Építészettörténet. Építészettörténet. Történeti szerkezettan 3. Boltozatok 1. Dr. Déry Attila III. Előadás 01
|
|
- Rezső Magyar
- 6 évvel ezelőtt
- Látták:
Átírás
1 Történeti szerkezettan 3. Boltozatok 1. Dr. Déry Attila III. Előadás 01
2 HOL: Reprezentatív épületekben. pincehelyiségek fölött mert az oldalnyomás a talajszint alatt nem volt szempont, és mert a földszinti nagyobb terhelést bírta, nagy teherbírású födémként mert a boltozat, megfelelő oldalnyomásfelvétel esetén rendkívül teherbíró szerkezet, folyosók felett mert a közlekedők keskenyek voltak, ám dinamikus terhelésük nagyobb lehetett, mint egy lakóhelyiségé, tűz ellen biztosítandó helyiségek felett, gyúlékony fafödém helyett, betörés ellen biztosítandó helyiség felett, mert a boltozat nehezen és veszélyesen bontható meg, földszinti lakóhelyiségekbe sokszor inkább megszokásból, és bizonyos reprezentatív igényeknek eleget teendő, semmint tényleges teherbírási okból, tartós födémként. Dr. Déry Attila III. Előadás 02
3 A lényeg: elemi részek központos nyomása Minden boltozat terhelése elemi központos nyomással terhelt elemekből áll. Dr. Déry Attila III. Előadás 03
4 ívmagasság boltmagasság Boltozatok 1. Elnevezések: romenádív záradék intrados bolttükör extrados boltláb vállpont boltozat tükre boltváll, válladzó boltnyílás Dr. Déry Attila III. Előadás 04
5 A probléma: az oldalnyomás Terhelések: önsúly feltöltés hasznos teher + a feltöltés nedvesedése Dr. Déry Attila III. Előadás 05
6 Megoldás: leterhelés Az ókor és a középkor tipikus megoldása Kérdés: a terhelés mértéke? Dr. Déry Attila III. Előadás 06
7 A falra vetített középkori számítás elve. Dr. Déry Attila III. Előadás 07
8 Megoldás: leterhelés Leterhelő fal és boltozat találkozása. A bekötés megoldása Dr. Déry Attila III. Előadás 08
9 Megoldás: leterhelés Leterhelő fal és boltozat találkozása. A bekötés anyaga. Dr. Déry Attila III. Előadás 09
10 Megoldás: vonóvas Az újkor szerkezete Kérdés: a rúd mérete és mennyisége? a rúd helye? a rúd beépítése? Dr. Déry Attila III. Előadás 010
11 Megoldás: vonóvas Dr. Déry Attila III. Előadás 011
12 Megoldás: vonóvas Dr. Déry Attila III. Előadás 012
13 Ívformák Félkörív Sugár középről, alapszintről indítva. Dr. Déry Attila III. Előadás 013
14 Ívformák Szegmensív Sugár középről és alapszint alól indítva. Dr. Déry Attila III. Előadás 014
15 Ívformák Túlhúzott ív Sugár középről indítva és az alapszint alatt befejezve. Dr. Déry Attila III. Előadás 015
16 Ívformák Az szerkesztett körív nyújtott kivetített alakja kolostorboltozatból levezett forma, a középkori építészetből. Kosárív A körív nyújtásának egyszerű szerkesztése jellegzetesen a 19. században terjedt el. Dr. Déry Attila III. Előadás 016
17 Ívformák Kosárív A két félkör egymáshoz viszonyított aránya az ív szerkesztésének alapja. A CH sugarú kisebb és a CB sugarú nagyobb félkörívek minden pontjához húzhattak egy a C középpontból kiinduló olyan egyenest, amelyhez a CH sugarú félkörív metszéspontjánál vízszintes, a CB sugarú félkörív metszéspontjánál függőlegest szerkeszthettek; e két vonal metszése adta meg a kosárív egy tetszőleges pontját. Tipikusan barokk építészet. Dr. Déry Attila III. Előadás 017
18 Kosárív Ívformák Kétkörös kosárívszerkesztés. Az egyenesek sugara AB alapvonal harmadával volt egyenlő; középpontjuk is eme egyenes harmadoló pontjain helyezkedett el. A két egyenes metszéspontjain át húzott OK és OK egyenesek jelölték ki a felezőn a nagy kör középpontját (O), illetve ezek az egyenesek metszették ki a körökből az ívek szeleteit is. E szerkesztést pontatlanul nevezték harmadolónak is. Ez olyan szerkesztés volt, amit nem minden esetben tartottak be pontosan, néha a körök még ennél is nagyobb mértékben hatottak egymásba. 19. század első fele. Dr. Déry Attila III. Előadás 018
19 Klasszikus tudorív Ívformák Klasszikus tudorív kétkörös szerkesztése. E két kör amelyek középpontja K és K, valamint az őket befoglaló, O érintkezési pontjukra szerkesztett alsó félkör segítéségével kaphatók meg a Tudor-ív kapcsolódó ív-szakaszainak határoló vonalai. A K és K pontokból ugyanis K K sugarú körív-szakaszokat szerkeszthetünk, amelyek az AB közötti nagy, alsó körívből kimetszik a O és O pontokat. A K O és K O egyenesek lesznek az említett körív-szakaszok határoló vonalai, a K és K középpontú körívszakaszok, illetve az O és O közötti körív szakaszok között; ez utóbbiak a középtengelyben képezik a Tudor-ív csúcsát. Dr. Déry Attila III. Előadás 019
20 Ívformák Szamárhátív Szamárhátív. A kijelölt alapvonal és tengely után az alapvonalra K, K pontokban ferdén felvett KM és K M egyenesek segítségével történik. A KA=KC, illetve K B=K C egyenesek a külső körív-szakaszok sugarai, K, K középpontokkal, az MC=ML, valamint M C =M L a belső körív-szakaszok szerkesztői, M, és M középpontokkal. a 19. századi neostílusok szerkesztési módja is volt. Dr. Déry Attila III. Előadás 020
21 Ívformák Csúcsív szerkesztései Csúcsív. Középvonalból kihúzott alappontra szerkesztés. Dr. Déry Attila III. Előadás 021
22 Lágy vagy keleti csúcsív Csúcsív. Oldalanként O középponttal szerkesztett AO=CO, illetve BO=C O sugarú EC és E C korszeletekre M és M középponttal rajzolt MC =MD, illetve M C=M D sugarú CD és C D körszeleteket szerkesztettek rá. Jellegzetes törökös és későbbekben romantikus megoldás. Dr. Déry Attila III. Előadás 022
23 Ívformák Aláívelt csúcsív Alapsíkjuk alól, két ívszakaszból oldalanként szerkesztett csúcsív. Alsó ívszeletüket AO, illetve BO sugarakkal a O középpontból képezték, felső ív-szeleteiket célszerűen megválasztott alsó M és M pontokból szerkesztették. Ez az ív már lágyabb volt, mint a gótika kemény tipikus csúcsíve, keletiesebbnek, romantikusabbnak érezték. E szerkesztésnek számtalan alváltozatát használták, inkább ötletszerűen, semmint tudatosan. Dr. Déry Attila III. Előadás 023
24 Ívformák Érintkező körívekre szerkesztett aláívelt csúcsív Érintkező körös csúcsívszerkesztés. Az ívek köralkotóinak középpontjai ez esetben a körök alapvonal-metszéseinek körre felvetítésével jöttek létre. E körök általában egymás középpontjához simultak de ez nem volt alapkövetelmény, inkább azért ragaszkodtak ehhez, mert szép ívet adott és egyszerű volt. Belső nyílászárók keretezése volt. Dr. Déry Attila III. Előadás 024
25 Ívformák Aláívelt körív Képzeletbeli nyílás-gerendát metsző, K középpontú alsó körből és az ezen kör által metszett középtengelyközéppontú felső általában kisebb sugarú körből áll. Ha felső kör kisebb, a nyílásnak rövid íves nyaktagja is keletkezik. Dr. Déry Attila III. Előadás 025
26 Ívformák Hattyúnyakív Hattyúnyakív, eltérő magasságú vállpontokkal képzett ívek kialakítására. A szerkesztés két félkörívre támaszkodott; ezeket illesztették egymáshoz. A szerkesztés alapja egy ab ferde alapvonal volt, amelyre ac magassággal abcd paralelogrammát szerkesztettek. Ennek felső cd vonalára az ac=bd oldalmagassággal felszerkesztették az ac=a c és a bd=b d távolságokat. Az aa és bb vonalak találkozási pontjába a cd egyenesre merőlegest szerkesztettek, amelynek kiindulási pontját f-el jelöltük. Eme egyenesre az a pontból húzott vízszintes egyenes jelölte ki az am sugarú nagyobb kör M középpontját és a b pontból húzott vízszintes mutatta meg a Cd sugarú kisebb kör középpontját. A két kört a fm egyenes választotta el egymástól. Dr. Déry Attila III. Előadás 026
27 Technika Romenád és használata. Dr. Déry Attila III. Előadás 027
28 Technika Hal-elemes romenádok. Dr. Déry Attila III. Előadás 028
29 Technika Alakzók. Dr. Déry Attila III. Előadás 029
30 Technika Romenád, keresztboltozatra. Dr. Déry Attila III. Előadás 030
31 Ahogy a régiek látták Angermann, Dr. Déry Attila III. Előadás 031
32 Ahogy a régiek látták Delarue, Dr. Déry Attila III. Előadás 032
33 Ahogy a régiek látták Suckow, Dr. Déry Attila III. Előadás 033
34 Ahogy a régiek látták Meerwein, Dr. Déry Attila III. Előadás 034
35 Ahogy a régiek látták Meerwein, Dr. Déry Attila III. Előadás 035
36 Ahogy a régiek látták Wolfram, Dr. Déry Attila III. Előadás 036
37 Ahogy a régiek látták Wolfram, Dr. Déry Attila III. Előadás 037
Építészettörténet. Építészettörténet. Örökségvédelem. V. Boltozatok 1. Dr. Déry Attila V. előadás 01
Örökségvédelem V. Boltozatok 1. Dr. Déry Attila V. előadás 01 HOL: pincehelyiségek fölött mert az oldalnyomás a talajszint alatt nem volt szempont, és mert a földszinti nagyobb terhelést bírta, nagy teherbírású
Építészettörténet. Építészettörténet. Örökségvédelem. VI. Boltozatok 2. Dr. Déry Attila VI. előadás 01
Örökségvédelem VI. Boltozatok 2. Dr. Déry Attila VI. előadás 01 V. 3. Boltozattípusok Dr. Déry Attila VI. előadás 02 V. 2. 1. Félköríves dongaboltozat Dr. Déry Attila VI. előadás 03 Dongaboltozatok méretezése:
Építészettörténet. Építészettörténet. Történeti szerkezettan 4. Boltozatok 2. Dr. Déry Attila IV. előadás 01
Történeti szerkezettan 4. Boltozatok 2. Dr. Déry Attila IV. előadás 01 V. 2. 1. Félköríves dongaboltozat Dr. Déry Attila IV. előadás 02 Dongaboltozatok méretezése: 19 sz. közepéig dongaboltozatokat átlagos
Középpontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
2. Síkmértani szerkesztések
2. Síkmértani szerkesztések Euklidész görög matematikus (i. e. 325 körül) szerint azokat az eljárásokat tekintjük szerkesztésnek, amelyek egy egyenes vonalzóval és egy körz vel véges számú lépésben elvégezhet
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z
146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Adott egy forgáshenger: t főegyenes tengelye két vetületi képével t: 0, 110,170-től jobb felső sarokig egy felületi pontjának második vetületi
Egybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal
Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry Síklapú
Alapszerkesztések 2. (Merőlegesek szerkesztése, nevezetes szögek, háromszög három oldalból) Merőleges szerkesztése egyeneshez külső pontból
1 Merőleges szerkesztése egyeneshez külső pontból Egy egyeneshez szerkessz egy adott ponton átmenő merőlegest! 1.Végy fel a síkon egy egyenest 2.Végy fel a síkon egy olyan pontot, amely nem az egyenesen
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél
3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél A cikk két olyan eljárást mutat be, amely a függõleges napórák elkészítésében nyújt segítséget. A fal tájolásának
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések
Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák,
KOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
1.Háromszög szerkesztése három oldalból
1 Szerkessz háromszöget, ha három oldala: a=3 cm b=4 cm c=5 cm 1.Háromszög szerkesztése három oldalból (Ugye tudod, hogy az a oldallal szemben A csúcs, b oldallal szemben B stb. van!) (homorú, hegyes,
MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34.
MINTAFELADATOK 1. feladat: Két síkidom metszése I.33.,I.34. 2. feladat: Testábrázolás képsíktranszformációval Gúla ábrázolása (a magasságvonalának transzformálásával) Adott az m egyenes, a ráilleszkedő
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
Egy feladat megoldása Geogebra segítségével
Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával
Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!
1 Csúcsívek rajzolása Előző dolgozatunk kapcsán melynek címe: Íves nyeregtető főbb számítási képleteiről találkoztunk a csúcsívvel, mint az építészetben igen gyakran előforduló vonalidommal. Most egy másik
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Koordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések
Ismétl tlés I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések (mérőtorony) 2 Egyszerű eszközök Egyszerű
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
Hasonlóság 10. évfolyam
Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály V. rész: Síkgeometria Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék V. rész: Síkgeometria...........................
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók.
A 27/2012. (VIII. 27.) NGM rendelet, a 27/2012. (VIII. 27.) NGM rendelet a 12/2013. (III. 28.) NGM rendelet által módosított és a 27/2012. (VIII. 27.) NGM rendelet a 4/2015. (II. 19.) NGM rendelet által
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
Mély és magasépítési feladatok geodéziai munkái
Mély és magasépítési feladatok geodéziai munkái Ágfalvi: Mérnökgeodézia 7. modul M2 tervezési segédlet: 6. Kitűzések (5. modul), 7. Kivitelezett állapotot ellenőrző mérések Detrekői-Ódor: Ipari geodézia
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
Exponenciális és logaritmusos kifejezések, egyenletek
Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály
. feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.
Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.
ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC
Villamos gépek tantárgy tételei
10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika
Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.
A 27/2012 (VIII. 27.) NGM rendelet a 29/2016. (VIII. 26.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 582 03 Magasépítő technikus
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
Vasalási távtartók muanyagból
Vasalási távtartók muanyagból Távolságtartó sín (hossz: m) Rúd alakú távolságtartó sín, alsó fogazással. Alaplemezek és födémek, rámpák alsó vasalásának távolságtartására. További méretek: 60 mm és 70
A manzárdtetőről. 1. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_ of_gambrel-roofed_building.
A manzárdtetőről Az építőipari tanulók ácsok, magasépítő technikusok részére kötelező gyakorlat a manzárdtetőkkel való foglalkozás. Egy manzárd nyeregtetőt mutat az. ábra.. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - 0y + 0 b) x + y - 6x - 6y + 0 c)
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT
1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség
A hiperbolikus síkgeometria Poincaré-féle körmodellje
A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a
Külpontosan nyomott keresztmetszet számítása
Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben
Koordináta-geometria alapozó feladatok
Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).
Koordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
Vízszintes mérés egyszerű eszközök. Földméréstan
Vízszintes mérés egyszerű eszközök Egyszerű eszközök kitűző rúd Jelölési módok: Kitűző rúd elsősorban a bemérendő és kitűzendő pontok megjelölésére, láthatóvá tételére a mérési vonalak egymásra merőleges
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
A dinamikus geometriai rendszerek használatának egy lehetséges területe
Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.
Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Építészettörténet Örökségvédelem
Örökségvédelem VIII. Vasbeton szerkezetek 2. Dr. Déry Attila VIII. előadás 01 VII. 4. Korai gerendás és elemes szerkezetek a kísérletezés útjai Dr. Déry Attila VIII. előadás 02 A fejlesztés lehetőségei:
BOLTOZATOK TÍPUSAI ÉS ÉPÍTÉSE
BOLTOZATOK TÍPUSAI ÉS ÉPÍTÉSE oktatási segédanyag kőműves szakoktatók továbbképzéséhez fordította: Vidovszky István, 2013 Bildungszentrum Traunstein - ÉVOSZ 1 Boltozatok Definíció szerint a boltív egy
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)