Méréselmélet: 11. előadás,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Méréselmélet: 11. előadás,"

Átírás

1 Mééselélet:. elődás Mefelő jelfeldoloás feldtok folt. Rekuív jelepeetácó: soos-páhuos átlkító: dőttoáb ételehető tából t beékeését követőe előáll páhuos cstoáko dt el eételűe epeetálj dőttoábel tát. A sáítást folttv tovább tá sét előáll tsfoált ttoábel epeetácó. Í folttv ede tából álló dtblokk eételű epeetácóját kpjuk blokkéetek efelelő étékű tvétel-fekvec csökketéssel ú. decácóvl. 3 A le előállítás de lépésbe leutolsó t tsfoáltját dj csúsó-blkos/ekuív tsfoácót vlósít e. A evlósított tsfoácók set felépülő átok elek ekuív előállítás követketébe tepetálhtók cstoás sűőkkét hol sűők keete kétféleképpe képehető: A 45. ábá láthtó dskét teáto keete el foltos bás-vektook súltéeőt becsl Foue esetbe eek dskét Foue-sofejtés/tsfoácó eütthtó b A 45. ábá láthtó dskét teátook utá keveők ll. 49. áb set dskét teátook keete el foltos feldoloott jel kopoeset becsl Foue esetbe eek ú. Foue kopoesek. Eek kopoesek de peódus kedeté eeeek bás-vektook súltéeővel vs előő t dskét tsfoáltjávl. A jelcstoák páhuos keeteek leás kobácójávl újbb tsfoácók hohtók léte. At ho eel lehetőséel élük-e lekább set htáouk e ho sáítástechkl előösebb: Elképelhető ho ekuív Foue tsfoácó F eedée deképpe kell kko e áltláos tsfoácót külöösképp h k csk éshl süksées lább össefüéssel sáoluk: hol V éetes át. T V F b Elképelhető ho tsfoácó eválstásák sepotj htéko ksáíthtósá. Ee o jó péld Wlsh tsfoácó W elek bás/ecpok bás vekto köös oáló téeőtől eltektve - csk + és - étékeket vesek fel. Lásd 5. áb =8 esetée. E tsfoácó dttööítése hsálhtó leko dőttoá tát M tsfoált ttoábel távl epeetáljuk v össefüéshe hsoló tovább tsfoácók előállításáál hsáljuk: hol V éetes át. T V W c Kuttták ho Foue tsfoácó előállítás Wlsh tsfoácó köbekttásávl =64 pot sáítástechkl előösebb t követleül: 3 F V W

2 Mééselélet:. elődás hol V 3 éetes át. A eoáto lpú ekuív dskét Foue tsfoáto RDFT: A eddek ésbe össefolláskét folljuk össe eoáto lpú ekuív Foue tsfoáto jelleőt. A 5. áb ees eoátookt 5. áb ped teljes stuktúát llustálj. E utóbb ees cstoák átvtel füvéét 4 össeett átvtel füvét ped 5 össefüés íj le. A ees cstoák pltúdókktestkáj ol t csúsó blkos átlolóé l eltééssel ho átvtel éppe -edk fekvec kopoes helé. A RDFT eoáto lpú evlósítás bb külöbök dskét Foue tsfoácótól ho k eedéét köbe de lépésbe előő t vlle tsfoáltját dj lépésekét blokkokét kpjuk e. A köbeső vlle tsfoált ucsk Foue tsfoáltk tekthető l külöbséel ho básvektook lépésől-lépése ás fásheletűek. Mejeés:. Csk pátl hokus kopoest ttló jelek eseté édekes lehet - eséökee lpoott bás/ecpok bás késlet ll. tsfoácó. Ileko első básvekto e félpeódusú kople epoecáls ásodk e ásfél peódusú stb. Ileko lépés késleltetés ellett fást s fodít. P. 5. ábá / téeő helett α/ seepel hol <α< kko csúsó blkos tsfoácót kobál tudjuk epoecáls átlolássl. E t jelet ho eást követő hossúsáú blokkokt felejtő htássl de átloljuk. Ileko 5 P foáb íhtó ét so össeképletével P vs eástól távolsá lévő tákt ee csökkeő súlll vessük átlolásál felebe. Lásd 53. áb továbbá 8-83 össefüések. Ue htás ees csto keetek esetébe hossúsáú blokkok lpjá ksáított kopoes-ták epoecáls átlolását eedée. A eoáto lpú efelő t uveáls jelfeldoloó eskö: Áltláosítsuk 3 össefüést lább ódo: Íjuk fel eel P átvtel füvét: 5 P 6

3 Mééselélet:. elődás vées pulusválsú FIR vselkedést kuk btosít kko 6 össefüés eveőjéek lább kötést kell teljesíte: 7 et ebbe esetbe les 6 össefüés poloj vées pulusválsú. Ehhe } és / } súltéeőket { { 8 ; lpjá tudjuk ehtáo. FIR sűőt fekvec-tvétel eljáás sbál set ees cstoák keeteek leás kobácójkét vlósítuk e. Lásd 9 össefüés. Mejeés:. A eoáto pólus poícók sbdo eválsthtók de leeek külöböők.. eoáto pólus poícók -edk eséökök kko / de - e. b vétele pulusválsú IIR vselkedést kuk és dottk evlósítdó kko 7 és 8 efelelője: p p 9 p ; p A sűő keőjelét ebbe esetbe s ees cstoák keeteek leás kobácójkét kpjuk. Mejeés: A ekuív jeltsfoáto továbbá FIR és IIR sűő evlósításá eát lkls eoáto-lpú jelfeldoloó stuktú fotos tuljdosá: A jelet kopoeseke botj jd süksé set leás kobácó képéssel stetálj. b A eoc fekvecáko huokeősítés vétele eét átvtel péteéékesée keet leás kobácó súltéeőt lesáítv eeke fekvecáko ull átvtel potossáát káól eek súltéeők befolásolják. c A eoáto pólus poícók sstetkus eválstásávl stbltás és uekus sepotból eát kedveő sáítás eledeéshe jutuk. Kpcsolt Le tepolácós polol: 3

4 Mééselélet:. elődás Adott } { ú. lppotok felett e füvé étéke:.... A eeke potoko áthldó Le tepolácós polo Y hol A össefüések ebevetésével láthtó ho fekvec-tvétel eljáás lásd 9 össefüés Le tepolácók felel e és s ho e csk -edk eséökök esetébe hsálhtó. Mejeés: ete tepolácó: többsöös eoáto pólusok esete. lppotb e füvéből sáú dt éték első devált étéke ásodk devált étéke stb. áll edelkeése kko ú. ete tepolácós polo Y 3 ll. efelelő dtáls sűő-késlet A 4 elek köös éus Le tepolácóho hsoló előállíthtók köös vsscstolás seítséével. A külöbsé csk ho ultplctásk efelelő sáú eoáto soos kpcsolódk. A pssvtás feltétele eoáto lpú efelőkél E e seepelt elődáso de előe seepeltete ho áthele késülést eel s seítse. Kedveőek ok sáítás eljáások elek pssívk tekthetők. Eek tpkus - stuktúájukból dódó - péteek étékétől füetleül e övelk jelstet e boos éték fölé. A eoátoos stuktú esetébe jb jb P 5 lkú hol és b vlós. Ak feltétele ho P lee: 5.. Mvel Re ll.

5 Mééselélet:. elődás I Re j étékétől füetleül teljesül h I. Ekko Re 6 Mejeések:. Stbl sűők eseté d létek ol eoáto-pólus késlet ele 6 teljesül.. Stbl sűők eseté potív sá. 3. A jeleséet stuktuáls stbltásk eveük et 6 lobáls feltételtől eltektve péteektől füetle pssvtás tuljdosá. 4. A össefüés lpjá p 7 5. A teveés eete: pólusok seetébe eoáto-pólus poícók ehtáoás ú ho vlós lee 7 lpjá étékek ksáítás 3 eoátopólus poícók áltl kjelölt fekvecáko átvtel füvé tvételeése és eel súloó eütthtók ehtáoás. Másodfokú vlós eütthtós eoáto lptok E seepelt elődáso Vlós eütthtós polook öke v vlósk v kojuált kople páok. Ue belőlük sáttott eoátoos lptok. A páok össevoásávl ásodfokú vlós eütthtós eoáto lptokho jutuk. Vlós tetkát lkló jelfeldoloó pocessookb e utóbbk lklás életseűbb. ] Re[ cos cos csto edk 8 ] I[ cos s csto edk j j 9 Mejeés:. A 8-9 össefüésekből követleül sátthtó vlós eütthtós eoáto lpt blokkvált 54. ábá láthtó. A áb bl oldlá jól oosíthtó eveő polo evlósítás és vlós vlt képetes és sáítás. A jobboldl váltot ped soás-űveletek lálásá töeksk.. A vsscstolásos stuktúáb vlós eütthtós eoátook sá lefeljebb /. 3. A vsscstolásos stuktúáb csk 8 össefüés set keeteket kell össee.

6 Mééselélet:. elődás A fekvec-tvétel eljáás lklás eseté csto keeteket ucsk kojuált kople ódo ejeleő w súltéeővel kell esoo. Köe beláthtó ho kolt evlósítás soá deű vlós keet Re w -el deű képetes keet Iw -el sodó. E utóbb téeő össevohtó s téeővel. 5. áb 5. áb 5. áb 53. áb 54. áb 6

Méréselmélet: 11. előadás,

Méréselmélet: 11. előadás, Mééselélet:. előadás 3.4.4. 7.3. Mefiyelő jelfeldoloási feladatoka folyt. Rekuív jeleeetáció: soos-áhuaos átalakító: a időtatoáyba ételehető itából a ita beékeését követőe előáll a áhuaos csatoáko adat

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

Á Á É é é ö é Á Á É Ö Á Á Á é é Á Á é é é é ó ü ó ö ö í é é é é ö í é ó é é ö é é é ü í é é ó ú ú ú ö é ó é í é é é í é é é é ó ö é í ó ö é ü é é ö é ó ó ú ú ó é ö ú ú ú ú ú é ó í é í é í ó í ó í ó é ö

Részletesebben

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra . Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í

ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í ü ö ö Ö ü ú ü ö ö ú ö ö ö Ö í ü í í ü ö í ö ü í í í ü ü í ü ö ü ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í ö ö ü í ö ö Ö ü ú ö ö í í ű ú ú ü ö í í ü ö ú ú í ű ú í ú ú í ö ö ö í ű ú ö ú ö ö í

Részletesebben

Fogaskerekek III. Általános fogazat

Fogaskerekek III. Általános fogazat Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö

Részletesebben

ó í í Ö í í ó ó Ö Ö ű É í í ü üé É ü É ü Á Éí ó É É ü Éü É ü ü ü ü ó ű ü í ü ü ó ó Ö Ü í ü ü ü ü ű É ó ó ú Í Á ű í í Ő Í í ó í Ú í ó í ú í ú ó í ü ü ü ü ü ó ü ü ü ü í ó ó ó ü í ó ó ó í Í í í ó í í í í

Részletesebben

17. Szélsőérték-feladatok megoldása elemi úton

17. Szélsőérték-feladatok megoldása elemi úton 7. Szélsőéték-feldtok egoldás elei úton I. Eléleti összefoglló Függvény szélsőétéke Definíció: Az f: A B függvénynek x A helyen (bszolút) xiu vn, h inden x A esetén f(x) f(x ).A függvény (bszolút) xiu

Részletesebben

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é

Részletesebben

í é ő ü é ö ö é é ó é é ö é í é ó é ö é é é ö ö ö ö ö ó é ó ü é é é ü é ü é é ó ú ó ü é é ü ü ü ő é é é ü é ő é í é é é ö ó ö é é é ü é ő é é é ö ö é ü ő é ő ó é é é é é é ő ü é ü í ú é ú ó é ő é ő ö é

Részletesebben

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é

Részletesebben

ü É ü ü ü ú ü Ú

ü É ü ü ü ú ü Ú Á Á Á Á Á Á Á Á ü É ü ü ü ú ü Ú ü ú ú ú ű ü ú ü ü ü ü ü ü ü ü ú ü ü ú ü ű ú ü ú ü ú ú ü ú ű ü ü ü Á ú ű ú ú ú ü ü ü ü ü ű Á ű ü ü ü ú ú ú ü ü ü ü ü ú ü ü ü ü ü ü ü ü ü ú ü ü ü ű ú ú ú ü ü ű ű ü ü ü ű ú

Részletesebben

É ű ű ú ú ú Ü ú Ö ű ü ü ü

É ű ű ú ú ú Ü ú Ö ű ü ü ü ű ű É ű ű ú ú ú Ü ú Ö ű ü ü ü Ü Ö ü ú ű ű ü ű ú Ú Ú ú ü ú ú ű ú ú ú ű ú ű ú ű ű ű ű ü Ü ú ú ű ü ű ü ű ű Ü É ü ú ű ü ú ü É Ő ű ü Ü ü ü ü ü ű Ü Ü ű ü Ü ü É ü Ü É Í É Ü Ö Ó Ö ú Ö Ú Ú Ü ú ú ú Ü ű ű ü ÉÉ ű

Részletesebben

É É Ó É É ő É É Ú É É ő Ú Ú Ó Ü ő É Ü É Ó ő É Ó Ú Ö Ö Ó ő Ó Ú Ú Ó ő Ú Ú É É É É Ü É Ó É É É Ó É Ó É Ú É É É Ó É ő ő ű ő ő ő ő ő ő ő Ú ű Ú ő ő ű ő ő ű ű ő Ú Ü ő Ú Ú ő Ú Ú ő ő ű ő ő ő ő ű ű ő ő Ü ő ű ő ő

Részletesebben

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü

Részletesebben

Ö Ü Ü É Ü ű Ü Ü Ú Ú ű ű ű ű Ó Ú Ú ű ű Ü Ő ű ű Ü Ú Ü ű ű ű Ő Ő É ű Ú ű Ü ű Á Á Ú ű Ú ű Ü Ü Á É É Ú É Ú É ű Ü Ü ű Ü Ú Ü Ő ű Ú ű ű ű Ű ű ű Ő É ű ű ű ű ű Ő Ú Ú Ő Á ű ű ű ű ű Ü ű ű ű Ú Ü ű ű Ú Ü Ú ű Á Ü ű Ü

Részletesebben

Í í í Í í ú ü ü ö Í ö ü ö ö ö í ö ö ü í ú ö í ö í í í ö í ú ü ö ö ö í ö í ö ö í ü ö í ü ö í ö ö ö ö í ö í ü ü ö í í ö ü ö í í ö

Í í í Í í ú ü ü ö Í ö ü ö ö ö í ö ö ü í ú ö í ö í í í ö í ú ü ö ö ö í ö í ö ö í ü ö í ü ö í ö ö ö ö í ö í ü ü ö í í ö ü ö í í ö ö ö ü ö ü ö ö ü ö í ü ü ö í ö ü í ö í ö ö ö Ö í ü ö ö ö ü ü í ú ö ú Á í ö ö í ö ö ö ö í í ú í ö í ö ü ö ú í í í í ú í ü ö í í í ö í Í í í Í í ú ü ü ö Í ö ü ö ö ö í ö ö ü í ú ö í ö í í í ö í ú ü ö ö ö í

Részletesebben

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í

Részletesebben

ü ű í ú ű í É í Ö í ü Ö É í í Ö í É ú ú Ú í

ü ű í ú ű í É í Ö í ü Ö É í í Ö í É ú ú Ú í ű í ú ü ü É ü ü ü Ü É í Ü Ü í ü ű í ú ű í É í Ö í ü Ö É í í Ö í É ú ú Ú í í í ú É í í í í í É í í í Ü ű í Ü í ú ű ű í É í í ü ű ű í ú ű í í í í í ü í Ö í ú í ú í ü ű í ú í í í Ü Ü ü ú Ü É É É É É É ú ú

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Ú ű ű ű ű ű Ő ű Í ű ű

Ú ű ű ű ű ű Ő ű Í ű ű Ü Ü Ü Ü Ú ű Ú ű ű ű ű ű Ő ű Í ű ű Í Í Ü Ü Ő Ú Ü Ú Í ű Ü Ö Ú Í ű Í ű ű ű ű ű ű Í Ö ű ű ű ű Í Ó Í Í ű Ü ű ű Ó Í Í Í Í Ú Í Í Í Í Í Í Ő Ú Í ű ű ű ű ű ű Ő Ó ű Í ű Ő Ú ű Í Í Í ű Í ű Ő Ú ű ű Í ű ű ű ű Í ű ű ű

Részletesebben

Ő Ü í ű ö ü Ú í ü í ú ö ű ö ö ű Ő ü í ö ü í ü ü í ö ü í ö ü ű ö ö ö Ű Ö ö ű ö ö ü ü Ó í Ő ü í ö ü í Ó Ü ö ü Í í Ö ö ü ö í ö ö ö

Ő Ü í ű ö ü Ú í ü í ú ö ű ö ö ű Ő ü í ö ü í ü ü í ö ü í ö ü ű ö ö ö Ű Ö ö ű ö ö ü ü Ó í Ő ü í ö ü í Ó Ü ö ü Í í Ö ö ü ö í ö ö ö ö Ö ü ö ü ö Ö ü ú í ü ü ü ü ö ü ö í ö ö ö í ü í í ö í ö ö ü ü ú ű ö ü ú í Ő Ü í ű ö ü Ú í ü í ú ö ű ö ö ű Ő ü í ö ü í ü ü í ö ü í ö ü ű ö ö ö Ű Ö ö ű ö ö ü ü Ó í Ő ü í ö ü í Ó Ü ö ü Í í Ö ö ü ö í ö ö ö

Részletesebben

Ö ü Ö Ó ő Ö

Ö ü Ö Ó ő Ö Ü ú ő ö Í Ü Ö Ö ő Ű Ö ő Ö ü Ö Ó ő Ö ü ö ű Ö ü ő ö ű ő Ö ü ü Ö ü ő Í ő ö ú ő ü ö ö ő Ö Ő Ó ö ö ü ő ő ő ü ü ö ő ő ö ú ü ü ú ü ű ü ö ö ő ő ő ő ő Ö ü ő ö ő Ö ö ü ö ö ő ú ú ű ö ú ü ő ü ö Í ö Ú ő Ö ő ű ú Í ú

Részletesebben

ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é

ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é Á Ö É Ö Á É Ó Ü É ö í ü é é ö é Ö é ö é é é é é é ú ö é ö í é é é ü é í ö ű ö é í ú ö Á é é é é ö é é é ö é é í é é é ö é é ü é íé é ü é í é í é é é é é ű ú é ü ú é é é ö ö ű é é é é ö é é é é ö é ü ö

Részletesebben

Í í ó í Í í í é í ó ő ő ö í é ő ő é é í ü é é ö é é é ú ő ö é é é ő é ő í é í ő é é é é é é í é é é é ú í ó í í ó í é é é í é ú í é í é ü é é í ő ő ő

Í í ó í Í í í é í ó ő ő ö í é ő ő é é í ü é é ö é é é ú ő ö é é é ő é ő í é í ő é é é é é é í é é é é ú í ó í í ó í é é é í é ú í é í é ü é é í ő ő ő ó í Ö É í ó ő é ü é é í é é ó Í ő ö é Í ö é ű í é ö ő Í í ó ö ü ö ö í ó ő ő é ű é í é é é é é é ő é é í í ő ü ő é é é ö ö ő é é é é ö ö ü é é ő é é ü é ö ö é é ö ö é ü ó ő ő é ö é é é ö ö é ő é é í é é

Részletesebben

ú ő ú Ö ú ú ő ő Ó ő ő ő ő

ú ő ú Ö ú ú ő ő Ó ő ő ő ő ő Ö Ö ő ő ő Ó ő ő ú ú ő ő ő ő ű ő ú Ő ű ő ű ú ú ú ő Í ú ú ő ú Ö ú ú ő ő Ó ő ő ő ő ő ő ú ű ű ú Ö ű ű Ö ú ű ű ű ú Ö ő ű ú ú ú ő ű ű ű ű ű Ö ő ő ő ű ú ű ú ő ú ő ű ő ű ú ő ő Ö ő Ó ű Ó ú ő Ó Ö ú ő ű ű Í Ü

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

é ő é ó á é ő ó í á á é ö é á é í é á á é é ű á é ö ö ö ó é ü ö ö ő é ó é ő á í á é í é é á á é í ű ö é Í é ü ö é ó é ü á ű é á ö á Í é ő é á á ó ő é

é ő é ó á é ő ó í á á é ö é á é í é á á é é ű á é ö ö ö ó é ü ö ö ő é ó é ő á í á é í é é á á é í ű ö é Í é ü ö é ó é ü á ű é á ö á Í é ő é á á ó ő é É Ö É Á í É Ó Á ö é é ö ö é é é é ó ü ö ü ö ö ő é ó é ó á í í á ó Í é á ö é ü é ó ő ő ő á é á é é í é é í á ö é é í é é á í ú é á á ő í é á é Í é é ü ö ö ő ű á á á ó á Íü é é í é ü ő ö é é ó ó í á á á

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

ü Á É Á Á Á É É ü É ő Á É Í Í É É É í é í ö í ü ö é ö ö é ú é é é é é é ő ő ő é É é é ü é é í é É É É é í ö é é é Í é í é é ö ü é í ö é é É í ö é é ú ű É ö é é ö ö é ö ö ö é í ö é É ö í é é ü é Á é ü

Részletesebben

Ú Ó Ú É Ú ő ő ő ő ő ő É ő ő É ő Ú É É Ü É ő É ő Ó ő É ő ő É É É ő ő ő ő É ű ű ő ő ő Ó ű ő É ő É ő ő ő ő ő É ő Ú ű ő ő ő ő ő ű ő É Ú ő ű ű ő É ő ő É ő ő ű ő ő ő ő ő ő É Ú É É ő ő ő ű ő ő ő ő ő ő ő ő ő Ü

Részletesebben

É Á ó ö ó ö ö ő ü ö ő ö ó ö ó ü ö Í ő ö ő ő ő ő ú ö ö ú ö ó ő ő ö Ó ú ű ú Í ő ö ö ű ó ö Í ö Í Í Í Í ó ő ó ő É Ú Ű Í É Á ó É É ő ő ö ö Í ó ö ő ó ő Ő Ó Ő Á Á É Ö Á É É É É Ó Ó Á úé Á Á ö ó Ú Á Ú Ó Á Ú ő

Részletesebben

É Ú Ú Ü ű Ü Ú ű ű Ú Ü ű ű ű Ú ű Ú Ü ű Ú ű Ú Ü Ü Ü Ő ű ű Ú É Ú ű Ü Ü É ÜÉ É Ü É ű Ü É É ű Ú Ü ű Ú Ő ű Ö Ó Ü Ü Ó ű ű É Á ű ű Ú Ü Á ű Ü ű Ü Ú ű Ü ű ű ű Ü ű Ü Ü Ú Ü Ú Ú ű ű Ü ű Ú ű Ó Ó Ü Ü ű Ü Ü ű Ö Ü ű Ü

Részletesebben

Á Ö Á Ö Ö Ó ű ű Ö Ó ú Ú Ö Ú Ó ú ú ű ú ú Ö É É ú Ö ú ú ű ű Á É Á ű Ö ú Ö Ö ú ú ú Á ű Ó ű Ú ú Ö ú ú ű ú É Á Á ú ű Ú ú ú ű ú ű ú ű ú ű ű ú ú ú ű ú ű É ű Ö ú Ó ú ű ú Á ű ú É ű ú ú É ű Á ú ú ú Ó É ú ű Ú ú ú

Részletesebben

Í Ú É É Í Ö É Í É É Í É Í Ú É Í Ú ű Ú ÍÍ Ú Ú Ú ű Í Ú Ú Ú Í Ú Ú ű Ú É Ú Ú Í ű Í Ú ű Í Á Á ű Í Í Ú É Ú Ú Á Á ű Í Ú Ú Í ű Ú Ú Ú É Í ű ű ű Í ű ű Ú Ú ű Í Ú ű ű Ú Á ű ű ű Í É Í Ú Ú Í Í ű Í Ú É ű Ü Í ű Ú Ú ű

Részletesebben

RUGALMAS VÉKONY LEMEZEK EGY LEHETSÉGES ANALITKUS MEGOLDÁSI MÓDSZERE A NAVIER-MEGOLDÁS

RUGALMAS VÉKONY LEMEZEK EGY LEHETSÉGES ANALITKUS MEGOLDÁSI MÓDSZERE A NAVIER-MEGOLDÁS BUDAPEST MŰSZAI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőéröki r Hidk és Szerkezetek Tszéke RUGALMAS VÉONY LEMEZE EGY LEHETSÉGES ANALITUS MEGOLDÁSI MÓDSZERE A NAVIER-MEGOLDÁS Összeállított: Beréi Szbolcs Bódi

Részletesebben

é ó é ü ö é é ó é Ö é ó é é ú ó é é é é é é é é é Ö é Ő é é ö é Ö ü é ó Ö Ü ö ö é é é Ő ö é é Ü é ö é é é é é é é ü é é ö é é é é é ü é é ü é é é ö ö

é ó é ü ö é é ó é Ö é ó é é ú ó é é é é é é é é é Ö é Ő é é ö é Ö ü é ó Ö Ü ö ö é é é Ő ö é é Ü é ö é é é é é é é ü é é ö é é é é é ü é é ü é é é ö ö é ű ö ö é é ö ú é ü é é é ü ö ö é é é ö ö é é é ű ö ú é ü é é é é é é é é é é ö é é ű ö ű ö é é é Ö é é é ü ö é é ö ö é é é é é é é ü é é é ű é ü é é ú é é ű ú é é é é é ö é é ö é ó ö é é ö é é ö é ö é

Részletesebben

ú ü Ü Á É ü ű ú ő Á Á ú ú ő ű Á Á Á ü Á ú É Ü Ó Á ü ú ő ű ü ú Á ő ő ú ü ű ű ú ű ű ű ú ü ő ü ú É ú Á ú Á ü ü ÉÉ ú É Ü Ó Á Á ü Ú Á Á ü ü ü ü ú Á Á ú Ú ü ű ú Á ő Á Ú Á Á ú É ő ő ő ő ú ő ő ő ő ő ő Ü ő ő ő

Részletesebben

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

é é ő í é é ü é ü í é ó é é ó ü é é ú Ö é é í ö ó ó é é é é é é ű ö é ö ö é ó ú ő ő é ö é ö é ó ő é ü é é ő ő ö é í í ő é ó ö é é é é ö ú é ő ó é é ő

é é ő í é é ü é ü í é ó é é ó ü é é ú Ö é é í ö ó ó é é é é é é ű ö é ö ö é ó ú ő ő é ö é ö é ó ő é ü é é ő ő ö é í í ő é ó ö é é é é ö ú é ő ó é é ő Á Á É É É Ü Á Ú í é ő ó ó ő é ő í í é Á é é é ő í Í ó ó í ü é ó ó ő ó ő é ű ő ő í í ü ő í ó ő é ü ő í ö ü ő í í ó ő é é ó é ó é é é é é é é ü ó é é é é é é ó é ö é é é é í ü ü ő é ő é ó é ő é ü ő í ó ü

Részletesebben

é ü ö ü é í ó

é ü ö ü é í ó é ü ö ü é é ü ö Ü É Á Á É é ú ö é í é é ű ö ő ö í ó é ü ö ü é í ó é ü ö ü é ü é ö é ű ö é é ó é é é ö é é ü é ó ó é ö é ő ö é é é ü é ö ü ő ö é ö é ő ő ó é ö é é ö ó ó ó ó é ö é ö ü é í ő ó é é ö é é í

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

ö Ö ő Í ó ő ö ú ó ó ő ü ü ü ö ü Ö ö ö ö ö ü ű ö ü ó ö ö ő ő ó ó ő ú ü Á

ö Ö ő Í ó ő ö ú ó ó ő ü ü ü ö ü Ö ö ö ö ö ü ű ö ü ó ö ö ő ő ó ó ő ú ü Á ö ő ú ó ü ü ő ó ó ö ö ő ő ö Ö ő Í ó ő ö ú ó ó ő ü ü ü ö ü Ö ö ö ö ö ü ű ö ü ó ö ö ő ő ó ó ő ú ü Á ö ő ó ő ő Í ó ö ő Í ó ö ö ü ü ú ő ü ó ö ó ó ö ű ü ó ö ő ű ő ű ö ö ü ü ő ű ó ő ü ő ű ő ö ö ö ó Ü ő ú ű ű

Részletesebben

Í é é ö é é é ő ü ö é é é é ü ö ö é é é ő é é ü ü ö Í ú ü ö é ü Á éí É ü é ú é é é ű é é é Í é ő ú é é é úö é é ö é ú é ö ö Í é é ö é é éé ü é Í é é é

Í é é ö é é é ő ü ö é é é é ü ö ö é é é ő é é ü ü ö Í ú ü ö é ü Á éí É ü é ú é é é ű é é é Í é ő ú é é é úö é é ö é ú é ö ö Í é é ö é é éé ü é Í é é é ü Á Á Á É ö é ú Í ü É Í Í Á Í Í é é ö é é é ő ü ö é é é é ü ö ö é é é ő é é ü ü ö Í ú ü ö é ü Á éí É ü é ú é é é ű é é é Í é ő ú é é é úö é é ö é ú é ö ö Í é é ö é é éé ü é Í é é é ú ö é é é é é é é é

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója!

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója! . M z éték és hszosság kpcsolt, és hszosság defícój! Az éték, hszosság egy embebe, egy embe sztuácób lkul k, egy yg jószág, egy tágy ömgáb hszotl. Hszosságot tuljdoítuk mdeek legye z yg vgy em yg jószág,

Részletesebben

ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü

ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ü í ö ű ö ö í í í í ö ü Ö í ö ö í í ö í ö ö ú ö ö ü Ö ö ö ú ü ü ö ö ú ű ö ü ü ü ö ö ö ü Ö ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ö ö í ö ö ö ö ö

Részletesebben

ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú

ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú Á ö ö Á ü É Ő Ö ú í ü É í ö ó ó ű í ö ó í ö ü ö ü ú í ü ö ü ö ö Ö ó ö ö ö ö ö ó ö ö ö í ü ü ö ü í ü ü í ű ú ö Ö ú ü ü É í ö ó ó ű í ö ó ü í ö ú ó ü ö ó í í ü ö ü ó ó ö ö ó ó ö ö ö Ó ó ö í í ű ö ö ű ó ó

Részletesebben

V.fejezet. A hatványközepekre vonatkozó egyenlőtlenségek

V.fejezet. A hatványközepekre vonatkozó egyenlőtlenségek V.fejezet Készítette: Pokolá Tás A htváyközepeke votkozó egyelőtleségek V.fejezet A htváyközepeke votkozó egyelőtleségek Vlószíűleg ez z tékö. elye legtö feldtot tlálták ki középiskolások száá, hisze ezek

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü

ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü Ő Ö ü ö Ö ü ü ü ü ü ü Í ö Í ö ű ö ú ö ö ü ö ü ö ű Í ü ö ö ö ü ö ü ú ü ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü ö ű ö ú ö ö ú ö ü ö ü ö ü ü ö ü ö Ö ü ü ö ü ú ö ö ú Ó ö ü Ó ü ü ü ö Ö ü ö ö ú ű

Részletesebben

ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű

ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ú É Á Á ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ű í ü í í ü ű í ü ű ü í ü í í í ü í ű ü í ú í ü ü ú í ü ü ű ü í í í ü ü ü í ü Ü ü ü ü ü ü í í í ü í í ü í í ü ű ü ú í ü í ü í ű í

Részletesebben

í í í É ü ü ű ö í ö ü ú ú í ú í ú í ű í ú í ö í ü ú ö ú í í ű í ü ű í ö ű ö

í í í É ü ü ű ö í ö ü ú ú í ú í ú í ű í ú í ö í ü ú ö ú í í ű í ü ű í ö ű ö ü ö Ö ü ö ö ü í ü ö ű ö ö ú í ö ö ö ö ű í ö ú ö ö ú ö í í í í É ü ü ű ö í ö ü ú ú í ú í ú í ű í ú í ö í ü ú ö ú í í ű í ü ű í ö ű ö ú ű ö ú ö ü ö í í í í ö ö ű ö í í ü ü ű ü ü ö ö ú ü Ö ö ü ö ö ű ö ö ö

Részletesebben

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö

Részletesebben

ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í

ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í ú ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í ü ú ú ú ú ú í ú ü Ó ü ü ü ü Í Í í ü ü ü ü ü ü É í ü ü ú Í í ü í í í ü ü í í ú ü í ü í í í ú ú í ü ü ü ü í í í ű ü í í É É í í í í Ü í í ú

Részletesebben

ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű

ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű ö ü ö Ö ü ü í ö ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű ü ö ü ö ö í ü ö ö ü í ö í ü ü ü ú ö ü ü ü ű í í ü ü ö Ö ü í ö ü ö Ö ü ö ö ű ö ö Ö ü ö ö Ö ü í í í Ü ö í

Részletesebben

ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó

ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó ó í ó ő Í ó í ó ő Ó ő Ö ö ó ü Á Ú ü í Ó ó ö Ú ö ü Ó Ó ő Íó í ő ú ő í ó ö Ö ö ö í ó ó Í ü ő ó ó Ó Ó Ó í Ó Í Ú Ó Ó í í í Ó ő Ö ü Ó Ö ű Ö ű ö ü Ó ő ü Ö í Ö Í ó Ó ó ö ü ü ö ó Ö Ó Ó ü ó í ó Ö ö Ö Ó Ő Ö ü ü

Részletesebben

Í ö Ű ö Á Í Ü ü Í ö

Í ö Ű ö Á Í Ü ü Í ö Ú Í Í Í ö Í ö Ű ö Á Í Ü ü Í ö Í ü ü ö Ü ö ö ö ö Ü Ü ö Ü Ü ö Ü Ü ö ú ü ö ü ö ű ö ű Ü Ü ö ö ö ü ü ö Ü ö ö ö ö ö ö ö ö ö Ü Ü Ü Ü ü ö ö ö ö ö ö ö ú Ü ö ű ü ö ú ű ü ö ö ö ü ü ü Ü ú ö ö ü ű ö ű ö ű ü Ü ü ü ö

Részletesebben

í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü

í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ú í ü í Á í Ó Ü í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ö ö ö ö í í í í í ü í í í ö ú í ö í ü ú í í í í í ö ö í í í í í ű ü ű ö Á ű í ü ű ű ű í ű ö ú ö ú ú ü ö ö ű ü ö ú ö ű í í ű í ü ü ö ü

Részletesebben

ö ö ź ű ö ö ö ź ź ö ö ü í ĺ ö ź ö ö ö ľ źú ź ü ö ü ö ö ź ľ ľ ľ í íĺ í ü ľ ü í ü ľ ö ľ ľ í ź í ľ ö ľ ľ ľ ľ í ö ýú í ľ í ű ö ź ź ź í í ź Ü Ü í ľ ĺ ź ü ö

ö ö ź ű ö ö ö ź ź ö ö ü í ĺ ö ź ö ö ö ľ źú ź ü ö ü ö ö ź ľ ľ ľ í íĺ í ü ľ ü í ü ľ ö ľ ľ í ź í ľ ö ľ ľ ľ ľ í ö ýú í ľ í ű ö ź ź ź í í ź Ü Ü í ľ ĺ ź ü ö Í ĺ ľ ľ Ĺ ü ú ľ ü üĺĺ ľ ľ í ü ľ ź ĺ í ü ĺ É ľ ľ ľ É ł Á É Ü É Ü ľá É Í ĺé Ü É ł ě É Íľ ľ ď Éľ Ü É É Á í ĺ ę ŕ ł ľ ú ą É Á ĺ ľ ü ľ ü ĺ ĺ ĺĺ ľ í ü ü ö źů ö ĺ ü ľ ĺ ú ľ í í í ö í ű ĺ ö Íĺ öľ ö í í í ú ź ź

Részletesebben

Í ü í í í ü ű ű í ü í ü ü ű ü í ü í ű ü ü ű Ö ü ű ü í í ü í í ű ü ű í í ű ü í ü í í ü ü í ü Ú í ü í í í ű ű í ű í í í ü í í í í í ü í í ü í í í í ü í í í ü í í ü í ü ü ü ü Ó ü í ü í ü ü ü í ű í í ü ű

Részletesebben

Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó

Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó Ö ü ü Ö ü ó ü ü í ó í ó í ü í ú ü ó ű ü ó ü ü ó ü ü Á í ó í ü í ú í Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó ó ü ú ó í ü í ó ú ó ó í ü ü ű í ó ó ó ű ó í ó Ö ú Ö ü ó ü ó í Ö ú

Részletesebben

í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö Í ó ó Í í ó ó ö ö ö ö ö í ö ó ű í ó ó ö ú ó ó ö ö ó í ö ö ó ó ö ö í ö ó í ű ö

í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö Í ó ó Í í ó ó ö ö ö ö ö í ö ó ű í ó ó ö ú ó ó ö ö ó í ö ö ó ó ö ö í ö ó í ű ö É ó É ó ö ö í ö ó ó ó ö ö ó ó ö ö ó ó ö ö ö í ó ö í ó ó ó ó ó ö ö í ö í ö í ű ű ö ú ö ö ú ö ö ö ö í ó ó ó ö ö í Í ó ö ö ö ö Í Ü í í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö

Részletesebben

í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú

í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú Á ö Ó ú ö ű í Ö Ő ö ű í Ó í ö Ó ü Ó ú í ö Ó ú ö ó ö í ö Ó í ö ó ó í Ó ö Ó ü Ó ö ó í í í í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú ú ó ö Ó ú ö ó ú

Részletesebben

ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú

ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú ö É Ő ü ü ű ö ű ű ö ű ö Í Ó Ö É É Ó É ú ü ü ú ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú ö ö ű ö ű ö ű ú ü ü ö ű ü ö ü ű ű ú ü ö ö ö ű ü ö ö ö ö ö ú ú ö

Részletesebben

ú ú ő ő ő ú ü ő ő ü ú ő ő

ú ú ő ő ő ú ü ő ő ü ú ő ő Ö Í ú ú ú ő ő ő ú ü ő ő ü ú ő ő ő ű Í Á ü ő ü ő ő ő ü ő ő ü ű ü ü ő ő ú ő Ü ú ő ő ő ű ő ő ű ő ő ő ő ő ő ő ő ú ű ő ő ü ű ü ő ő ü ú ú ő ő ü ő Í Ö ő ő ő Í ő ő ü ő ő ű Ü Á Á Á Á Á Á ű ő ő ő ü Í Ó ú Ó Á Á Á

Részletesebben

ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő

ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő ö ö í ú ö ö Á Á ö ö ű ö ö ö ö ö ó í ö ö ö ő ö ó ó ö ö ö í ú ö ó ó ö ó í Ű ö ő ó ö ő ö í ő ö ö ö ö ö ö ö ű í í ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í

Részletesebben

Í Í Í ű Í ö Ú Ú ö ö É ö ö Í É ö ö ő Á Ö ő ő Ü Í Í É Í Í É Í ö ú ö ú ö Í Á Á Ö Í

Í Í Í ű Í ö Ú Ú ö ö É ö ö Í É ö ö ő Á Ö ő ő Ü Í Í É Í Í É Í ö ú ö ú ö Í Á Á Ö Í ÍÜ ű Í Í Í Í ű Í ö Ú Ú ö ö É ö ö Í É ö ö ő Á Ö ő ő Ü Í Í É Í Í É Í ö ú ö ú ö Í Á Á Ö Í Ú ö Í Á ű Í ö Ü Í Í Í ű Ú Í ő ü Í ö ő É Í É ü ÉÍ ő Ü Ú É Í ő Í ű ü Í É Ü Ü Í Á Á Í Ü Í É Í Í É É É öí Í Í ö ú Í ú

Részletesebben

Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű

Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű ű ű Ú Í ű ű Í Í Í Í Í Á Í ű Í Í Ó Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű Í Í ÍÍ Í Á ű Á Ó ű Ó Ü Ó Ó Ú Á Á Á Á Á Ó ű ű Ó Á ű ű Ö Ö Í Á Í Ú Ü Í Í Í Ú Á Á Ö Í Í Í Í ű Í Í ű Í Ö ű Í

Részletesebben

ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í ö ö

ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í ö ö ú ö ü ű í ü ö í ü í É É É Ő í ü ö ü ü í ü É ö í í í ü ö ö ű ö ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í

Részletesebben

ő ü ő ľ ü Ü Ü ľ ź ő ľ ľ ő ő ü ľ ő ö ü ľ ő ő ü ú ź ö ö ö Ĺ ő ö ľő ő ú ű ö ö ľ ü Ę ú ő ü ö ľ ź ő ľ ů ö ľ ź ő ľ ő ö ö ľ ľő ľ Í ő ľ ő ľü ľ ő ľ ľ ź ľ ö ü ú ű ź ő ľ ľ ľ ľ ú ú ľ Á ľ Í ő ö ü ő ź ź Í ö ľ ő ľ ő

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

É ó Í É

É ó Í É É Ó É É É Í ő É É ó Í É ó ú ú ó ö ű ő í ó ó í ü ű í Í ő ú í í ő ő ó ő ö ó ó ő ó ő ő ö ó ő ó ö ö ö ő ö ó ö ő ő í ó í í ő ó ú ó í ő ű ö ő Í ő ő ó ö ü ö ő ó ő ó ő ő ő ó ó ű ö í ő ö ö ö ő í ö ó ö ö ő í ü ú

Részletesebben

Á ó ú ó Í Í Á ú ö

Á ó ú ó Í Í Á ú ö ó ó ö ü ü ű ö ö ö ü ó ü ö ü ó ö ö ó ö Á ó ú ó Í Í Á ú ö ü ö ó ü ó ö ö ó ó ö ö Á ó ö ű ü Ö ö ö ó ö ö ű ü ű ó ö ö ö ö ü ö ö ű ú ó ú ö ö ű ü Í ö ü ű ü ű ü ű ű ú ö ü ú ö ű ö ö ú ú ű ö ö ú ű ú ö ú ó ö ö ü ö

Részletesebben

É É Í É É ö Í í í í ű ü ö í í Í

É É Í É É ö Í í í í ű ü ö í í Í Í É Í É ö ü í í ö ö Í ö í í í í ű ü ö í Í É É Í É É ö Í í í í ű ü ö í í Í Ő Í Í ö ü í í ö Í ö Í í í í í í í í í í ű ü ö í í í ö Í ü í í ö ö Í ü ö ü É ú í ű ü ö í í Í É ö ú ü í Í í ö ö Í ö ö ö ü ü ú ű ü

Részletesebben