Mikrorendszerek tervezése
|
|
- Zsolt Horváth
- 6 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése AXI interfész Fehér Béla Raikovich Tamás
2 Advanced Microcontroller Bus Architecture Az AXI az ARM AMBA szabvány része Advanced Peripheral Bus (APB) Advanced High-performance Bus (AHB) Advanced extensible Interface (AXI) AXI-4, AXI-4 Lite, AXI-4 Stream Részletek: AMBA AXI and ACE Protocol Specification AMBA 4 AXI4-Stream Protocol Specification AXI Coherency Extensions (ACE) Cache koherencia biztosítása Advanced Trace Bus (ATB) 1
3 Advanced extensible Interface (AXI) Az AXI interfész egységes kapcsolódási felületet nyújt az ARM Cortex és a MicroBlaze processzor alapú beágyazott rendszerek számára AXI-4 Memóriába leképzett Nagyteljesítményű, burst-ös adatátvitelt biztosít AXI-4 Lite Memóriába leképzett Egyszerű, nincs burst-ös atatátvitel AXI-4 Stream Nem memóriába leképzett, FIFO interfész Csak adatok átvitele bust-ös módon 2
4 AXI Felépítés Öt csatorna Írási cím Írási adat Írási válasz Olvasási cím Olvasási adat Pont-Pont kapcsolat A csatornákon egymástól teljesen független időzítés is lehetséges 3
5 AXI Jelek (handshaking) Handshake alapú átvitelvezérlés VALID: a forrás tud adatot küldeni READY: a cél tud adatot fogadni Ha az órajel felfutó élénél mindkettő aktív, akkor történik meg egy szó átvitele Hasonlóan működik pl. a PCI busz Minden csatornán saját VALID/READY jelpár Flexibilis funkcionalitás Várakozási állapotok beszúrása Nyugtázás ugyanabban az órajelciklusban 4
6 AXI Jelek (handshaking) Cél várakoztat (VALID a READY előtt) Forrás várakoztat (READY a VALID előtt) Nyugtázás ugyanazon órajelciklusban 5
7 AXI Jelek (handshaking) A handshake alapú adatátvitel szabályai a holtpont elkerülése végett: A forrás nem várhat a READY jelzésre, mielőtt aktiválja a VALID jelzést A forrás, ha aktiválta a VALID jelzést, akkor azt nem veheti vissza az aktuális adatátviteli fázis végéig A cél várhat a VALID jelzésre, mielőtt aktiválja a READY jelzést A cél visszaveheti az aktivált READY jelzést, ha a forrás még nem aktiválta a VALID jelzést 6
8 AXI Jelek (handshaking) Függőségek a csatorna handshake jelek között Egyszeres nyíl A cél jel (amerre mutat) a kiindulási jel (amely felől mutat) előtt vagy után is aktiválható A forrás jel aktiválása nem függhet a cél jel állapotától A cél jel aktiválása viszont függhet a forrás jel állapotától Dupla nyíl A cél jel csak a kiindulási jel után aktiválható Olvasási adatátvitel handshake függőségek 7 Írási adatátvitel handshake függőségek
9 AXI Jelek (cím csatornák) Az írási és olvasási adatátvitelhez tartozó információk továbbítása ID: tranzakció azonosító Sorrend felcserélhető (pl. memória vezérlőben) ADDR: cím információ LEN: burst méret (LEN[7:0] + 1 ütem) A burst nem lépheti át a 4KB-os címhatárt SIZE: bájtszám egy ütemben (2 SIZE[2:0] ) BURST: a burst típusának jelzése INCR (01): cím növeléses (1 256 ütem) WRAP (10): cím átfordulásos (2,4,8,16 ütem) FIXED (00): nincs cím növelés (1 16 ütem) 8
10 AXI Jelek (cím csatornák) LOCK: kizárólagos, atomi hozzáférés CACHE: memória típus jelzése PROT: privilegizált hozzáférés jelzése QOS: Quality-of-Service támogatás REGION: több logikai interfész megvalósításának biztosítása a slave oldalon USER: felhasználó által definiált jelek 9
11 AXI Jelek (burst típusok) INCR (01) Minden ütemhez eggyel nagyobb cím tartozik (1 256 ütem lehet) Normál burst-ös memória elérés esetén FIXED (00) Minden ütemhez ugyanaz a cím tartozik (1 16 ütem lehet) Például FIFO írás vagy olvasás esetén WRAP (10) Minden ütemhez eggyel nagyobb cím tartozik, de a határ elérésekor a cím átfordul a tartomány elejére (2, 4, 8 vagy 16 ütem lehet) Tipikusan CPU cache vezérlők esetén Cacheline méretű burst-ös adatátvitel (a példában a cacheline méret 4 szó) A kért (cache-ből hiányzó) adat egyből továbbítható a feldolgozás helyére Mem. cím: Adat: 4(N-1)+3 4N 4N+1 4N+2 4N+3 3. ütem 4. ütem 1. ütem 2. ütem 4(N+1) Cache miss 10
12 AXI Jelek (írási adat és válasz csatorna) WDATA: írási adat (Lite: csak 32 bites) WSTRB: bájt engedélyező jelek WLAST: a burst utolsó ütemét jelzi USER: felhasználó által definiált jelek BID: a nyugtázott tranzakcióhoz tartozó azonosító (= AWID) BRESP: nyugta non-posted írás OKAY (00): adatátvitel OK EXOKAY (01): kizárólagos adatátvitel OK SLVERR (10): slave hiba DECERR (11): címdekódolási hiba 11
13 AXI Jelek (olvasási adat csatorna) RDATA: olvasási adat (Lite: 32 bites) RLAST: a burst utolsó ütemét jelzi RUSER: felhasználó által definiált jelek RID: a nyugtázott tranzakcióhoz tartozó azonosító (= ARID) RRESP: nyugta OKAY (00): adatátvitel OK EXOKAY (01): kizárólagos adatátvitel OK SLVERR (10): slave hiba DECERR (11): címdekódolási hiba 12
14 AXI Tranzakció példák AXI4 BRAM vezérlő: egyszeres olvasás 13
15 AXI Tranzakció példák AXI4 BRAM vezérlő: több olvasás egymás után 14
16 AXI Tranzakció példák AXI4 BRAM vezérlő: egyszeres írás 15
17 AXI Tranzakció példák AXI4 BRAM vezérlő: több írás egymás után 16
18 AXI Tranzakció példák AXI4 BRAM vezérlő: burst-ös írás AWSIZE=2 32 bites szavak átvitele AWLEN=3 4 ütem a burst-ös átvitelben AWBURST=INCR a cím minden írás után nő A WLAST jel a burst utolsó ütemében aktív 17
19 AXI Interconnect, AXI SmartConnect Az AXI Interconnect és az AXI SmartConnect IP-k illesztik egymáshoz az AXI master és az AXI slave perifériákat A slave portokra kapcsolódnak a master IP-k A master portokra kapcsolódnak a slave IP-k Az AXI SmartConnect szorosabban integrálódik a Vivado fejlesztői környezetbe Automatikus master és slave IP konfiguráció Adaptálódik a kapcsolódó IP-khez minimális felhasználói beavatkozással Részletek: AXI Interconnect v2.1 Product Guide (PG059) AXI SmartConnect v1.0 Product Guide (PG247) 18
20 AXI Interconnect, AXI SmartConnect Szolgáltatások: A slave IP-k címtartományának dekódolása A slave IP-k felé csak a címtartomány méretének megfelelő számú címbit megy Adatméret konverzió Eltérő órajel tartományok illesztése Interconnect: a portokhoz és a crossbar-hoz külön órajel bemenetek tartoznak SmartConnect: magától kitalálja az órajel forrásokat Protokoll konverzió (AXI4, AXI3, AXI4-Lite) Adat FIFO Register slice Pipeline regiszterek a kritikus út csökkentéséhez 19
21 AXI Interconnect, AXI SmartConnect Felhasználási esetek N master, 1 slave: egyszerű arbiter 1 master, N slave: egyszerű dekóder, nincs arbitráció 20
22 AXI Interconnect, AXI SmartConnect Felhasználási esetek N master, M slave, osztott elérési mód (egy időben csak egy tranzakció lehet aktív) 21
23 AXI Interconnect, AXI SmartConnect Felhasználási esetek N master, M slave, crossbar Egy írási és egy olvasási cím arbiter Párhuzamos írási és olvasási adatutak 22
24 Példa: AXI4-Lite slave interfész Csak egy ütemből álló tranzakciók 32 bites írási és olvasási adatbusz Az írási és olvasási tranzakciók függetlenek Írási állapotgép: cím vétele adat vétele periféria regiszter írása írás nyugtázása Olvasási állapotgép: cím vétele periféria regiszter olvasása az adat elküldése Nem a leghatékonyabb, de könnyen megérthető A handshake szabályok és függőségek biztosan teljesülnek ez esetben 23
25 Példa: AXI4-Lite slave interfész Blokkvázlat AXI Interconnect AXI WR addr. AXI WR data Írási állapotgép wr_addr byte_en wr_en Funkció AXI WR resp. wr_data AXI RD addr. AXI RD data Olvasási állapotgép rd_addr rd_en rd_data Periféria 24
26 Példa: AXI4-Lite slave interfész Írási állapotgép Regiszterek wr_addr: N bit wr_data: 32 bit byte_en: 4 bit WRADDR_WAIT AWVALID/ wr_addr=awaddr WRDATA_WAIT WVALID/ wr_data=wdata byte_en=wstrb WRITE ~AWVALID AWREADY=1 ~WVALID WREADY=1 wr_en=1 BREADY 25 WRRESP_SEND ~BREADY BVALID=1 BRESP=OK
27 Példa: AXI4-Lite slave interfész Olvasási állapotgép Regiszterek rd_addr: N bit RDATA: 32 bit RDADDR_WAIT ARVALID/ rd_addr=araddr READ rd_en=1 RDATA=rd_data ~ARVALID ARREADY=1 ~RREADY RREADY 26 RDDATA_SEND RVALID=1 RRESP=OK
28 AXI Stream Felépítés Nincs cím, egyirányú adatátvitel (master slave) Az AXI írási adat csatornának feleltethető meg VALID és READY handshake jelek A burst méret nem korlátozott Folyamok összefésülése (merging), adatméret növelés és csökkentés, null bájtok eltávolítása (packing) Ritka, folyamatos, igazított és nem igazított folyamok Adatcsomagok továbbításának támogatása 27
29 AXI Stream Jelek ACLK: órajel (szükséges) ARESETn: aktív alacsony aszinkron reset jel (szükséges) TVALID: a forrás (master) tud adatot küldeni (szükséges) TREADY: a cél (slave) tud adatot fogadni TDATA[(8N-1):0]: a továbbított adat TSTRB[(N-1):0]: adat vagy pozíció bájt jelzése TKEEP[(N-1):0]: jelzi, hogy a bájt része-e a folyamnak TLAST: az adatcsomag végének jelzése TID: adatfolyam azonosító TDEST: cél azonosító (útvonal választáshoz) TUSER: felhasználó által definiált jelek 28
30 AXI Stream Jelek (bájt típusok) TKEEP[i]=1, TSTRB[i]=1: adatbájt Az adott bájt érvényes információt tartalmaz Továbbítani kell a forrástól a cél felé TKEEP[i]=1, TSTRB[i]=0: pozíció bájt Az adott bájt az adatbájtok relatív pozícióját határozza meg az adatfolyamban Továbbítani kell a forrástól a cél felé, de mivel csak helykitöltő, így az értéke megváltoztatható TKEEP[i]=0, TSTRB[i]=0: null bájt Az adott bájt semmilyen információt sem hordoz Eltávolítható a folyamból, beszúrható a folyamba TKEEP[i]=0, TSTRB[i]=1: tiltott kombináció 29
31 AXI Stream Adatfolyam példák 1. Bájt folyam: csak adatbájtok és null bájtok 2. Folyamatos, igazított folyam: csak adatbájtok a csomagokban 3. Folyamatos, nem igazított folyam: csak adatbájtok és pozíció bájtok a csomagok elején és/vagy végén 4. Ritka folyam: csak adatbájtok és pozíció bájtok
32 Xilinx AXI Stream IP-k Részletek: AXI4-Stream Infrastructure IP Suite (PG085) AXI4-Stream Broadcaster A bemeneti master folyamot megismétli több (2 16) kimeneti slave folyamon AXI4-Stream Combiner Több (2 16) bemeneti adatfolyam egyesítése egy szélesebb kimeneti adatfolyamban AXI4-Stream Clock Converter Eltérő órajel tartományok illesztését biztosítja AXI4-Stream Data FIFO AXI4-Stream Data Width Converter TDATA méret növelés, csökkentés (1:N, N:1, M:N) 31
33 Xilinx AXI Stream IP-k AXI4-Stream Register Slice Pipeline regiszterek a kritikus úthossz csökkentéséhez AXI4-Stream Subset Converter Eltérő opcionális jelkészlettel rendelkező AXI Stream interfészek illesztését biztosítja AXI4-Stream Switch Útválasztást biztosít master és slave egységek között AXI4-Stream Interconnect A Broadcaster és a Combiner kivételével a fenti IP-ket foglalja egyetlen konfigurálható egységbe 32
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Saját IP készítése, periféria illesztés Fehér
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich
Perifériák hozzáadása a rendszerhez
Perifériák hozzáadása a rendszerhez Intellectual Property (IP) katalógus: Az elérhető IP modulok listája Bal oldalon az IP Catalog fül Ingyenes IP modulok Fizetős IP modulok: korlátozások Időkorlátosan
Áramkörön belüli rendszerek
Áramkörön belüli rendszerek SoC System on a Chip Egy mintapélda PACT XPP blokk PiCoGa M200 Embedded FPGA Az NoC részlet Az STNoC elınye Áramkörön belüli rendszerek SoC / SoPC System on a (Programmable)
A MicroBlaze processzor
A MicroBlaze processzor 32 bites általános célú RISC processzor Alkalmas önálló feladatok végrehajtására Kiegészítő egység a nagyteljesítményű PowerPC-s rendszerekben egységes interfész felület Lágy processzor
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Külső memória illesztése, DMA Fehér Béla Raikovich
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Beágyazott rendszerek Fehér Béla Raikovich Tamás
Rendszerarchitektúrák labor Xilinx EDK
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Rendszerarchitektúrák labor Xilinx EDK Raikovich Tamás BME MIT Labor tematika
Digitális rendszerek. Digitális logika szintje
Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)
Programmable Chip. System on a Chip. Lazányi János. Tartalom. A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban?
System on a Chip Programmable Chip Lazányi János 2010 Tartalom A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban? Page 2 1 A hagyományos technológia Elmosódó határvonalak ASIC
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 10. hét Fehér Béla BME MIT Processzor utasítás
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Számítógép Architektúrák
Perifériakezelés a PCI-ban és a PCI Express-ben Horváth Gábor 2017. február 14. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu A PCI PCI = Peripheral Component Interfész,
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 10. hét Fehér Béla BME MIT A processzorok
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Processzor utasítás rendszerek
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Processzor utasítás rendszerek
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Debug lehetőségek Fehér Béla Raikovich Tamás
A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához
A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design
Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output
1 Input/Output 1. I/O műveletek hardveres háttere 2. I/O műveletek szoftveres háttere 3. Diszkek (lemezek) ------------------------------------------------ 4. Órák, Szöveges terminálok 5. GUI - Graphical
Az interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 11. hét Fehér Béla BME MIT MiniRISC mintarendszer
4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA
4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.
Parciális rekonfiguráció Heterogán számítási rendszerek VIMIMA15
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Parciális rekonfiguráció Heterogán számítási rendszerek VIMIMA15 Fehér
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
Párhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
A Számítógépek hardver elemei
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerű perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi
Nagyteljesítményű mikrovezérlők
Nagyteljesítményű mikrovezérlők 7. NVIC Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 ARM7, ARM9 megszakítás kezelés ARM7,
SZORGALMI FELADAT. 17. Oktober
SZORGALMI FELADAT F2. Tervezzen egy statikus aszinkron SRAM memóriainterfész áramkört a kártyán található 128Ki*8 bites memóriához! Az áramkör legyen képes az írási és olvasási műveletek végrehajtására
Számítógép Architektúrák
Számítógép Architektúrák Perifériakezelés a PCI-ban és a PCI Express-ben 2015. március 9. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Tartalom A
Parciális rekonfiguráció Heterogén számítási rendszerek VIMIMA15
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Parciális rekonfiguráció Heterogén számítási rendszerek VIMIMA15 Fehér
Párhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
I+K technológiák. Digitális adatátviteli alapfogalmak Aradi Szilárd
I+K technológiák Digitális adatátviteli alapfogalmak Aradi Szilárd Hálózati struktúrák A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja.
A Számítógépek felépítése, mőködési módjai
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor
A mikroszámítógép felépítése.
1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az
A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium
Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes
Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)
Rendszerarchitektúrák labor Xilinx EDK
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Rendszerarchitektúrák labor Xilinx EDK Raikovich Tamás BME MIT Labor tematika
Magas szintű optimalizálás
Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU
XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL
XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL Ma, a sok más felhasználás mellett, rendkívül jelentős az adatok (információk) átvitelével foglakozó ágazat. Az átvitel történhet rövid távon, egy berendezésen belül,
Digitális technika (VIMIAA02) Laboratórium 12
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 12 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 12
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 12 Fehér Béla Raikovich Tamás,
ARM Cortex magú mikrovezérlők. mbed
ARM Cortex magú mikrovezérlők mbed Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 MBED webes fejlesztőkörnyezet 2009-ben megjelent
Máté: Számítógép architektúrák 2010.10.06.
szinkron : Minden eseményt egy előző esemény okoz! Nincs órajel, WIT, van viszont: MSYN# (kérés Master SYNchronization), SSYN# (kész Slave SYNchronization). Ugyanazon a en gyors és lassú mester szolga
ARM (Advanced RISC Machine)
POWERED ARM ARM (Advanced RISC Machine) 1983 kisérleti projekt Acorn Computers Ltd., 1985 ARM1 fejlesztői minták, 1985 ARM2 32 bites adatbusz 64MB memória címezhető, 1989 ARM3 4K cache, 1990 ARM név változtatás
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
III. előadás. Kovács Róbert
III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.
KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 4. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer Interfész konfigurációja IP címzés: címosztályok, alhálózatok, szuperhálózatok,
IP alapú komunikáció. 2. Előadás - Switchek 2 Kovács Ákos
IP alapú komunikáció 2. Előadás - Switchek 2 Kovács Ákos PoE Power Over Ethernet Még jobban előtérbe került a IoT kapcsán WAP, IP telefon, Térfigyelő kamerák tápellátása Résztvevők: PSE - Power Source
DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István
IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes
Számítógépes Hálózatok. 4. gyakorlat
Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet
Hibafelismerés: CRC. Számítógépes Hálózatok Polinóm aritmetika modulo 2. Számolás Z 2 -ben
Hibafelismerés: CRC Számítógépes Hálózatok 27 6. Adatkapcsolati réteg CRC, utólagos hibajavítás, csúszó ablakok Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
Az Internet működésének alapjai
Az Internet működésének alapjai Második, javított kiadás ( Dr. Nagy Rezső) A TCP/IP protokollcsalád áttekintése Az Internet néven ismert világméretű hálózat működése a TCP/IP protokollcsaládon alapul.
A Számítógépek hardver elemei
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerő perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi
BELÉPTETŐ RENDSZER TERVEZÉSE
BELÉPTETŐ RENDSZER TERVEZÉSE Számítógép-architektúrák 1. gyakorlat 2011. szeptember 21., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Híradástechnikai Tanszék lencse@hit.bme.hu Beléptető rendszer
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így
Az I2C egy soros, 8 bit-es, kétirányú kommunikációs protokoll, amelynek sebessége normál üzemmódban 100kbit/s, gyors üzemmódban 400kbit/s.
Az I2C busz fizikai kialakítása Az I2C egy soros, 8 bit-es, kétirányú kommunikációs protokoll, amelynek sebessége normál üzemmódban 100kbit/s, gyors üzemmódban 400kbit/s. I2C busz csak két db kétirányú
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 7. előadás: Mikroszámítógépek - I/O operációk I. aszinkron-, szinkron- protokollok, arbitráció.
Terepi buszok. Dr. Schuster György október / 43. OE-KVK-MAI
Terepi buszok Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2012. október 19. 2012. október 19. 1 / 43 Alapok Történet M-busz Alapok M-bus (Meter-bus.) kimondottan fogyasztásmérők kezelésére
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Vivado fejlesztői környezet Fehér Béla Raikovich
Iványi László ARM programozás. Szabó Béla 8.Óra Bluetooth 4.0 elmélete, felépítése
ARM programozás 8.Óra Bluetooth 4.0 elmélete, felépítése Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu A Bluetooth története, megfontolások Alap koncepció hogy létre
Bevitel-Kivitel. Eddig a számítógép agyáról volt szó. Szükség van eszközökre. Processzusok, memória, stb
Input és Output 1 Bevitel-Kivitel Eddig a számítógép agyáról volt szó Processzusok, memória, stb Szükség van eszközökre Adat bevitel és kivitel a számitógépből, -be Perifériák 2 Perifériákcsoportosításá,
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.
Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit
AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB
AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB ADATSEBESSÉG ÉS CSOMAGKAPCSOLÁS FELÉ 2011. május 19., Budapest HSCSD - (High Speed Circuit-Switched Data) A rendszer négy 14,4 kbit/s-os átviteli időrés összekapcsolásával
Alapismeretek. Tanmenet
Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Számítógépes alapfogalmak, számítógép generációk 2. A számítógép felépítése, hardver, A központi egység 3. Hardver
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?
Adatfeldolgozó rendszer tervezése funkcionális elemekkel
Adatfeldolgozó rendszer tervezése funkcionális elemekkel F1. Tervezzünk egy adatbányász egységet, amely egy 256x8 bites ROM adattároló memóriában megkeresi a megadott keresési feltételnek megfelelő legelső
Alapismeretek. Tanmenet
Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Számítógépes alapfogalmak 2. A számítógép felépítése, hardver, A központi egység 3. Hardver Perifériák 4. Hardver
Assembly. Iványi Péter
Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter
SZÁMÍTÓGÉPARCHITEKTÚRÁK
ESSZÉ LÁNG LÁSZLÓ Zilog mokroprocesszor családok Z800 2005. December 1. Előszó A Zilog cég betörése a piacra rendkívül eredményesnek mondható volt, sőt később sikerült a csúcsra fejleszteniük a technológiájukat.
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Számítógépek, számítógép rendszerek
Számítógépek, számítógép rendszerek 7. A sínek Dr. Vadász Dénes Miskolc, 2005. február TARTALOM TARTALOM... a 7. A sínek... 1 7.1. Az IBM PC-k sínrendszerei... 3 7.2. A PCI sín... 4 7.3. További híres
Digitális technika II. - Ellenőrző feladatok
1. a.) Illesszen 8085-ös mikroprocesszor alapú sínre (A0 A15, D0..D7, RD, WR, RESETOUT, READY ) 1db 27C32 típ. (4k) EPROM és 2db 5532 típ. (4k) RAM memóriákat úgy, hogy egy K kapcsoló értékétől függően
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők 5. Mikrovezérlő alapperifériák Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2017 Tartalom Általános
Dr. Vörösházi Zsolt: Beágyazott rendszerek fejlesztése (FPGA) A felsőfokú informatikai oktatás minőségének fejlesztése, modernizációja
Dr. Vörösházi Zsolt: Beágyazott rendszerek fejlesztése (FPGA) A felsőfokú informatikai oktatás minőségének fejlesztése, modernizációja TÁMOP-4.1.2.A/1-11/1-2011-0104 Főkedvezményezett: Pannon Egyetem 8200
Számítógépes Hálózatok 2008
Számítógépes Hálózatok 28 5. Adatkapcsolati réteg CRC, utólagos hibajavítás, csúszó ablakok Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet
2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző
Számítógép Architektúrák
Számítógép Architektúrák Perifériakezelés 2017. február 15. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth Gábor, BME
Perifériakezelési módszerek (Korrigált) Feltétel nélküli
INPUT-OUTPUT I-II. Tartalom INPUT-OUTPUT I-II.... 1 Perifériakezelési módszerek (Korrigált)... 2 A közvetlen memória hozzáférés (DMA)... 4 Feladatok:... 10 A megszakítás... 12 Az Intel 8259 IT vezérlő
Billentyűzet. Csatlakozók: A billentyűzetet kétféle csatlakozóval szerelhetik. 5 pólusú DIN (AT vagy XT billentyűzet csatlakozó),
Billentyűzet Általános billentyűzet Csatlakozók: A billentyűzetet kétféle csatlakozóval szerelhetik. 5 pólusú DIN (AT vagy XT billentyűzet csatlakozó), 6 pólusú mini-din (PS/2 billentyűzet csatlakozó).
Scherer Balázs: Mikrovezérlık fejlıdési trendjei
Budapesti Mőszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Scherer Balázs: Mikrovezérlık fejlıdési trendjei 2009. Budapesti Mőszaki és Gazdaságtudományi Egyetem, Méréstechnika
Budapesti Műszaki és Gazdaságtudományi Egyetem. A Verilog HDL II. Nagy Gergely. Elektronikus Eszközök Tanszéke (BME) szeptember 26.
Áramkörtervezés az absztrakciótól a realizációig BMEVIEEM284 Budapesti Műszaki és Gazdaságtudományi Egyetem A Verilog HDL II. Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. szeptember 26. Nagy
Digitális rendszerek. Mikroarchitektúra szintje
Digitális rendszerek Mikroarchitektúra szintje Mikroarchitektúra Jellemzők A digitális logika feletti szint Feladata az utasításrendszer-architektúra szint megalapozása, illetve megvalósítása Példa Egy
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
A számítógép fő részei
Hardver ismeretek 1 A számítógép fő részei 1. A számítógéppel végzett munka folyamata: bevitel ==> tárolás ==> feldolgozás ==> kivitel 2. A számítógépet 3 fő részre bonthatjuk: központi egységre; perifériákra;
loop() Referencia: https://www.arduino.cc/en/reference/homepage
Arduino alapok Sketch ~ Solution Forrás:.ino (1.0 előtt.pde).c,.cpp,.h Külső könyvtárak (legacy / 3rd party) Mintakódok (example) setup() Induláskor fut le, kezdeti értékeket állít be, inicializálja a
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.