Budapesti Műszaki és Gazdaságtudományi Egyetem. Villamos Energetika Tanszék. Villamos laboratórium 1. BMEVIVEA042

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Budapesti Műszaki és Gazdaságtudományi Egyetem. Villamos Energetika Tanszék. Villamos laboratórium 1. BMEVIVEA042"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Villamos laboratórium 1. BMEVIVEA042 1

2 Kiálló pólusú szinkrongép mérési útmutató és elméleti segédanyag Dr. Kádár István, Hajdú Endre, Égető Tamás, Kordás Péter február 5. 2

3 Tartalomjegyzék 1. Ajánlott irodalom 6 2. A mérés elméleti alapjai, a szinkrongépekről általában Fogyasztói pozitív irányokról (villamos gépes szemlélet) Segítség a gépes gondolkodásmód pozitív irányainak megértéséhez A szinkrongépek felépítése és működése A szinkrongépek helyettesítő kapcsolása A hengeres forgórészű szinkrongép vektorábrája A szinkrongépek alkalmazási területei A mérés ismertetése A mérés céljai A mérési célt szolgáló gépcsoport felépítése A gépcsoport működése és kezelése A hálózatra kapcsolt szinkrongép hatásos és meddő teljesítmény szabályozása A szinkronizálás és a hálózatra kapcsolás feltételei Mérési feladatok Üresjárási jelleggörbe és felvétele A feszültség jelalak harmonikusokra bontása Rövidzárási jelleggörbe és felvétele

4 4.4. A szinkron reaktancia meghatározása A szinkrongép szinkronizálása és a hálózatra kapcsolása Meddő teljesítmény szabályozás és a szinkrongép V-görbéje Áramvektor-diagram felvétele A jegyzőkönyvekről Megjegyzések a mérési adatok feldolgozásához A jegyzőkönyvekről Gyakori hibák a jegyzőkönyvekben

5 Bevezető A dokumentáció a szükséges elméleti alapok bemutatásával (2. pont) kezdődik. Ezek ismerete fontos a gördülékeny mérés elvégzéséhez. A mérésútmutató összeállítása során törekedtünk arra, hogy a hallgatói mérés feladatközpontú legyen, s megkövetelje a hallgatók nagyfokú önállóságát a mérésre való készülés, és a mérés során is. Ennek szellemében a konkrét mérési feladatok megfogalmazása egy-egy probléma köré építkezik. Célunk, hogy a mérésre való felkészülés a mérés szerves részévé váljon, valamint, hogy a hallgatók a mérés végeztével komplex és összefüggő tudást szerezzenek a szinkrongépekről. A mérési útmutató a megszokottnál nagyobb terjedelmű, az elméleti alapok a megértést segítik. Az útmutatóban található feladatokra a vonatkozó szakirodalomban, vagy elméleti elgondolások útját lehet választ találni. Ezek megválaszolása feltétele a mérés elkezdésének, javasoljuk, hogy a felkészülést a hallgatók időben kezdjék el. Az interneten is számos kérdésre találhatnak megoldást, amennyiben a problémájukat kellő pontossággal (esetleg angolul) fogalmazzák meg. Alapvető elvárás az internet értő és kritikus használata. Amennyiben valamely ponton elakadnak, kérdésükkel a mérésvezetőjükhöz fordulhatnak a mérés előtti napig. A feladatok között vannak, amelyek (O)tthoni felkészülést kívánnak, ezek számonkérése része lehet a beugrónak is. A további feladatok vagy a (M)éréshez, vagy a (J)egyzőkönyv íráshoz kapcsolódnak. Amennyiben a mérési útmutatóban találnak hibát, módosítási, javítási javaslatuk van, vagy kérdésük bizonyos részhez, írjanak a egeto.tamas@vet.bme.hu vagy a hajdu.endre@vet.bme.hu címek egyikére. A mérési útmutató, és a szinkrongép működésének megértéséhez nagy segítséget nyújthatnak a következő animációk, megtekintésük erősen ajánlott: 1. videó: A szinkrongép motoros üzeme: 2. videó: A szinkrongép generátoros üzeme: 5

6 1. Ajánlott irodalom Liska József: Villamos gépek III. - Szinkron gépek (Tankönyvkiadó Vállalat (Budapest), 1966) Frigyes Andor: Elektrotechnika (Tankönyvkiadó Vállalat (Budapest), 1951) Kádár István: Szinkron motoros hajtások - interneten is elérhető: VILLVONT/szinkron.pdf Tényi V. Gusztáv: A szinkron gépek - interneten is elérhető: Elektrotechnika/Jegyzet/TenyiVGusztav-SzinkronGepek.pdf Villamos gépek és hajtások tárgy honlapja: Villamos gépek - Szinkron gépek 6

7 2. A mérés elméleti alapjai, a szinkrongépekről általában 2.1. Fogyasztói pozitív irányokról (villamos gépes szemlélet) A fogyasztói pozitív irányról az Elektrotechnika tárgy kereteiben tanultak. A következőkben átismételjük ezt a tudást. Induljunk ki a jól ismert P = U I teljesítmény képletből. Ha az U I szorzat pozitív, akkor az áram és a feszültség felvett iránya megegyezik. A pozitív töltések a nagyobb potenciálú pontból haladnak a kisebb potenciálú pont felé, a munkát a villamos térerő végzi. Ez az energia más energiafajtákká alakul át (hő, mechanikai stb.), a berendezés villamos energiát fogyaszt. Ha a U I szorzat negatív, akkor a pozitív töltések a kisebb feszültségű pontból a nagyobb feszültségű pont felé haladnak, a rendszerbe más energiafajták rovására energiát fektetünk be. A berendezés villamos energiát termel. Összegezve: Fogyasztóban az áram és a feszültség iránya megegyezik, a teljesítmény pozitív. Termelőben az áram és a feszültség iránya ellentétes, a teljesítmény negatív. A villamos energia rendszer szemléletben pont fordítva, a termelőben tekintik a teljesítményt pozitívnak, és a fogyasztóban negatívnak. Az 1. ábrán láthatjuk az imént elmondottakat. Az A a nagyobb, az B a kisebb potenciálú pont, így U R és U T is B fele mutat. Az U R hozza létre a fogyasztóba a vele azonos irányú áramot. A termelőben az áram ellentétes iránya a feszültséggel, ezért U T I számértéke negatív. 1. ábra. Az áram és a feszültség tényleges irányai a T termelőben és a F fogyasztóban 7

8 2.2. Segítség a gépes gondolkodásmód pozitív irányainak megértéséhez A mérés során mi a 2. ábrán lévő előjel konvenciók alapján dolgozunk, ekkor már hatásos és meddő teljesítményről is beszélünk, az áram és a feszültség fázisszöget zárnak be. A hatásos teljesítmény előjelét a cosϕ teljesítménytényező szöge határozza meg. Amennyiben az áram és a feszültség vektorai hegyesszöget zárnak be fogyasztóról beszélhetünk, tompaszög esetén termelőről. A gépes feladatok során előszeretettel élünk a meddő termelés és fogyasztás kifejezésekkel, holott ezeknek fizikai alapja nincs, hiszen a meddő teljesítmény munkát nem szolgáltat, és nagysága csak a termelő és a fogyasztó között lengő energia mértékére ad felvilágosítást. Megállapodásszerűen meddő teljesítmény fogyasztásról akkor beszélünk, ha az áram késik a feszültséghez képest (induktív fogyasztók dominálnak). 2. ábra. Az áramvektor végpontjának helyzete, és a teljesítmények előjelei fogyasztói pozitív irány választása mellett Összegezve: Ha az áram és a feszültség vonatkozási irányát azonosnak választjuk, és a feszültség vektorát a pozitív valós tengely irányába rajzoljuk, akkor az áramvektor végpontja hatásos teljesítmény fogyasztása esetén az I. vagy IV. síknegyedbe, hatásos teljesítmény termelése esetén a II. vagy III. síknegyedbe esik. Fogyasztott meddő teljesítmény áramnak azonos feltételek mellett a III. vagy IV. síknegyedbe, termelt meddő teljesítmény áramának pedig az I. vagy II. síknegyedbe kell esnie. A mérés során fontos, hogy a mennyiségeket előjelhelyesen jegyezzük le. Fontos megkülönböztetni a motoros és generátoros üzemeket, a meddő fogyasztást és termelést. 8

9 2.3. A szinkrongépek felépítése és működése A szinkrongépek állórésze (sztátor), más néven armatúra, általában három fázisú tekercseléssel ellátott. Az állórész hornyaiban helyezkedik el a három fázisú tekercselés (réz anyagú). Ez a gerjesztett tekercselés hozza létre a légrés mentén szinuszos eloszlású forgó mágneses mezőt. A forgó mező létrehozásának alapjairól az Elektrotechnika c. tárgy keretében a "Forgó mágneses tér vizsgálata" c. mérés keretében volt szó. A szinkrongépek forgórésze (rotor) hengeres (állandó légrésű) vagy kiálló pólusú (változó légrésű). (a) Hengeres forgórészű szinkrongép elvi vázlata (b) Kiálló pólusú szinkrongép elvi vázlata 3. ábra. Különböző kialakítású szinkrongépek elvi vázlata A szinkrongépek forgórészének tervezésekor törekednek arra, hogy a forgórész saját mágneses mezeje is minél inkább szinuszos eloszlású legyen a légrés mentén, ezt vagy a pólussaru alakjának megfelelő kialakításával (kiálló pólusú rotor esetén), vagy a gerjesztő tekercselés (hengeres rotor esetén) menetszámának megfelelő elosztásával lehet közelíteni. Megjegyezzük, hogy léteznek különleges mezős (pl.: négyszögmezős) szinkrongépek is. Kis teljesítményű (50kVA alatt) áramfejlesztő generátorokban az egyszerűbb gyártás okán ezt a megoldást alkalmazzák. A konkrét mérésben is ilyen négyszögmezős, közelítően szinuszos feszültségű generátor szerepel. Belátható, hogy ideális esetben a hálózathoz való szinkronizálás feltétele az, hogy az indukált feszültség alakja szinuszos legyen. A forgórész saját mezejének létrehozása két módon történhet. Hagyományosan a forgórészen elhelyezett egyenárammal táplált tekercselés hozza létre a mezőt. A forgórészen elhelyezett tekercselést nevez- 9

10 zük gerjesztő tekercselésnek. Manapság ez a megoldás csak akkor használt, amikor a kimenő feszültség vagy a meddő szabályozás fontos követelmény (erőművek). Kisebb teljesítmények esetében elterjedtebb megoldás az állandómágneses anyagok használata a forgórész mezejének létrehozásához. Állandómágneses esetében (PM) és a megmunkálás nehézsége miatt elterjedtebbek a négyszögmezős szinkrongépek. A forgórész egyenáramú táplálása vagy az állandómágneses megoldás esetén láthatjuk, hogy a forgórész mezeje rögzített és időben állandó a forgórészhez képest, és a forgórésszel együtt forog álló koordinátarendszerből szemlélve. Az állórész által létrehozott forgó mágneses tér pólusrendszere kapcsolódik a forgórész gerjesztő tekercse (vagy a forgórészre rögzített állandó mágnes) által létrehozott, a forgórésszel együtt forgó pólusrendszerhez. A hálózatra kapcsolt szinkrongép egyetlen fordulatszámon, az állórész mező fordulatszámával megegyező ún. szinkron fordulatszámon üzemképes. A villamos gépek elméletéből ismeretes frekvenciafeltétel (vigyázat! ez az összes géptípusra érvényes) alapján ez levezethető: ω st B = ω rot B + ω mech (1) ahol ω st B az állórész indukció szögsebessége az állórészhez képest, ω rot B a forgórész indukció szögsebessége a forgórészhez képest, ω mech pedig a forgórész szögsebessége. 1. Feladat. (O) Gondolja át, hogy a frekvenciafeltétel hogyan érvényes a szinkrongépekre! A szinkrongép alapfelépítésében nem tud önmagától elindulni, mint írtuk, csak a szinkron fordulatszámon üzemképes. A mérésünk során a szinkrongépet egy egyenáramú géppel fogjuk felpörgetni szinkron fordulatszám közeli tartományba. 2. Feladat. (O) Keressen két módszert, melyeket szinkrongépek indítására használnak, s röviden ismertesse őket! A szinkrongép fordulatszáma a következő összefüggéssel adódik, ahol f a frekvencia, p a póluspárok száma. [ ] 1 n = 60f[Hz] min p 3. Feladat. (O) Határozza meg egy magyar hálózatról táplált négypólusú szinkrongép fordulatszámát! (2) Megjegyezzük, hogy a 2. videóban a 2. egyenlettől eltérő összefüggés szerepel, melyben 120-as szorzó van a számlálóban. Az amerikai villamosenergia hálózat esetén a frekvencia 60Hz, a p jelentése pedig a pólusok (és nem a póluspárok) száma. 10

11 2.4. A szinkrongépek helyettesítő kapcsolása A 4. ábrán láthatjuk a szinkrongép állandósult állapotban érvényes helyettesítő kapcsolását. A helyettesítő vázlatban a pólusgerjesztésnek a pólusfeszültséget, az armatúragerjesztés fluxusmódosító hatásának az X a armatúra reaktancia feleltetjük meg. Az armatúratekercselés szórási erővonalait az X s szórási reaktanciával, a tekercselés ellenállását az R a armatúra ellenállással vesszük figyelembe. 4. ábra. A szinkrongép helyettesítő kapcsolása ahol jw 1 Ψ p = U p a pólusfeszültség, jw 1 Ψ m = U i az indukált feszültség, jw 1 Ψ az állórész (armatúra) tekercs ellenállás figyelembe vételével létrejövő feszültség, U = U k a kapocsfeszültség, X a, X s, R a rendre az armatúra reaktancia, a szórási reaktancia, illetve az armatúra ellenállás, az I pedig a szinkrongép állórész árama. Fontos megjegyzés, hogy a szinkrongépek esetében a forgórészkör nem kerül bele a helyettesítő kapcsolásba galvanikus kapcsolattal, csupán a forgómező által létrehozott U p -t látjuk, mint forgórészköri jellemző paramétert. A vektor mennyiségek a továbbiakban is vektor mennyiségek természetesen, az egyszerűség érdekében azonban elhagyjuk a felülvonásos jelölést. A szinkrongép névleges impedanciáját (Z n megadjuk a helyettesítő kapcsolás paramétereinek tipikus értékeit. = Un I n ) viszonyítási alapul véve relatív egységekben r = R Z n 100 = (2 5)% (3) x a = X a Z n 100 = ( )% (4) x s = X s Z n 100 = 10% (5) 11

12 Az értékekből látszik, hogy az R-n lévő feszültség esés elhanyagolható. A domináns X a tag, és a kisebb X s tag hatását együttesen vesszük figyelembe, s összevonjuk őket egy mennyiségbe, melynek a szinkron reaktancia nevet adjuk: X d = X a + X s (6) Az említett elhanyagolás és összevonás eredményeként kapjuk a szinkrongép állandósult állapotban érvényes egyszerűsített helyettesítő kapcsolását, melyet az 5. ábrán láthatunk. 5. ábra. A szinkrongép egyszerűsített helyettesítő kapcsolása 4. Feladat. (O) A vonatkozó szakirodalomban keresse ki a szinkrongépek indukált feszültségére vonatkozó általános összefüggést, nevezze meg a szereplő paramétereket, valamint röviden magyarázza meg a fizikai jelentésüket! Tipp: egy jó alak így kezdődhet: U i = 2π

13 2.5. A hengeres forgórészű szinkrongép vektorábrája A 6. ábrán egy végtelen hálózatra kapcsolt szinkrongép motoros üzemének (U k megelőzi U p -t) vektorábráját adjuk közre, a szinkrongép alulgerjesztett állapota mellett ( U p < U k ). A szinkrongép árama ekkor késik a feszültséghez képest, tehát induktív fogyasztóként viselkedik. 6. ábra. Végtelen hálózatra kapcsolt szinkron motor vektorábrája alulgerjesztett állapotban a 4. ábra szerinti helyettesítő kapcsolás alapján A 2.4. pont alapján megkereshetjük az egyes passzív elemeken az I áram által létrehozott feszültségeséseket. A fluxusok 90 -al késnek a hozzájuk tartozó feszültségekhez képest (a fluxus deriváltja a feszültség). A δ a szinkrongépekre jellemző terhelési szög, mely a nyomatékkal áll kapcsolatban. 5. Feladat. (O) A vonatkozó szakirodalomban keresse ki, vagy elméleti elgondolások útján rajzolja fel egy végtelen hálózatra kapcsolt túlgerjesztett szinkron generátor vektorábráját A szinkrongépek alkalmazási területei A hagyományos szinkron motorokat rendszerint nagy teljesítményű (P>100 kw) állandó fordulatszámú hajtásoknál alkalmazzák, pl. szivattyúk, dugattyús kompresszorok, malmok hajtásainál. 13

14 A hagyományos szinkron generátorokat állandó fordulatszámú erőművi, segédüzemi vagy szükségüzemi áramforrásként villamos energia termelésre használják a 100kW 500MW teljesítmény tartományban. Az állandó mágneses szinkron motorok fő alkalmazási területe a szerszámgépek és robotok áramirányítós szervohajtásaiban van, ahol fordulatszám, pozíció szabályozást és nyomatékkal történő indítást valósítanak meg. Az állandó mágneses szinkron generátorokat alternatív energiatermelő egységekben alkalmazzák, ahol a fordulatszám nem állandó (szélgenerátorok pl.). A megtermelt energia áramirányítós teljesítményelektronikai egységeken keresztül jut el a hálózatba. 14

15 3. A mérés ismertetése 3.1. A mérés céljai 1. A háromfázisú szinkrongépekkel kapcsolatos méréstechnikai tudnivalók elsajátítása. 2. Kiálló pólusú szinkrongépek működése. A szinkron generátorok autonóm energiatermelő üzeme. Üresjárási jelleggörbe felvétele. Rövidzárási jelleggörbe felvétele. A két jelleggörbéből a szinkron reaktancia meghatározása, s a telítés hatásának vizsgálata. 3. A szinkrongép hálózatra kapcsolásának feltételei, frekvencia, fázissorrend, fázisszög értelmezése, és meghatározása háromfázisú szimmetrikus hálózatokban. 4. Hálózatra kapcsolt szinkrongép generátoros és motoros üzeme, a hatásos és meddő teljesítmény áramlás szabályozása, mérése. Meddőteljesítmény értékek felvétele és hatásfok meghatározása. 5. A szinkrongép áramvektor diagramjának felvétele. A teljesítmény viszonyok megismerése. 6. Az adott problémák megértése, és a problémamegoldó képesség fejlesztése A mérési célt szolgáló gépcsoport felépítése A vizsgált gépcsoport fő építőelemei: SZG: Leroy-Somer gyártmányú LSA 40VS1 J 6/4 típusú kiálló pólusú szinkrongép EG: Leroy-Somer gyártmányú MS1322 M34 típusú egyenáramú gép A két gép névleges paramétereit a hallgatók mérési feladat keretében keresik meg és jegyzik fel. SzB: szinkronizáló berendezés (a szinkronizálási feltételeket mérő és hálózati kapcsoló)(9. ábra) Az SzB berendezésen belül: Két mérőműves rezgőnyelves frekvenciamérő a háromfázisú feszültségek frekvenciájának mérésére (45-55Hz között) Fázissorrend kijelző céláramkör az pozitív illetve negatív fázissorrend kijelzésére 15

16 AC voltmérő (500V ) a hálózat vagy a szinkrongép vonali feszültségének mérésére AC voltmérő (500V ) a hálózat és a szinkrongép közötti feszültség különbség mérésére K kézi működtetésű kapcsoló a szikrongép hálózatra kapcsolásához V2 Deprez-voltmérő, 6V 600 V a DC gép armatúra feszültség mérésére A3 Deprez-alapműszer, (60 mv/5 ma), armatúra áram mérő sönttel (50 A/60mV) V1 GANZ AC voltmérő, 300 V a szinkrongép fázisfeszültségének a mérésére F1 széles tartományú rezgőnyelves frekvenciamérő a szinkrongépben indukált feszültség frekvenciájának mérésére széles fordulatszám tartományban A1 lágyvasas ampermérő, a gerjesztő áram mérésére Inévl = 10A A4 GANZ ampermérő, 0,6A 6A a szinkrongép fázisáramának (közvetett!) mérésére Wl,W2 GANZ mutatós wattmérő, In = 5 A, Un = V ÁV áramváltó, 15A/5A (1/3 mérőáram áttétel A4, W1, és W2 áramkörében!) Fluke 41B Power Harmonics Analyzer 16

17 A 7. ábrán látható a teljes mérési elrendezés, a forgógépekkel és a mérőműszerekkel együtt. 7. ábra. A mérési kapcsolási rajza 3.3. A gépcsoport működése és kezelése Az EG egyenáramú gép három üzemmódot tesz lehetővé: 1. Az SZG szinkrongép üresjárási pörgetése szinkron alatti vagy feletti fordulatszámon (nyomaték kapcsoló középső 0 állásban). 2. A hálózattal összekapcsolt (szinkronizált) SZG szinkrongép tengelyének hajtása ( gyorsító nyomaték a nyomaték kapcsoló + felső állásában). 3. A hálózattal összekapcsolt (szinkronizált) SZG szinkrongép tengelyének fékezése (fékező nyomaték a nyomaték kapcsoló - alsó állásában). 17

18 paneljét. A 8. ábra mutatja az EG egyenáramú gépet tápláló MENTOR II áramirányító kapcsolókkal ellátott 8. ábra. Az egyenáramú gépet vezérlő panel A SZG szinkrongépet az egyenáramú géppel pörgetjük fel. Az egyenáramú gép fordulatszám (szögsebesség) egyenlete ismert az Egyenáramú gép mérése c. mérésből: ω = U DC k Φ (7) A DC gép kapocsfeszültségét, ezen keresztül a gép(csoport) fordulatszámát a baloldali fordulatszám beállító potenciométerrel szabályozzuk, és a V2 feszültségmérő műszerrel mérjük. A szinkron fordulatszám közelében az egyenáramú gép armatúra feszültsége U DC = 360V körüli. A szinkron fordulatszám ±10%- os környezetében a fordulatszámot a SzB szinkronizáló berendezésen (9. ábra) elhelyezett rezgőnyelves frekvenciamérő segítségével is meghatározhatjuk, ha a szinkrongépet a GSZ gerjesztés szabályozóval előzetesen gerjesztjük. A gépcsoport indítása a következő sorrendben történik: elosztószekrény 400V-os kapcsolóját "On" állás (3*400V), mérőasztal feszültség alá helyezése, nyomatékkapcsoló középállásban, nyomaték szabályozó (jobboldali potenciométer) 40%-os állásban, finom fordulatszám szabályozó középállás, az egyenára- 18

19 mú gép gerjesztésének engedélyezése az ENG/TILT kapcsolóval, forgás engedélyezése az alsó középső kapcsoló start -ba billentésével. Ezután a felső fordulatszám szabályozóval (egyenáramú gép armatúra feszültségét változtatja) gyorsítjuk a gépcsoportot A hálózatra kapcsolt szinkrongép hatásos és meddő teljesítmény szabályozása A mérés elején megjegyezzük, hogy a mérési feladatok egyszerűsítése érdekében a mérés során hengeres forgórészű szinkrongépet tételezünk fel. Hálózatra kapcsolt szinkrongép fordulatszáma (állandó hálózati frekvenciát feltételezve) állandó (a hálózat kényszeríti ki), a szinkrongép tengelyén kialakuló nyomatéktól függetlenül. A nyomaték a gép elméletéből megismert δ terhelési szöget befolyásolja. A szinkrongép tengelyén ható motoros illetve fékező nyomatékot a hozzákapcsolt egyenáramú gép nyomaték szabályozott üzemében állíthatjuk be két - motoros vagy fékező nyomaték - tartományban. Az egyenáramú gép motoros nyomatéka (a MENTOR szabályozón M pozitív) a tengelyen átadott mechanikus teljesítményt a szinkrongép generátoros üzemben háromfázisú hatásos teljesítmény formájában a hálózatba táplálja (P < 0). Az egyenáramú gépen ellentétes irányú, fékező nyomatékot (a MENTOR szabályozón M negatív) a szinkrongép motorként fogja szolgáltatni, és ehhez a hálózatból hatásos teljesítményt fogyaszt (P > 0). A szinkrongép kapocsfeszültsége megegyezik a hálózat feszültségével. A szinkrongép gerjesztő árama csak az U p pólusfeszültséget változtatja, amely a szinkrongépek közel ideális (az ohmos ellenállás elhanyagolható) X d reaktanciájának köszönhetően a hálózat és a szinkrongép között a gerjesztő áramtól függő meddő teljesítmény áramlást eredményez. A hálózati feszültséggel üresjárásban megegyező pólusfeszültség esetén sem hatásos teljesítmény, sem meddő teljesítmény áramlás nincs, ehhez egy üresjárási gerjesztő áram tartozik. A gerjesztő áram növelése esetén a gép túlgerjesztett állapotba kerül, amikor a szinkrongép a hálózatból kapacitív meddő áramot vesz fel, amelyet a szakmai nyelv meddő termelésnek hív (Q < 0). 19

20 A gerjesztő áram csökkentése esetén a gép alulgerjesztett üzembe kerül, amikor a szinkrongép a hálózatból (a villamos berendezések túlnyomó többségéhez hasonlóan) induktív meddő áramot vesz fel, vagyis meddőt fogyaszt (Q > 0). A gerjesztő áram csökkentésével a szinkrongép stabilitási határa csökken, és a rendszer kieshet a szinkronizmusból! 3.5. A szinkronizálás és a hálózatra kapcsolás feltételei Az egyik mérés feladat a szinkrongép hálózatra kapcsolása. A hálózatra kapcsolás előtt a szinkrongépet szinkronizálni kell. Alkalmasan ez azt jelenti, hogy a szinkrongép indukált feszültségeinek szinusz hullámai (fazorai) egybeessenek a hálózat szinusz hullámaival, vagyis a hálózat- és a gépoldalon megegyezzen a feszültségek fázissorendje frekvenciája effektív értéke fázishelyzete Azonos frekvenciájú, effektív értékű, fázissorrendű és fázishelyzetű feszültségrendszerek esetén az összetartozó fázisfeszültségek között a különbség közel nulla. Ekkor a szinkrongép a hálózattal összekapcsolható minimális kiegyenlítő áram mellett. 6. Feladat. (O) Gondolja át és foglalja össze, hogy a leírt négy paraméter mitől függ, azok hogyan befolyásolhatóak! Tipp: Szinkrongép feszültség egyenlete; Faraday-féle indukció törvény; fluxus függése a gerjesztéstől; hogy tudunk fázissorrendet változtatni (a, b, c) (a, c, b)? A szinkron gép hálózatra kapcsolását az SzB szinkronizáló berendezés (9. ábra) mágneskapcsolójával végezzük el. Ez a berendezés a 3x400 V-os hálózat bekapcsolásával helyezhető feszültség alá. Az SZB szinkronizáló berendezés funkcionális blokkvázlata a 10. ábrán látható. 20

21 9. ábra. A SzB szinkronizáló berendezés képe A 1-jelű kapcsolóval választhatjuk ki, hogy a fázissorrendet mutató (jobb felső sarok), illetve a vonali feszültség nagyságot mutató (középső felső) feszültség mérő a gép UG vagy a hálózat UH fázissorrendjét mutassa illetve feszültségét mérje. A bal alsó sarokban, két mérőműves rezgőnyelves frekvenciamérő mutatja a gép és a hálózat feszültségének frekvenciáját. A szinkronizáló berendezés bal felső sarkában lévő feszültség mérő a gép és a hálózat egy kiválasztott fázisának feszültség különbségét méri (UH UG ). Ha a két feszültségrendszer fázissorrendje azonos, a frekvenciák közel azonosak (50Hz±2Hz), és a szinkrongép üresjárási feszültsége a hálózat feszültségével közel azonos (±10V eltérés), akkor a feszültség különbséget mérő műszer a fázisok közötti szöggel közel arányos kitérést mutat. Ennek értéke 0V (0 ) és 460V (180 ) között változik a fázisok közötti fázisszög mértékének függvényében. Ha a szinkronizálás minden feltétele teljesül, a gép és a hálózat kapcsait a szinkronizáló nyomógomb BE benyomásával kapcsolhatjuk össze. A szétkapcsolás a KI nyomógomb benyomásával történik, de szétkapcsolás előtt a gépet célszerű üresjárati állapotba hozni. 21

22 10. ábra. A SzB szinkronizáló funkcionális blokkvázlata A szinkronizálás (főként a fázishelyzet) megértését könnyíti a következő honlapon elérhető animáció: A felület bal alsó sarkában lehet elindítani az animációt. A kék háromfázisú rendszer jelentse a hálózatot, szögsebességét tekintsük a hálózati 50Hz frekvenciához tartozónak. A piros rendszer állítható frekvenciájú (fordulatszámú), ennek állítására való a mozgatható csúszka. A fázissorrendet nem vesszük figyelembe, a feszültségek nagysága már azonos, csak a frekvenciával avatkozunk be, ami hatással van a fázishelyzetre. A szinkronizálást akkor kell elvégezni, amikor a fazorok fázishelyzetének különbsége nulla. Tehát egybe esik a két rendszer fazorábrája. 7. Feladat. (O) A szinkrongép frekvenciáját (fordulatszámát) befolyásoló csúszka milyen állásánál lesz állandó értékű a két fazor fázishelyzetének különbsége? 8. Feladat. (O) Lehet-e, és ha igen, akkor milyen esetben lehet szinkronizálni, ha pontosan 50Hz-re állítjuk be a szinkrongép frekvenciáját? A hálózatra kapcsolandó szinkrongépet a hajtó gép (pl. erőművekben a turbina, jelen mérési elrendezésben a szinkrongéppel tengelykapcsolatban lévő egyenáramú gép) forgatja. A szinkron fordulat elérésekor a szinkron gépet megfelelő módon kell a hálózatra kapcsolni, szinkronizálni kell. FONTOS! A szinkron gépek nem szinkronizált rákapcsolása a hálózatra súlyos villamos üzemzavarok és mechanikus károsodások kockázatával jár, ezért a hálózati rákapcsolás feltételeit minden körülmények között be kell tartani! 22

23 4. Mérési feladatok 9. Feladat. (M) A mérés során keressük meg az SZG szinkrongép és az EG egyenáramú gép névleges paramétereit az adattábláikon, s jegyezzük fel őket! 4.1. Üresjárási jelleggörbe és felvétele A szinkrongép üresjárási jelleggörbéje a gép üresjárási feszültsége és a forgórész gerjesztőárama közötti összefüggés. Névleges fordulatszámon vesszük fel. 10. Feladat. (O) A mérésre készülés során keressenek mágnesezési görbéket (például az alábbi honlapon: és legalább egy szilícium-acél anyagét (pl.: M- 19) hozzák magukkal, s mutassák be! Emelkedik-e az indukció a könyökpont utáni (telítési) szakaszon további gerjesztés hatására? Lehetőség szerint olyan B-H görbét hozzanak, melynek beosztása logaritmikus (lg), ennek segítségével adjanak választ a kérdésre. Milyen alakú a levegő B-H görbéje lg skálán ábrázolva? 11. Feladat. (O) Nézzenek utána, hogy milyen információkat ad egy forgó gép üresjárási jelleggörbéje! Amennyiben interneten keresnek, "No-load measurement" vagy "Open-circuit measurement" angol kereséssel több információt találhatnak. 12. Feladat. (O) Tekintsék a 4. ábrán lévő helyettesítő kapcsolást. Amennyiben üresjárási feszültséget mérnek a szinkrongép kapcsain, melyik feszültség(ek)et látják? 13. Feladat. (M) Vegyük fel az üresjárási jelleggörbét, az alábbiak szerint: Az egyenáramú géppel állítsuk be a szinkrongép névleges fordulatszámát. A fordulatszám, ill. annak állandósága a rezgőnyelves frekvenciamérő segítségével állapítható meg, ill. ellenőrizhető. Figyeljünk a frekvenciamérő feszültség tartományára! Állítsuk be a mérésvezető által megadott gerjesztő áram értékeket monoton csökkenő sorrendben, és jegyezzük fel a szinkrongép fázisfeszültség értékeit. Fontos, hogy a mérés egy irányba történjen. Tehát ha fentről indulunk, akkor csak csökkentsük a gerjesztő áramot, és ne mérjünk vissza, mert visszaméréskor egy kis hiszterézis hurkot írnánk le, és nem tudnánk az eredeti görbére visszatérni. 23

24 Mivel a jelleggörbét a beállítandó legnagyobb gerjesztéstől lefelé, monoton csökkentve vesszük fel, a hiszterézis görbe leszálló ágát határozzuk meg. A mérés során csatlakoztassuk az oszcilloszkóp kapcsait, és a FLuke műszert is a szinkrongép vonali feszültségére. 14. Feladat. (J) A mérés végeztével a jegyzőkönyvben ábrázoljuk a U 0 (I g ) jelleggörbét, és fogalmazzuk meg egyéb tapasztalatainkat, amennyiben vannak A feszültség jelalak harmonikusokra bontása Az üresjárási mérés során az oszcilloszkópon látható volt a vonali feszültség jelalakja. A mérésben szereplő szinkrongép feszültség jelalakja trapéz jellegű, melynek okairól a mérésvezető ad tájékoztatást. A felharmonikusokra bontást a Fluke 41B műszer segítségével gyorsan elvégezhetjük a mérés során, amennyiben azt szintén vonali feszültségre kapcsoljuk. Névleges munkapontban tegyük meg ezt. 15. Feladat. (O) Ismételjék át az analízis tárgyakban tanult Fourier sorfejtés alapjait. Ismerjék/hozzák magukkal az egyes tagok előállítására szolgáló összefüggéseket (a 0 =..., a n =..., b n =...). Gondolják át, hogy egy trapéz függvényt, hogy tudnak Fourier sorba fejteni! A trapéz egy lineáris és egy konstans szakaszból álló jelalak, mely szimmetrikus a a π 2 tengelyre. Válaszolják meg, hogy egy páratlan függvény esetén a Fourier-sor mely tagjai lesznek zérustól különbözőek! 16. Feladat. (M) Végezzük el a Fluke 41B műszer segítségével névleges munkapontban a vonali feszültség jelalakjának harmonikusokra bontását! Az oszcilloszkóp segítéségével határozzuk meg a vonali feszültség jelalakjának a Fourier-sor előállításához szükséges paramétereit! 17. Feladat. (J) A mérés végeztével a jegyzőkönyvben állítsuk elő a trapéz jelalak Fourier-sorát minimum a hetedik felharmonikusig. A sor előállításához a trapéz magasságára (feszültség maximum értékére), valamint a lineáris és konstans szakasz töréspontjának helyére van szükségünk, ezeket jegyezzük fel a mérés során. Hasonlítsuk össze a mért értékeket az általunk számoltakkal. 24

25 4.3. Rövidzárási jelleggörbe és felvétele A rövidzárási jelleggörbe a kapcsain galvanikusan rövidrezárt szinkrongenerátor armatúra árama és a forgórész gerjesztőárama közötti összefüggés. A jelleggörbét névlegesnél kisebb fordulatszámon is fel lehet venni. Jóllehet, adott gerjesztőáram mellett az U p a fordulatszám arányában kisebb, de a kisebb frekvencia miatt ugyanilyen arányban csökken az X d reaktancia is. Ez azt eredményezni, hogy I z közel független az SZG szinkrongép fordulatszámától. Ez egészen kis fordulatszámokig igaz, ahol az armatúra ohmos ellenállása már nem elhanyagolható. Egész kis fordulatszámon viszont az armatúra ohmos része nem lesz elhanyagolható, így a mérés nem fog jó eredményt adni. A rövidzárási mérés előtt a szinkrongép kapcsait rövidrezárva 3F zárlatot állítunk elő. 18. Feladat. (O) Az 5. ábra alapján gondolják végig a rövidzárási mérést. Hol történik a rövidrezárás, hol mérjük a szinkrongép rövidzárási áramát? 19. Feladat. (M) Vegyük fel az rövidzárási jelleggörbét, az alábbiak szerint: Az egyenáramú géppel állítsuk be a gépcsoport fordulatszámát a kívánt értékre (tipikusan lehet fél fordulatszámon mérni). Állítsuk be a mérésvezető által megadott gerjesztő áram értékeket, s jegyezzük fel a szinkrongép armatúra áramát. A mérést szabvány szerint 1, 2I n armatúra áram értékig kell elvégezni, ennél nagyobb áramot ne állítsunk be, mert a gép tekercselése károsodhat. 20. Feladat. (J) A mérés végeztével a jegyzőkönyvben ábrázoljuk a I z (I g ) jelleggörbét, és fogalmazzuk meg egyéb tapasztalatainkat, amennyiben vannak A szinkron reaktancia meghatározása A 4. ábra alapján látható, hogy a rövidzárási áramot a pólusfeszültség hozza létre. Az áram értékét (R elhanyagolásával) csak az X d szinkron reaktancia korlátozza. Tehát a rövidzárási és az üresjárási mérésből meghatározhatóak a szinkron reaktancia értékek minden olyan munkapontban, amely gerjesztőáram mellett történt I z és U p érték felvétele. 25

26 21. Feladat. (O) Gondolják át, hogy a szórásnak (X s ) milyen hatásai vannak? Tipp: Nem csak veszteség! 22. Feladat. (J) A mérés végeztével a jegyzőkönyvben ábrázoljuk a X d = Up I z jelleggörbét I g függvényében, és fogalmazzuk meg egyéb tapasztalatainkat, amennyiben vannak A szinkrongép szinkronizálása és a hálózatra kapcsolása A 3.5. pontban már foglalkoztunk a szinkronizálással és a hálózatra kapcsolás feltételeivel. Gyakorlati megjegyzés, hogy a szinkrongép frekvenciáját érdemes a hálózati frekvencia alatt tartani (közel ahhoz, egy-két tized Hz-es eltérés), s így megkísérelni a kapcsolást a helyes pillanatban. Ne felejtsük el azt sem, hogy a kapcsolást az összetartozó fázisfeszültség fazorok együttállásának idejében kell elvégezni, ugyanis, eltérő esetben a feszültség különbség áramot indít, ami működtetheti a kismegszakítókat. 23. Feladat. (M) Szinkronizáljuk a szinkrongépet a hálózat paramétereihez! A hálózattal történő összekapcsoláshoz ("BE" gomb) ellenőrizzük a szükséges paramétereket ((feszültség amplitúdó, fázissorrend, frekvencia, fázishelyzet). Minimális fáziskülönbség esetén kapcsoljuk rá a szinkrongépet a hálózatra. A szinkron állapot beállításához először a DC fordulatszám szabályozott üzemben a szinkrongép üresjárási feszültségének a frekvenciáját a hálózati frekvenciához közeli értékre kell hozni. Ezután az üresjárási feszültség értékét a hálózati feszültség értékével közel azonos értékre kell beállítani (Hogyan? Emlékezzünk az üresjárási mérés tapasztalataira(!)), ellenőrizni kell a fázissorrend azonosságot, és meg kell várni az átkapcsoláshoz kedvező fázishelyzetet, amikor a két feszültség rendszer fázisfeszültségeinek különbsége minimális (50V alatt) Meddő teljesítmény szabályozás és a szinkrongép V-görbéje A DC gép hajtó/fékező üzemét tudjuk a MENTOR mellett lévő panelen beállítani. A "Nyomaték" kapcsoló felső-pozitív állása jelenti a DC gép motoros üzemét, tehát a szinkrongép generátoros üzemét, míg az alsó-negatív állása jelenti a DC gép fékező üzemét, tehát a szinkrongép motoros üzemét. 24. Feladat. (M) Képzeljük el, hogy egy hőerőmű teljesítményszabályozása a feladatunk. Mint a 3.4. pontban olvashattuk, a szinkrongép hatásos és meddő teljesítmény szabályozását részben függetlenül végezhetjük. Erőmű esetén hatásos teljesítményt a turbina nyomatékával P = M ω alapján, tehát gőzhozamával, 26

27 vagy a turbina lapátszögével, míg a meddő teljesítményt a gerjesztő áram nagyságával befolyásoljuk (túl vagy alul gerjesztjük). Esetünkben a DC gép hajtó/fékező nyomatéka és a gerjesztő áram értéke a két beavatkozó paraméter. Feladatunk a következő: Szabályozzuk a szinkron generátort úgy, hogy 5kW hatásos teljesítményt adjon le 4kVAr meddő teljesítmény termelése mellett. Pörgessük fel a gépcsoportot, és a szinkronizálást követően kapcsoljuk a hálózatra. A GSZ gerjesztésszabályozóval állítsuk be a Q = 4kV Ar meddő teljesítmény termelést (Q<0). Előtte számítsuk ki, hogy ehhez milyen wattmérő mérő kitérés tartozik! Állítsuk be a DC gép nyomatékának szabályozásával a P = 5kW generátoros teljesítményt. Előtte számítsák ki, hogy ehhez wattmérő kitérés tartozik. 25. Feladat. (M) Az előző feladat folytatásaként lehet megmérni a hálózatra kapcsolt szinkrongép terhelési jelleggörbéjét, amely jellegzetes alakjáról a V-görbék elnevezést kapta. A terhelési jelleggörbe sereg a szinkrongép I a áramának és I g gerjesztő áramának összefüggése különböző (motoros és generátoros) hatásos teljesítmények (P=áll) mellett. A mérés menete a következő: A szinkrongép P teljesítményét állítsuk P=0 értékre. A mérésvezető által megadott I g áramoknál (I g -t maximumról csökkentve) állapítsuk meg az I a armatúra áramot. Olvassuk le a Q=0 (cosφ = 1) ponthoz tartozó I g áramot. A mérés ismételjük meg a mérésvezető által megadott P 1, P 2 stb. értékeknél. Előtte határozzuk meg a hatásos teljesítményt mutató wattmérő skálaosztását. A jelleggörbék felvétele állandó (a mérésvezető által megadott) hatásos teljesítmény értéken történik. A mérés során fel kell jegyezni a meddő teljesítmény értékeket, a szinkrongép áram értékeit, valamint, amennyiben erre a mérésvezető utasítást ad, adott munkapontokban az egyenáramú gép áramát és feszültségét is. 26. Feladat. (J) A mérés végeztével a jegyzőkönyvben ábrázoljuk Q(I g ) illetve a I(I g ) jelleggörbéket, s fogalmazzuk meg egyéb tapasztalatainkat, amennyiben vannak. 27

28 A V-görbék közelítő alakjára mutat példát a 11. ábra. Láthatjuk, hogy a P = 0 értékhez tartozó görbe érinti az I g tengelyt, tehát létrehozható olyan állapot, amelyben nem folyik áram a sztátoron. A görbék függőleges tengely (áram tengely) irányú eltolása arányos a beállított P = const értékkel, a V alak pedig az U p és az U k feszültségek egymáshoz viszonyított (I g -től, mint beavatkozó paramétertől függő) változó különbsége miatt adódik. Az alul- és felülgerjesztés határát a cos ϕ = 1-hez tartozó gerjesztő áram érték I g0 jelöli ki. Alulgerjesztéskor ( I g < I g0 ) az U p < U k, tehát meddő teljesítményt fogyaszt a gép; cos ϕ = 1-re szabályozva (I g = I g0 ) U p = U k, tehát képzetes áram komponens nincs (függőleges eltolás van, ha P 0); míg túlgerjesztéskor (I g0 < I g ) az U p > U k, tehát meddő teljesítményt szolgáltat a gép. 11. ábra. A szinkrongép V-görbéi 27. Feladat. (J) A mérésvezető által kért munkapontban számoljuk ki a gépcsoport hatásfokát a szinkrongép generátoros és motoros üzemében is. Emlékezzünk az energia áramlás irányára! A nyomaték kapcsoló átkapcsolás esetén figyeljünk a szinkrongép hatásos teljesítményét mérő műszer polaritására, mivel az áramirány ekkor megfordul. A polaritást a műszeren lévő polaritás váltóval lehet váltani. A nyomaték kapcsoló átkapcsolás esetén figyeljünk az egyenáramú gép áramát mérő műszer polaritására, mivel az áramirány ekkor megfordul. A polaritást a direkt e célra épített polaritásváltóval lehet megfordítani. A mérés során túl- vagy alulgerjesztett állapotban a pólusfeszültség és a kapocsfeszültség különbsége lehet annyira nagy, hogy a névlegesnél nagyobb áram indulhat, mely a gépet károsíthatja, vagy 28

29 akkora, amekkora az árammérő műszert károsíthatja. Így a mérés során különös figyelmet fordítsunk az áramértékek figyelésére, a méréshatárok betartására. Mivel a meddő teljesítmény előjelet vált a mérés során, az ezt mérő műszer polaritását át kell állítani a Q = 0 pontban. A polaritást a műszeren lévő polaritás váltóval lehet váltani. Megjegyzés: Nagyon fontos belátni, hogy ennek a mérésnek az egyik lényege az, hogy a szinkrongéppel tudjuk befolyásolni a hálózati meddő viszonyokat. Túlgerjesztett állapotban tudunk meddőt termelni. Fontos kiemelni, hogy szinkron motort is használhatunk meddő teljesítmény termelésére Áramvektor-diagram felvétele A váltakozó áramú gépek üzemi viszonyainak tanulmányozásához nyújtanak segítséget az áramvektor-diagramok. Ezek az áramvektor végpontjainak mértani helyei. Esetünkben az armatúra áram vektorának helyzeteit vesszük fel különböző terhelési állapotok mellett. A 12. ábrán látható két áramvektor-diagram képe. A nagyobb körív nagyobb gerjesztő áramhoz tartozik. 12. ábra. Az áramvektor-diagram vázlatos képe Az áramvektor diagramot adott állandó gerjesztő áram mellett kell felvenni, úgy, hogy a hatásos teljesítmény értékeket változtatjuk (a DC gép nyomatékát), s leolvassuk a kialakuló meddő teljesítmény értékét, s az állórész áramokat. 29

30 28. Feladat. (M) Az áramvektor diagram felvételének menete a következő: A hálózatra kapcsolt szinkrongépen állítsuk be a mérésvezető által megadott I g < I gn (alulgerjesztett) gerjesztőáramot, és a megengedett I a armatúra áram tartományában állítsuk be P 1 > P 2 > ( P 2 ) > ( P 1 ) hatásos teljesítményeket, és jegyezzük fel a hozzátartozó Q 1, Q 2 meddő teljesítményeket. Ismételjük meg a mérést a mérésvezető által megadott I g > I gn (túlgerjesztett) gerjesztőáramnál. Vegyünk fel úgy áramvektor-diagramot, hogy az adott I g -hez tartozó P és Q értékek által kijelölt ív mind a négy síknegyedben elhaladjon. 29. Feladat. (M) Bónusz feladatként (és amennyiben a mérésvezetőnk hajlandó rá) ejtsük ki a szinkrongépet szinkronizmusból! A szinkrongép gerjesztését lecsökkentve a rotor mezejét a remanens fluxus tartja fenn. A kiálló pólusú szinkrongép reluktancia nyomatéka a szinkron üzem fenntartásában segít. Alkalmasan, a szinkrongépet jócskán (géptől függő mértékben) terhelhetjük ráadott gerjesztés nélkül is. A szinkronból való kiesés zárlati jelenség, mely során oszcilloszkóppal figyeljük a sztátor áramokat. A hatásos teljesítmény az egyenáramú gép fékező nyomatékával állítsuk minimumra, a gerjesztés szabályozóval Q meddő teljesítményt is csökkentsük minimumra, majd a szinkronizáló gomb KI nyomógombbal bontsuk a szinkrongép és a hálózat kapcsolatát. A gépcsoport leállása után a mérési elrendezést feszültségmentesítsük. 30

31 5. A jegyzőkönyvekről 5.1. Megjegyzések a mérési adatok feldolgozásához A szinkrongép oldalán gerjesztő áramot, hatásos- és meddő teljesítményt, valamint armatúra köri áramot mérünk. A mérési összeállításban egy áramváltó kerül elhelyezésre, 1:3-as áttétellel, amellyel illeszteni tudjuk az ampermérő 6A-es maximális mérési határát a szinkrongép 15A-es névleges áramához. Emiatt a mérőműszerekben a tényleges áram harmad része folyik, a valós érték meghatározásához meg kell szorozni a leolvasott értéket hárommal. A wattmérőkkel a háromfázisú teljesítményeket célunk meghatározni. Azonban csak egy fázisban mérjük meg ezeket a teljesítményeket, és szimmetriát feltételezve egyszerűen megszorozzuk hárommal a kapott értékeket, s nem feledkezünk meg az áramváltóról sem. Mind a két wattmérőnek van az adott méréshatárokhoz tartozó műszerállandója, amellyel a leolvasott értéket be kell szorozni. A meddő teljesítmény meghatározásánál vonali értékkel történik a mérés fázis mennyiség helyett, ezt korrigálva szükséges egy 1 3 -mal való szorzás is. Összegezve: Árammérés: Hatásos teljesítmény mérés: Meddő teljesítmény mérés: value real = value read 3 (8) I real = I read 3 (9) value real = value read measuringconstant 3 3 (10) P = α P c W 3 3 (11) value real = value read measuringconstant 3 3 Q = α Q c Q (12) 1 3 (13) 31

32 5.2. A jegyzőkönyvekről A jegyzőkönyvek írása során törekedjünk az összeszedett, átlátható, igényes munkára. Érdemes a jegyzőkönyvet egy olyan résszel kezdeni, amiben elmondjuk, hogy mit mértünk, miért mértük, pontokba szedve. A mérésvezető kérhet minket arra, hogy a jegyzőkönyv elején fél-egy oldal terjedelemben angol nyelvű összefoglalót ( Review"-t) készítsünk a mérésünkről. A jegyzőkönyv elkészítése során minden kiadott feladatról (O/M/J) emlékezzünk meg, válaszoljunk rá, írjuk le gondolatainkat, tapasztalatainkat. Az (O)tthoni feladatokra lehet rövidebb terjedelemben kitérni, amennyiben a mérés során azokat megbeszéltük. Ennek a mérésnek az a célja, hogy gyakorlatban" lássuk a fizikai összefüggéseket, s megértsük azokat. Épp ezért minden feladat megválaszolása során törekedjünk a saját tapasztalatok kiemelésére. És még egyszer: A jegyzőkönyv legfontosabb része a diszkusszió, az, hogy nekünk mit jelentett" a mérés, mit tanultunk a mérés, és a mérésre való készülés során. A tapasztalatainkra minden feladat megválaszolása során kitérünk, s a jegyzőkönyvet egy összefoglaló értékeléssel zárjuk Gyakori hibák a jegyzőkönyvekben Legfontosabb! Ne gondoljuk, hogy mi ezeket nem követjük el! Olvassuk végig figyelmesen a jegyzőkönyv megírása előtt és után is! Mivel ezekre a hibákra külön felhívjuk a figyelmet, nagyon ajánlatos elkerülni őket. 1. Végig a fogyasztói pozitív irányokat használjuk. 2. A mérésvezető megadhatja a teljesítmény értékeket α kitérés formában. Ezeket a kiértékelés során számoljuk át tényleges teljesítmény értékekké. Figyeljünk az áramváltóra, a háromfázisú rendszerre, illetve arra, hogy vonali vagy fázis értékekkel kell számolnunk, ahogy erről az 5.1. pontban írtunk. 3. Az áramváltó áttétele a teljesítményeknél és az állórész áram értékénél is megjelenik. 4. A mérési adatok ábrázolása során minden esetben skálázzuk a tengelyeket, és tüntessük fel az állandó értéken tartott paramétereket. 32

33 Beugró kérdések 1. Mik a feltételei egy szinkrongép hálózatra kapcsolásának? 2. Mekkora egy négypólusú, 50Hz-es szinkrongép fordulatszáma? Írja fel a számításra vonatkozó összefüggést paraméteresen. 3. Hogyan alkalmazható hatásos teljesítmény mérésére szolgáló wattmérő meddő teljesítmény mérésére? (ábra, összefüggés) 4. Milyen célból alkalmazunk áramváltót az áram és teljesítménymérő áramkörökben? 5. Mi az üresjárási jelleggörbe? Milyen koordináta-rendszerben ábrázoljuk? Milyen fizikai jelenséget figyelhetünk meg a jelleggörbe alakján? 6. Milyen mennyiségek szerepelnek a V görbe tengelyein? 7. Milyen előjelű a hatásos és a meddő teljesítmény motoros, alulgerjesztett üzemben? 8. Hálózatra kapcsolt szinkrongép gerjesztését megszüntetjük. Mi történik? 9. A mérés során a szinkrongép hatásos teljesítményét mérő wattmérőjén -40 egység kitérést olvasunk le. Milyen üzemmódban van a gép, és mekkora a hatásos teljesítmény, ha az adott méréshatárhoz 10W/osztás műszerállandó tartozik? 33

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési

Részletesebben

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési

Részletesebben

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MÛSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

Részletesebben

Egyenáramú gép mérése

Egyenáramú gép mérése Egyenáramú gép mérése Villamos laboratórium 1. BMEVIVEA042 Németh Károly Kádár István Hajdu Endre 2016. szeptember.1. Tartalomjegyzék 1. A laboratóriumi mérés célja... 1 2. Elméleti alapismeretek, a méréssel

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László 11. előadás Összeállította: Dr. Hodossy László 1. Szerkezeti felépítés 2. Működés 3. Működés 4. Armatúra reakció 5. Armatúra reakció 6. Egyenáramú gépek osztályozása 7. Külső 8. Külső. 9. Soros. 10. Soros

Részletesebben

= f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni.

= f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni. 44 SZINKRON GÉPEK. Szögsebességük az állórész f 1 frekvenciájához mereven kötődik az ω 2 π = f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni. Az állórész felépítése

Részletesebben

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát.

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. Elektromechanika 4. mérés Háromfázisú aszinkron motor vizsgálata 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. U 1 az állórész fázisfeszültségének vektora; I 1 az állórész

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Háromfázisú aszinkron motorok

Háromfázisú aszinkron motorok Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész

Részletesebben

S Z I N K R O N G É P E K

S Z I N K R O N G É P E K VILLANYSZERELŐ KÉPZÉS 2 0 1 5 S Z I N K R O N G É P E K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Szinkrongépek működési elve...3 Szinkrongépek felépítése...3 Szinkrongenerátor üresjárási

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01

Részletesebben

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú 1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU SZINKRON GÉPEK

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU SZINKRON GÉPEK SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU SZINKRON GÉPEK 2013/2014 - őszi szemeszter Szinkron gép Szinkron gép Szinkron gép motor Szinkron gép állandó mágneses motor Szinkron generátor - energiatermelés

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter Elektromechanikai átalakítás Villamos rendszer

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei VI. fejezet Az alapvető elektromechanikai átalakítók működési elvei Aszinkron gépek Gépfajták származtatása #: ω r =var Az ún. indukciós gépek forgórészében indukált feszültségek által létrehozott rotoráramok

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01

Részletesebben

9. Szinkron gépek. Ebbõl következik, hogy a forgórésznek az állórész mezõvel együtt, azzal szinkron kell forognia

9. Szinkron gépek. Ebbõl következik, hogy a forgórésznek az állórész mezõvel együtt, azzal szinkron kell forognia 9. Szinkron gépek 9.1. Mûködési elv, alapgondolat Láttuk, hogy v.á. gépeink mûködésének alapja két szinkron forgó forgómezõ, képletesen két összetapadt, együttfutó pólusrendszer. Tengelyeik között - a

Részletesebben

Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei VI. fejezet Az alapvető elektromechanikai átalakítók működési elvei Származtatása frekvencia-feltételből (általános áttekintés) A forgó mező tulajdonságai (már láttuk) III. A nyomatékképzés feltétele (alapesetben)

Részletesebben

Alapfogalmak, osztályozás

Alapfogalmak, osztályozás VILLAMOS GÉPEK Alapfogalmak, osztályozás Gépek: szerkezetek, amelyek energia felhasználása árán munkát végeznek, vagy a felhasznált energiát átalakítják más jellegű energiává Működési elv: indukált áram

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Váltakozóáramú gépek Összeállította: Langer Ingrid adjunktus Aszinkron (indukciós) gép Az ipari berendezések

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

A soros RC-kör. t, szög [rad]

A soros RC-kör. t, szög [rad] A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Mérnöki alapok II. III. Rész Áttekintés az energiaátalakításokról és az energia-átalakítókról

Mérnöki alapok II. III. Rész Áttekintés az energiaátalakításokról és az energia-átalakítókról III. Rész Áttekintés az energiaátalakításokról és az energia-átalakítókról Energia átalakítás Villamos energia átalakítás áttekintése: Az energia, a teljesítmény, és a hatásfok fogalmak áttekintése Az

Részletesebben

Szinkronizmusból való kiesés elleni védelmi funkció

Szinkronizmusból való kiesés elleni védelmi funkció Budapest, 2011. december Szinkronizmusból való kiesés elleni védelmi funkció Szinkronizmusból való kiesés elleni védelmi funkciót főleg szinkron generátorokhoz alkalmaznak. Ha a generátor kiesik a szinkronizmusból,

Részletesebben

Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az

Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az 8 FORGÓMEZŐS GÉPEK. Az aszinkron és a szinkron géek külső mágnesének vasmagja, -amelyik általában az állórész,- hengergyűrű alakú. A D átmérőjű belső felületén tengelyirányban hornyokat mélyítenek, és

Részletesebben

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, szerkesztési, szakrajzi feladatok

Részletesebben

Aszinkron gép mérése. Villamos laboratórium 1. BMEVIVEA042. Farkas Balázs szeptember 10.

Aszinkron gép mérése. Villamos laboratórium 1. BMEVIVEA042. Farkas Balázs szeptember 10. Aszinkron gép mérése Villamos laboratórium 1. BMEVIVEA042 Farkas Balázs 2017. szeptember 10. Tartalomjegyzék 1 Rövidítések... 2 2 A laboratóriumi mérés célja... 3 3 Mérési környezet... 4 3.1 Mérési elrendezés...

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

Versenyző kódja: 30 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 30 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 522 01-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 522 01 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/szerkesztési/szakrajzi

Részletesebben

1. fejezet: Szinkron gépek

1. fejezet: Szinkron gépek 1. Fejezet Szinkron gépek Szinkron gépek/1 TARTALOMJEGYZÉK 1. FEJEZET SZINKRON GÉPEK 1 1.1. Működési elv, alapgondolat 3 1.2. Felépítés 4 1.3. Helyettesítő áramkör 5 1.4. Fázorábra 7 1.5. Hálózatra kapcsolás

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika

Részletesebben

VILLAMOS ENERGETIKA PÓTZÁRTHELYI DOLGOZAT A csoport

VILLAMOS ENERGETIKA PÓTZÁRTHELYI DOLGOZAT A csoport VILLAMOS ENERGETIKA PÓTZÁRTHELYI DOLGOZAT A csoport 2014. április 23. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3,

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

Egyszerű kísérletek próbapanelen

Egyszerű kísérletek próbapanelen Egyszerű kísérletek próbapanelen készítette: Borbély Venczel 2017 Borbély Venczel (bvenczy@gmail.com) 1. Egyszerű áramkör létrehozása Eszközök: áramforrás (2 1,5 V), izzó, motor, fehér LED, vezetékek,

Részletesebben

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól

Részletesebben

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Váltakozóáramú gépek Összeállította: Langer Ingrid adjunktus Aszinkron (indukciós) gép Az ipari berendezések

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.

Részletesebben

Laboratóriumi mérési útmutató

Laboratóriumi mérési útmutató BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport CSÚSZÓGYŰRŰS ASZINKRON MOTOR INDÍTÁSA ÉS DINAMIKUS FÉKEZÉSE

Részletesebben

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD echatronika, Optika és Gépészeti Informatika Tanszék OTOR - BORD I. Elméleti alapok a felkészüléshez 1. vizsgált berendezés mérést a HPS System Technik (www.hps-systemtechnik.com) rendszereszközök segítségével

Részletesebben

Aszinkron motoros hajtás Matlab szimulációja

Aszinkron motoros hajtás Matlab szimulációja Aszinkron motoros hajtás Matlab szimulációja Az alábbiakban bemutatjuk egy MATLAB programban modellezett 147,06 kw teljesítményű aszinkron motoros hajtás modelljének felépítését, rendszertechnikáját és

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

30. sz. laboratóriumi gyakorlat. A fázistényező javítása, automatikus fogyasztói meddőteljesítmény kompenzáció

30. sz. laboratóriumi gyakorlat. A fázistényező javítása, automatikus fogyasztói meddőteljesítmény kompenzáció 30. sz. laboratóriumi gyakorlat A fázistényező javítása, automatikus fogyasztói meddőteljesítmény kompenzáció 1. Elméleti alapok A váltakozó-áramú villamos készülékek döntő többsége elektromágneses elven

Részletesebben

4. Mérés Szinkron Generátor

4. Mérés Szinkron Generátor 4. Mérés Szinkron Generátor Elsődleges üzemállaot szerint beszélhetünk szinkron generátorról és szinkron motorról, attól függően, hogy a szinkron gé elsődlegesen generátoros vagy motoros üzemállaotban

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

4. FEJEZET MOTORHAJTÁSOK

4. FEJEZET MOTORHAJTÁSOK Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 4. FEJEZET MOTORHAJTÁSOK Széles skála: o W...MW, o precíz pozícionálás...goromba sebességvezérlés.

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

Kiserőmű igénybejelentés

Kiserőmű igénybejelentés Kiserőmű igénybejelentés 1. IGÉNYBEJELENTŐ ADATAI Székhelye: Cégjegyzékszáma: Az igénybejelentő kapcsolattartója: Neve: Telefonszáma: E-mail címe: Az igénybejelentő által megbízott villamos tervező (vagy

Részletesebben

CSÚSZÓGYŰRŰS ASZINKRON MOTOR INDÍTÁSA ÉS DINAMIKUS FÉKEZÉSE Laboratóriumi mérési útmutató

CSÚSZÓGYŰRŰS ASZINKRON MOTOR INDÍTÁSA ÉS DINAMIKUS FÉKEZÉSE Laboratóriumi mérési útmutató BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport CSÚSZÓGYŰRŰS ASZINKRON MOTOR INDÍTÁSA ÉS DINAMIKUS FÉKEZÉSE

Részletesebben

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

MUNKAANYAG. Hollenczer Lajos. Szinkron gépek vizsgálata. A követelménymodul megnevezése: Erősáramú mérések végzése

MUNKAANYAG. Hollenczer Lajos. Szinkron gépek vizsgálata. A követelménymodul megnevezése: Erősáramú mérések végzése Hollenczer Lajos Szinkron gépek vizsgálata A követelménymodul megnevezése: Erősáramú mérések végzése A követelménymodul száma: 0929-06 A tartalomelem azonosító száma és célcsoportja: SzT-006-50 SZINKRON

Részletesebben

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez BDPESTI MŰSZKI ÉS GZDSÁGTDOMÁNYI EGYETEM VILLMOSMÉRNÖKI ÉS INFORMTIKI KR VILLMOS ENERGETIK TNSZÉK Mérési útmutató transzformátor működésének vizsgálata z Elektrotechnika tárgy laboratóriumi gyakorlatok

Részletesebben

Tápegység tervezése. A felkészüléshez szükséges irodalom Alkalmazandó műszerek

Tápegység tervezése. A felkészüléshez szükséges irodalom  Alkalmazandó műszerek Tápegység tervezése Bevezetés Az elektromos berendezések működéséhez szükséges energiát biztosító források paraméterei gyakran különböznek a berendezés részegységeinek követelményeitől. A megfelelő paraméterű

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. 3 Ellenállás mérés az és az I összehasonlítása alapján 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. A mérés célja: A feszültségesések összehasonlításával történő ellenállás mérési

Részletesebben

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése Villamos forgógépek Forgógépek elvi felépítése A villamos forgógépek két fő része: az álló- és a forgórész. Az állórészen elhelyezett tekercsek árama mágneses teret létesít. Ez a mágneses tér a mozgási

Részletesebben

DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE

DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE M I S K O C I E G Y E T E M GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA EEKTOTECHNIKAI ÉS EEKTONIKAI INTÉZET Összeállította D. KOVÁCS ENŐ DIÓDÁS ÉS TIISZTOOS KAPCSOÁSOK MÉÉSE MECHATONIKAI MÉNÖKI BSc alapszak hallgatóinak

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

KISERŐMŰ IGÉNYBEJELENTÉS

KISERŐMŰ IGÉNYBEJELENTÉS M13 sz. melléklet E.ON Tiszántúli Áramhálózati Zrt. - Elosztói Üzletszabályzat KISERŐMŰ IGÉNYBEJELENTÉS 1. RENDSZERHASZNÁLÓ ADATAI 1.1. Cégneve:... 1.2. Székhelye:... 1.3. Levelezési címe:... 1.4. Cégjegyzékszáma:...

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Elektromechanika. 6. mérés. Teljesítményelektronika

Elektromechanika. 6. mérés. Teljesítményelektronika Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

a) b) a) Hengeres forgórészű és b) kiálló pólusú szinkron gép vázlata

a) b) a) Hengeres forgórészű és b) kiálló pólusú szinkron gép vázlata 3. SZNKRON OTOROS HAJTÁSOK A hgyomáyos szikro motorokt reszerit gy teljesítméyű (P> kw) álló forultszámú hjtásokál lklmzzák, pl. szivttyúk, ugttyús kompresszorok, mlmok hjtásiál. Az ármiráyítós szikro

Részletesebben