszerű hálózatot Hálózat szimuláció Mi kell hozzá? Aktív eszközök PC, HUB, switch, router Passzív eszközök Kábelek, csatlakozók UTP, RJ45 Elég ennyit tudni? SOHO hálózatok Enterprise SOHO
Szenzorhálózatok Adatkapcsolati réteg ( ) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25,
Szenzorhálózatok Adatkapcsolati réteg (2007.03.12) Vidács Attila Távközlési és Médiainformatikai Tanszék I.B.228, T:19-25, vidacs@tmit.bme.hu Adatkapcsolati réteg Adatkapcsolati réteg fő feladatai: keretképzés
Tájékoztató. Értékelés. 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Helyi hálózatok. (LAN technológiák, közös médium hálózatok)
(LAN technológiák, közös médium hálózatok) 2 Helyi hálózatok (LAN-ok) kommunikációs hálózat, lokális méret broadcast jellegű átvitel nincs hálózati réteg funkcionalitás LAN Internet Router 3 Helyi hálózatok
ADATKAPCSOLATI PROTOKOLLOK
ADATKAPCSOLATI PROTOKOLLOK Hálózati alapismeretek OSI 1 Adatkapcsolati réteg működése Az adatkapcsolati protokollok feladata egy összeállított keret átvitele két csomópont között. Az adatokat a hálózati
A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze
A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze a MAC-címet használja a hálózat előre meghatározott
MAC címek (fizikai címek)
MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)
Számítógépes Hálózatok. 6. gyakorlat
Számítógépes Hálózatok 6. gyakorlat Feladat 0 Tízezer repülőjegy-foglaló állomás egyetlen "slotted ALOHA"-csatorna használatáért verseng. Egy átlagos állomás 24 kérést ad ki óránként. Egy slot hossza 250
Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK
Gigabit Ethernet, 10 Gigabit Ethernet Jákó András goya@eik.bme.hu BME EISzK Agenda Előzmények Gigabit Ethernet 1000Base-X 1000Base-T 10 Gigabit Ethernet Networkshop 2002. Gigabit Ethernet, 10 Gigabit Ethernet
LAN Technológiák. Osztott médium hálózatok. LAN-ok
LAN Technológiák Osztott médium hálózatok LAN-ok 1 Fejlett pollozási megoldások pollozási időtöbblet csökkentése ütközési veszteség csökkentése szabványos megoldások IEEE 802.3 Ethernet IEEE 802.4 Token
* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg
ét * Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő Kapcsolati réteg A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Point-to-Point Protocol kifejezésből) egy magas szintű
Szállítási réteg (L4)
Szállítási réteg (L4) Gyakorlat Budapest University of Technology and Economics Department of Telecommunications and Media Informatics A gyakorlat célja A TCP-t nagyon sok környezetben használják A főbb
Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) Deák Kristóf Címfeloldás ezerrel Azt eddig tudjuk, hogy egy alhálózaton belül switchekkel oldjuk meg a zavartalan kommunikációt(és a forgalomirányítás is megy, ha egy
Lokális hálózatok. A lokális hálózat felépítése. Logikai felépítés
Lokális hálózatok Számítógép hálózat: több számítógép összekapcsolása o üzenetküldés o adatátvitel o együttműködés céljából. Egyszerű példa: két számítógépet a párhuzamos interface csatlakozókon keresztül
Járműfedélzeti rendszerek II. 8. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek II. 8. előadás Dr. Bécsi Tamás A FlexRay hálózat Kifejlesztésének célja: alacsony költségen, nagy megbízhatóságú, nagy teljesítményű adatátvitel járműipari környezetben. A specifikációt
16. fejezet Az IEEE evolúciója és keretszerkezete
16. fejezet Az IEEE802.11 evolúciója és keretszerkezete A vezeték nélküli LAN hálózatok evolúciója A vezetékes LAN hálózatokhoz hasonlóan a vezeték nélküli LAN hálózatok is sokat változtak. A változást
I. Házi Feladat. internet. Határidő: 2011. V. 30.
I. Házi Feladat Határidő: 2011. V. 30. Feladat 1. (1 pont) Tegyük fel, hogy az A és B hosztok az interneten keresztül vannak összekapcsolva. A internet B 1. ábra. a 1-hez tartozó ábra 1. Ha a legtöbb Internetes
Wireless technológiák. 2011. 05. 02 Meretei Balázs
Wireless technológiák 2011. 05. 02 Meretei Balázs Tartalom Alapfogalmak (Rövidítések, Moduláció, Csatorna hozzáférés) Szabványok Csatorna hozzáférés PTP - PTmP Mire figyeljünk Az építés új szabályai SNR,
Számítógépes Hálózatok
Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring
4. A közegelérési alréteg
4. A közegelérési alréteg Ahogy már az első' fejezetben rámutattunk, a hálózatok két kategóriába sorolhatók: vannak, amelyek kétpontos összeköttetést, és vannak, amelyek adatszóró csatornát használnak.
Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont)
A verzió Név, tankör: 2005. május 11. Neptun kód: Számítógép-hálózatok zárthelyi feladat 1a. Feladat: Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont) 2a. Feladat: Lehet-e
Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT szeptember 10. HSNLab SINCE 1992
Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. szeptember 10. Kábelmodem 2 Kábelmodem A kezdetekben minden hálózatüzemeltetőnek saját modem-je, melyet egy technikus telepített Nyílt
Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak
Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 8. Gyakorlat Vezeték nélküli helyi hálózatok 2016.04.07. Számítógép hálózatok gyakorlat 1 Vezeték nélküli adatátvitel Infravörös technológia Még mindig sok helyen alkalmazzák
Számítógépes hálózatok
Számítógépes hálózatok Hajdu György: A vezetékes hálózatok Hajdu Gy. (ELTE) 2005 v.1.0 1 Hálózati alapfogalmak Kettő/több tetszőleges gép kommunikál A hálózat elemeinek bonyolult együttműködése Eltérő
Számítógépes Hálózatok
Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út
Számítógépes hálózatok Gyakorló feladatok megoldása 1. feladatsor
Utolsó módosítás: 7..3. 3. Számítógépes hálózatok Gyakorló feladatok megoldása. feladatsor. feladat: Rendelje a következő fogalmakat az Internet négy rétegéhez!. E-Mail / Felhasználói /. Csomagtovábbítás
Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra
Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra Multimédiás adatok továbbítása és annak céljai Mozgókép és hang átvitele Szórakoztató elektronika Biztonsági funkciókat megvalósító
BEÁGYAZOTT RENDSZEREK TERVEZÉSE UDP csomag küldése és fogadása beágyazott rendszerrel példa
BEÁGYAZOTT RENDSZEREK TERVEZÉSE 1 feladat: A Netburner MOD5270 fejlesztőlap segítségével megvalósítani csomagok küldését és fogadását a fejlesztőlap és egy PC számítógép között. megoldás: A fejlesztőlapra,
Ethernet hálózatok. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék
Ethernet hálózatok Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Tartalom Történeti áttekintés Fizikai közegek és csatlakozók Kódolás
Számítógép hálózatok 3. gyakorlat Packet Tracer alapok M2M Statusreport 1
Számítógép hálózatok 3. gyakorlat Packet Tracer alapok 2017.02.20. M2M Statusreport 1 Mi a Packet Tracer? Regisztrációt követően ingyenes a program!!! Hálózati szimulációs program Hálózatok működésének
Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.
KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban
Számítógép-hálózatok A közeghozzáférési alréteg
Számítógép-hálózatok A közeghozzáférési alréteg 2010/2011. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Informatikai Intézet 106. sz. szoba Tel: (46) 565-111 / 21-06 Dr. Kovács
Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe
Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg A hálózati kártya (NIC-card) Ethernet ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton
Csoportos üzenetszórás optimalizálása klaszter rendszerekben
Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási
Fine-Grained Network Time Synchronization using Reference Broadcast
Fine-Grained Network Time Synchronization using Reference Broadcast Ofszet Az indítás óta eltelt idıt mérik Az ofszet változása: skew Az órák sebességének különbsége Oka: Az óra az oszcillátor pontatlanságát
Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004
Kábel nélküli hálózatok Agrárinformatikai Nyári Egyetem Gödöllő 2004 Érintett témák Mért van szükségünk kábelnélküli hálózatra? Hogyan válasszunk a megoldások közül? Milyen elemekből építkezhetünk? Milyen
Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)
Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0
Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Dr. Berke József berke@georgikon.hu 2006-2008 A MOBIL HÁLÓZAT - Tartalom RENDSZERTECHNIKAI FELÉPÍTÉS CELLULÁRIS FELÉPÍTÉS KAPCSOLATFELVÉTEL
Hálózatok II. A hálózati réteg torlódás vezérlése
Hálózatok II. A hálózati réteg torlódás vezérlése 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111
Az LTE. és a HSPA lehetőségei. Cser Gábor Magyar Telekom/Rádiós hozzáférés tervezési ágazat
Az LTE és a HSPA lehetőségei Cser Gábor Magyar Telekom/Rádiós hozzáférés tervezési ágazat Author / Presentation title 08/29/2007 1 Áttekintés Út az LTE felé Antennarendszerek (MIMO) Modulációk HSPA+ LTE
Számítógépes Hálózatok
Számítógépes Hálózatok 10. Előadás: Szállítói réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Szállítói
Autóipari beágyazott rendszerek. Local Interconnection Network
Autóipari beágyazott rendszerek Local Interconnection Network 1 Áttekintés Motiváció Kis sebességigényű alkalmazások A CAN drága Kvarc oszcillátort igényel Speciális perifériát igényel Két vezetéket igényel
VIHIMA07 Mobil és vezeték nélküli hálózatok. Forgalmi modellezés és tervezés
Forgalmi modellezés és tervezés 2016. május 17. Budapest Telek Miklós Hálózati Rendszerek és Szolgáltatások Tanszék I.L.117, telek@hit.bme.hu 2 Tartalom Elemi összefüggések és intuitív méretezési módszerek
OFDM technológia és néhány megvalósítás Alvarion berendezésekben
SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás
3) Mik a főbb funkcionalitásai az ISO/OSI modell megjelenítési rétegének rétegének?
1) Mi az Open System Interconnection Reference Model? Nyílt rendszerek hálózatának standard modellje, röviden OSI referenciamodell, amely egy 7 rétegű standard, koncepcionális modellt definiál kommunikációs
4. Hivatkozási modellek
4. Hivatkozási modellek Az előző fejezetben megismerkedtünk a rétegekbe szervezett számítógépes hálózatokkal, s itt az ideje, hogy megemlítsünk néhány példát is. A következő részben két fontos hálózati
Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban
Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben
2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
Tavasz 2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 5. gyakorlat Ethernet alapok Deák Kristóf S z e g e d i T u d o m á n y e g
AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB
AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB ADATSEBESSÉG ÉS CSOMAGKAPCSOLÁS FELÉ 2011. május 19., Budapest HSCSD - (High Speed Circuit-Switched Data) A rendszer négy 14,4 kbit/s-os átviteli időrés összekapcsolásával
54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont
Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Számítógépes Hálózatok. 7. gyakorlat
Számítógépes Hálózatok 7. gyakorlat Gyakorlat tematika Hibajelző kód: CRC számítás Órai / házi feladat Számítógépes Hálózatok Gyakorlat 7. 2 CRC hibajelző kód emlékeztető Forrás: Dr. Lukovszki Tamás fóliái
Számítógépes Hálózatok
Számítógépes Hálózatok 2. Előadás: Fizikai réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Fizikai réteg
Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. Ethernet
Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg Ethernet Beágyazás a 2. rétegben ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton
Számítógépes Hálózatok
Lukovszki Tamás Gyak. helye: Adatbázis labor Számítógépes Hálózatok http://people.inf.elte.hu/lukovszki/courses/07nwi/ (tavalyi) http://people.inf.elte.hu/lukovszki/courses/0708nwi/ http://people.inf.elte.hu/lukovszki/courses/07nwi/etc/
Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet
2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző
Újdonságok Nexus Platformon
Újdonságok Nexus Platformon Balla Attila balla.attila@synergon.hu CCIE #7264 Napirend Nexus 7000 architektúra STP kiküszöbölése Layer2 Multipathing MAC Pinning MultiChassis EtherChannel FabricPath Nexus
2. Hány réteget különböztet meg az Tannenbaum- féle hibrid rétegmodell? 5
1. Hány réteget különböztet meg az ISO/OSI referencia modell? 7 2. Hány réteget különböztet meg az Tannenbaum- féle hibrid rétegmodell? 5 3. Sorolja fel az ARPANET alapjául szolgáló három hálózatot. University
Hálózati alapismeretek
Hálózati alapismeretek 8. Kapcsolás az Ethernet hálózatokban 1. 2. Ütközési és szórási tartományok Második rétegbeli hídtechnika Ha egy Ethernet szegmenst bővítünk => => az átviteli közeg kihasználtsága
The Flooding Time Synchronization Protocol
The Flooding Time Synchronization Protocol Célok: FTSP Alacsony sávszélesség overhead Node és kapcsolati hibák kiküszöbölése Periodikus flooding (sync message) Implicit dinamikus topológia frissítés MAC-layer