Data Mining. Slides for Chapter 2 of Data Mining by I. H. Witten, E. Frank and M. A. Hall

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Data Mining. Slides for Chapter 2 of Data Mining by I. H. Witten, E. Frank and M. A. Hall"

Átírás

1 Data Mining Machine Learning a gyakorlatban - eszközök és technikák Slides for Chapter 2 of Data Mining by I. H. Witten, E. Frank and M. A. Hall

2 Bemenet: Fogalmak, instanciák, attribútumok szaknyelv Mi egy fogalom? Klasszifikáció, asszociáció, csoportosítás, számszerű előrejelzés Mi egy példa? Összefüggések, sík állományok, rekurzió Mi egy attribútum? Névleges, sorrendi, intervallum, arány A bemenet előkészítése ARFF, attribútumok, hiányzó értékek, az adatok megismerése 2

3 Terminológia - szaknyelv A bemenet alkotóelemei: Fogalmak: bizonyos dolgok, amit tanulni lehet célkitűzés: érthető és múködőképes fogalomleírás Előfordulás: az egyed, független leírása a fogalomnak Megjegyzés: more complicated forms of input are possible Attribútumok: megmérik egy előfordulás aspektusát Mi a névleges re és numerikusra összpontosítunk 3

4 Mi egy fogalom? Tanulási stílusok: Osztályozási tanulás: predicting a discrete class Asszociációs tanulás: összefüggések felfedezése tulajdonságok között Csoportosítás: hasonló egyedek különböző csoportokba sorolása Számszerű előrejelzés: előrejelezni egy számban kifejezett mennyiséget Fogalom: dolog, amit meg kell tanulni Fogalom leírása: a tanulási séma kimenete 4

5 Osztályozási tanulás Példa problémák: időjárási adatok, kontakt lencsék, irisz virágok, munkahelyi tárgyalások Osztályozási tanulás felügyelt tanulás A séma elkészítése az aktuális kimenetke alapján történik A kimenetet a példa osztályának (class) nevezik Mérjük a sikert friss adatokkal, amelyekre az osztály-címkék tudottak (teszt adat) A gyakorlatban a sikert gyakran szubjektíven mérik 5

6 Asszociációs tanulás Alkalmazható abban az esetben, mikor nincs meghatározott osztály és bármiféle struktúra érdekes lehet. Különbség az osztályozási tanulástól: Előjelezheti bármely atribútum értékét, nemcsak az osztályét és több, mint egy attribútumét egyszerre Következmény: sokkal több asszociációs szabály, mint osztályozási szabály Tehát: megszorítások megadása szükséges Legkisebb lefödés és legkisebb pontosság 6

7 Csoportosítás (Clustering) Megtalálni olyan egyedeket amelyek hasonlóak A csoportosítás felügyelet nélküli tanulás Egy példa osztálya ismeretlen A siker mérése sokszor szubjektív Sepal length Sepal width Petal length Petal width Type Iris setosa Iris setosa Iris versicolor Iris versicolor Iris virginica Iris virginica 7

8 Számok általi előrejelzés Variant of classification learning where class is numeric (also called regression ) A tanulás felügyelettel történik A sémát a célérték szolgáltatja Teszt adatokon történik a sikerfelmérés Outlook Temperature Humidity Windy Play-time Sunny Hot High False 5 Sunny Hot High True 0 Overcast Hot High False 55 Rainy Mild Normal False 40 8

9 Mi egy példa? Instancia: egy példa specifikus tipusa Dolgok, amelyeket osztályozni, asszociálni vagy csoportosítani kell Egyedek, egymástól független példái a célfogalmaknak Jellemezve egy előre kiválasztott attribútumhalmazzal A A bemenet a tanuló sémára: instanciahalmaz/ adathalmaz Képviselve egy kapcsolattal/sík állomány Inkább korlátozott bemeneti minta Nincs összefüggés az objektumok között A leggyakoribb a gyakorlati data mining-ban 9

10 Egy családfa M = Peggy F Grace F = Ray M Steven M Graham M F = Ian M Pippa F Brian M Anna F Nikki F 10

11 Családfa táblázatban ábrázolva Name Gender Parent1 parent2 Male?? Peggy?? Steven Male Peggy Graham Male Peggy Peggy Ian Male Grace Ray Pippa Grace Ray Brian Male Grace Ray Anna Ian Nikki Ian 11

12 A sister-of reláció First person Second person Sister of? First person Second person Sister of? Peggy No Steven Steven No Graham Ian Pippa Steven No Brian Pippa Steven Graham No Anna Nikki Steven Nikki Anna All the rest No Ian Pippa Anna Nikki Closed-world assumption Nikki Anna yes 12

13 Teljes ábrázolás egyetlen táblában First person Second person Sister of? Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 Steven Male Peggy Peggy Graham Male Peggy Peggy Ian Male Grace Ray Pippa Grace Ray Brian Male Grace Ray Pippa Grace Ray Anna Ian Nikki Ian Nikki Ian Anna Ian All the rest No If second person s gender = female and first person s parent = second person s parent then sister-of = yes 13

14 Sík állomány létrehozása A sík állománnyá tétel folyamata, a denormalizáció Pár relációt összekötünk, hogy egy táblává váljon Lehetséges akármilyen véges relációhalmazon Problematikus: kapcsolatok előre nem meghatározott számú objektummal Példa: nuclear-family fogalom Denormalizáció hamis szabályszerűségeket generálhatnak, amelyik az adatbázis struktúráját tükrözik Példa: beszállító előrejelzi a beszállító címét 14

15 Az ancestor-of reláció First person Second person Ancestor of? Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 Male?? Steven Male Peggy Male?? Peggy Male?? Anna Ian Male?? Nikki Ian Peggy Nikki Ian Grace?? Ian Male Grace Ray Grace?? Nikki Ian Other positive examples here All the rest No 15

16 Rekurzió Végtelen reláció rekurziót igényel If person1 is a parent of person2 then person1 is an ancestor of person2 If person1 is a parent of person2 and person2 is an ancestor of person3 then person1 is an ancestor of person3 Alkalmas technikákat úgy ismerjük, mint induktív logikai programozás (pl. Quinlan nyelve: FOIL (First Order Inductive Learner)) Problémák: (a) zaj és (b) számítási komplexitás 16

17 Multi-instancia fogalmak Minden egyedi példa tartalmaz egy instanciahalmazt Minden instanciát ugyanaz az attribútumhalmaz írja le Egy, vagy több instancia egy példán belül felelős lehet az osztályozáshoz A tanulás célja még mindig az, hogy fogalmi leírást eredményezzen Lényeges valós alkalmazások pl. droggal kapcsolatos aktivitások előjelzése 17

18 Mi egy attribútum? Minden instanciát egy előre megadott tulajdonsághalmazzal írunk le, az attribútumok De: az attribútumok száma változhat a gyakorlatban Lehetséges megoldás: irreleváns érték zászló Kapcsolódó probléma: egy attribútum létezése függhet egy másik értékétől Lehetséges attribútum tipusok ( mérési szintek ): Névleges, sorrendi, intervallum és arány 18

19 Névleges mennyiségek Az értékek elkülönülő szimbólumok Az értékek maguk vagy címkék vagy neveket jelentenek Névleges a Latin name szóból ered (nominal) Példa: outlook attribútum az időjárás adatokból Értékek: sunny, overcast, and rainy (napos, felhős,esős) Semmilyen kapcsolat nem használható a névleges mennyiségek között (nincs sorbarendezési vagy távolsági mérték) Csak egyenlőségi ellenőrzést lehet elvégezni 19

20 Sorrendi mennyiségek Az értékeknek sorrendje van De: nincs távolság definiálva Példa: temperature attribútum az időjárási adatokban Értékek: hot > mild > cool Megjegyzés: összeadásnak és kivonásnak ninics értelme Példa szabály: temperature < hot play = yes Megkülönböztetés a névleges és a sorrendi között nem mindig tiszta (pl. outlook attribútum) 20

21 Intervallum mennyiségek Intervallum mennyiségek nem csak sorrendben vannak, hanem mérve fix és egyenlő egységekben 1 Példa: temperature attribútum Fahrenheit fokban kifejezve 2 Példa: year attribútum Két érték közötti különbségnek van értelme Összeg vagy szorzásnak nincs értelme Zéró pont nincs definiálva! 21

22 Arány mennyiségek Arány-mennyiségek azok, amelyekre a kezdőpontok definiálva vannak Példa: distance attributum Egy objektum saját magától zéró távolságra van Arány-mennyiségeket valós számként kezeljük Minden matematikai művelet megengedett De: van egy természeténél fogva meghatározott zéró pont? A válasz függ a tudományos tudástól (pl. Fahrenheitben nincs alsó határa a hőmérsékletnek) 22

23 Gyakorlatban használt attribútumok Legtöbb séma két szintet fogad csak el: névleges és sorrendi Névleges attribútumokat még kategória, felsorolás, vagy diszkrétnek is mondjuk De: felsorolás és diszkrét sorbarendezést feltételez Speciális eset: dichotómia ( logikai attribútum) Sorrendi attribútumokat numerikusnak, vagy folytonosnak nevezzük De: folytonos matematikai folytonosságot feltételez 23

24 Metaadat Az adatokról szóló információ, amelyik kódolja a háttértudást Használható a keresési tér beszűkítésére Példák: Mérettel kapcsolatos megfontolások (pl. a kifejezések dimenziós szempontból helyesek kell legyenek) Körkörös elrendezés (pl. fokok a szögmérőn) Részleges rendezés (pl. általánosítási/specializációs összefüggés) 24

25 Előkészíteni a bemenetet Denormalizáció nem az egyetlen opció Probléma: különböző adatforrások (pl. eladási osztály, ügyfélkifizetési osztály, ) Különbségek: adatfelvételi stílus, konvenciók, időperiódusok, adatösszevonás, elsődleges kulcsok, hibák Az adatokat össze kel rakni, integrálni, tisztítani Adattárház : belépési konszisztens pont Külső adatok szükségesek lehetnek ( burkoló adat ) Kritikus: adataggregáció tipusa és szintje 25

26 Az ARFF formátum % % ARFF file for weather data with some numeric features outlook {sunny, overcast, temperature humidity windy {true, play? {yes, sunny, 85, 85, false, no sunny, 80, 90, true, no overcast, 83, 86, false, yes... 26

27 További attribútumtipusok ARFF támogatja a string description string Hasonlóképpen a névleges attribútumok listájához az értékek nincsenek előre megadva Ugyancsak támogatja a date today date Használja ISO-8601 kombinált dátum és idő formátumot yyyy-mm-dd-thh:mm:ss 27

28 Relációs attribútumok Megengedi a multi-instancia probléma reprezentációját ARFF formátumban A relációs attribútum értéke egy különálló instancia bag outlook { sunny, overcast, rainy temperature humidity windy { true, false bag Beágyazott attribútum tömbök megadják a hivatkozott instanciák struktúráját 28

29 Több-instanciájú ARFF % % Multiple instance ARFF file for the weather data bag_id { 1, 2, 3, 4, 5, 6, 7 bag outlook {sunny, overcast, temperature humidity windy {true, play? {yes, 1, sunny, 85, 85, false\nsunny, 80, 90, true, no 2, overcast, 83, 86, false\nrainy, 70, 96, false, yes... 29

30 Gyér adatok Egyes alkalmazásoknál a legtöbb attribútum értéke zéró Pl.: szószámlálás egy szöveg kategóriába sorolási problémában ARFF támogatja a gyér adatokat 0, 26, 0, 0, 0,0, 63, 0, 0, 0, class A 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, class B {1 26, 6 63, 10 class A } {3 42, 10 class B } Ez ugyanúgy működik a névleges attribútumoknál (ahol az első értéknek megfelel a zero ) 30

31 Attribútum tipúsok ARFF attribútumok tipusok értelmezése függ a tanulási sémától Numerikus attribútumok értelmezése, mint Használjuk a sorrendi skála if less-than és greater-than hasonlításait arány skála ha távolsági számításokat végzünk (normalizáció/standardizáció lehetséges követelmény) Instancia-alapú sémák távolságot definiálnak a névleges értékek között (0, ha az értékek egyenlőek, 1 másképp) Egész értékek egy adott állományban: névleges, sorrendi vagy arány skála? 31

32 Névleges vs. számszerű age (életkor) attribútum névleges If age = young and astigmatic = no and tear production rate = normal then recommendation = soft If age = pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft age attribútum sorbarendezhető (pl. young < pre-presbyopic < presbyopic ) If age pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft 32

33 Hiányzó értékek Gyakran jelezve tartományon kívüli bemenetekkel Tipusok: ismeretlen, feljegyzetlen, irreleváns Okok: Rosszul működő berendezések Gyakorlati tervezésbeli változások Különböző adat összeolvasztott adat halmazok Mérés lehetetlensége Hiányzó értékeknek lehet saját értelme (pl. hiányzó tesztek orvosi vizsgálatokban) A legtöbb séma feltételezi nem ez a helyzet: hiányzó adatokat kódolni kell, mint egy különleges érték 33

34 Pontatlan értékek Érv: az adatokat nem azért gyújtötték, hogy bányásszanak Eredmény: Tévedések és kihagyások, amelyek nem befolyásolják az adatbányászat eredeti céjait (pl. az ügyfél kora) Elütési hibák a nominális attribútumoknál az értékek konzisztenciáját le kell ellenőrizni Elütési és mérési hibák a numerikus attribútumoknál szélsőséges értékeket azonosítani kell A hibák lehetnek szándékosak(pl. rossz postakód) Más problémák: duplikátumok, banális adatok 34

35 Megtapasztalni az adatokat Egyszerű vizualizációs eszközök hasznosak Névleges attribútumok: hisztogramok (Az eloszlás összeférhető a háttértudással?) Számszerű attribútumok: gráfok (További egyértelmű szélsőségek?) 2-D és 3-D rajzok mutatják a függőségeket Szükséges területi szakértő bevonása Túl sok adat van, amit meg kell vizsgálni? Vegyél egy mintát! 35

Adatbányászat Weka-val. (Data Mining with Weka Ian H. Witten)

Adatbányászat Weka-val. (Data Mining with Weka Ian H. Witten) Adatbányászat Weka-val. (Data Mining with Weka Ian H. Witten) Fejezet 1. - Lecke 1 Bevezető Egy gyakorlati kurzus, hogyan használjuk a Weka-t adatbányászatra. Megmagyarázza az alapelveit egyes népszerű

Részletesebben

Bevezetés az SPSS program használatába

Bevezetés az SPSS program használatába Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax

Részletesebben

Adatmodellezés. 1. Fogalmi modell

Adatmodellezés. 1. Fogalmi modell Adatmodellezés MODELL: a bonyolult (és időben változó) valóság leegyszerűsített mása, egy adott vizsgálat céljából. A modellben többnyire a vizsgálat szempontjából releváns jellemzőket (tulajdonságokat)

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

ADATBÁZIS-KEZELÉS. Relációs modell

ADATBÁZIS-KEZELÉS. Relációs modell ADATBÁZIS-KEZELÉS Relációs modell Relációséma neve attribútumok ORSZÁGOK Azon Ország Terület Lakosság Főváros Földrész 131 Magyarország 93036 10041000 Budapest Európa 3 Algéria 2381740 33769669 Algír Afrika

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

Adatbányászat és Perszonalizáció architektúra

Adatbányászat és Perszonalizáció architektúra Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a

Részletesebben

Magas szintű adatmodellek Egyed/kapcsolat modell I.

Magas szintű adatmodellek Egyed/kapcsolat modell I. Magas szintű adatmodellek Egyed/kapcsolat modell I. Ullman-Widom: Adatbázisrendszerek. Alapvetés. 4.fejezet Magas szintű adatmodellek (4.1-4.3.fej.) (köv.héten folyt.köv. 4.4-4.6.fej.) Az adatbázis modellezés

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május)

Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Teszt kérdések 1. Melyik állítás igaz a folytonos integrációval (CI) kapcsolatban? a. Folytonos

Részletesebben

Bevezetés: az SQL-be

Bevezetés: az SQL-be Bevezetés: az SQL-be Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.3. Relációsémák definiálása SQL-ben, adattípusok, kulcsok megadása 02B_BevSQLsemak

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

TÁJÉKOZTATÓ. Matematikai kompetenciák fejlesztése tréning Nyilvántartásba vételi szám: E-000819/2014/D004

TÁJÉKOZTATÓ. Matematikai kompetenciák fejlesztése tréning Nyilvántartásba vételi szám: E-000819/2014/D004 TÁJÉKOZTATÓ Matematikai kompetenciák fejlesztése tréning /D004 A képzés során megszerezhető kompetenciák A képzésben résztvevő Ismeri : ismeri a mennyiség fogalmát. ismeri a számok nagyságrendjét, ismeri

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Java-ról Kotlinra. Ekler Péter AutSoft BME AUT. AutSoft

Java-ról Kotlinra. Ekler Péter AutSoft BME AUT. AutSoft Java-ról Kotlinra Ekler Péter peter.ekler@aut.bme.hu BME AUT Tartalom Java és Kotlin kapcsolata Hogyan próbálhatjuk ki? Kotlin kultúra kialakítása cégen belül Milyen a Kotlin a Java-hoz képest? Történet

Részletesebben

ADATBÁZISOK. 4. gyakorlat: Redundanciák, funkcionális függőségek

ADATBÁZISOK. 4. gyakorlat: Redundanciák, funkcionális függőségek ADATBÁZISOK 4. gyakorlat: Redundanciák, funkcionális függőségek Példa: szállodai adattábla vendég kód vendég név 200005 Pécsi Ádám 333230 Tóth Júlia 200005 Pécsi Ádám 123777 Szép László lakcím Budapest,

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Csima Judit október 24.

Csima Judit október 24. Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák

Részletesebben

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási

Részletesebben

BASH SCRIPT SHELL JEGYZETEK

BASH SCRIPT SHELL JEGYZETEK BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

1. gyakorlat. Mesterséges Intelligencia 2.

1. gyakorlat. Mesterséges Intelligencia 2. 1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3.

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3. 7. előadás,,,, Adatbázisrendszerek előadás 2008. november 3. és Debreceni Egyetem Informatikai Kar 7.1 relációs adatbázisokhoz Mit jelent a relációs adatbázis-tervezés? Az csoportosítását, hogy jó relációsémákat

Részletesebben

3. modul - Szövegszerkesztés

3. modul - Szövegszerkesztés 3. modul - Szövegszerkesztés Érvényes: 2009. február 1-jétől Az alábbiakban ismertetjük a 3. modul (Szövegszerkesztés) syllabusát, amely a gyakorlati vizsga alapját képezi. A modul célja Ezen a vizsgán

Részletesebben

Szakterületi modell A fogalmak megjelenítése. 9. fejezet Applying UML and Patterns Craig Larman

Szakterületi modell A fogalmak megjelenítése. 9. fejezet Applying UML and Patterns Craig Larman Szakterületi modell A fogalmak megjelenítése 9. fejezet Applying UML and Patterns Craig Larman 1 Néhány megjegyzés a diagramokhoz Ez a tárgy a rendszer elemzésről és modellezésről szól. Noha például egy

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence) Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló

Részletesebben

modell, amiben csak bináris sok-egy kapcsolatok (link, memberowner,

modell, amiben csak bináris sok-egy kapcsolatok (link, memberowner, Informatika szigorlat 10-es tétel: Adatmodellezés Adatmodellezésnek azt az absztrakciós folyamatot nevezzük, amelyben a valós (mikró)világ tényeit, valamint a tények közötti kapcsolatokat tükröző adatokat,

Részletesebben

A relációs adatmodell

A relációs adatmodell A relációs adatmodell E. Codd vezette be: 1970 A Relational Model of Data for Large Shared Data Banks. Communications of ACM, 13(6). 377-387. 1982 Relational Databases: A Practical Foundation for Productivity.

Részletesebben

Adatbázisok elmélete 12. előadás

Adatbázisok elmélete 12. előadás Adatbázisok elmélete 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE

Részletesebben

Programozás alapjai. 5. előadás

Programozás alapjai. 5. előadás 5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk

Részletesebben

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás RELÁCIÓS ADATBÁZISSÉMÁK Egyed-kapcsolat modellről átírás A RELÁCIÓS ADATMODELL Az adatokat egyszerűen reprezentálja: kétdimenziós adattáblákban Minden sor azonos számú oszlopból áll; egy sor egy rekord,

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Szoftver-mérés. Szoftver metrikák. Szoftver mérés

Szoftver-mérés. Szoftver metrikák. Szoftver mérés Szoftver-mérés Szoftver metrikák Szoftver mérés Szoftver jellemz! megadása numerikus értékkel Technikák, termékek, folyamatok objektív összehasonlítása Mér! szoftverek, programok CASE eszközök Kevés szabványos

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek 2. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

Adatbázis, adatbázis-kezelő

Adatbázis, adatbázis-kezelő Adatbázisok I. rész Adatbázis, adatbázis-kezelő Adatbázis: Nagy adathalmaz Közvetlenül elérhető háttértárolón (pl. merevlemez) Jól szervezett Osztott Adatbázis-kezelő szoftver hozzáadás, lekérdezés, módosítás,

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Adatbázismodellek. 1. ábra Hierarchikus modell

Adatbázismodellek. 1. ábra Hierarchikus modell Eddig az adatbázisokkal általános szempontból foglalkoztunk: mire valók, milyen elemekből épülnek fel. Ennek során tisztáztuk, hogy létezik az adatbázis fogalmi modellje (adatbázisterv), amely az egyedek,

Részletesebben

Fogalmak: Adatbázis Tábla Adatbázis sorai: Adatbázis oszlopai azonosító mező, egyedi kulcs Lekérdezések Jelentés Adattípusok: Szöveg Feljegyzés Szám

Fogalmak: Adatbázis Tábla Adatbázis sorai: Adatbázis oszlopai azonosító mező, egyedi kulcs Lekérdezések Jelentés Adattípusok: Szöveg Feljegyzés Szám Fogalmak: Adatbázis: logikailag összefüggő információ vagy adatgyőjtemény. Tábla: logikailag összetartozó adatok sorokból és oszlopokból álló elrendezése. Adatbázis sorai: (adat)rekord Adatbázis oszlopai:

Részletesebben

Lekérdezések az SQL-ben 1.rész

Lekérdezések az SQL-ben 1.rész Lekérdezések az SQL-ben 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 6.1. Egyszerű (egy-relációs) lekérdezések az SQL-ben - Select-From-Where utasítás

Részletesebben

SQL ALAPOK. Bevezetés A MYSQL szintaxisa Táblák, adatok kezelésének alapjai

SQL ALAPOK. Bevezetés A MYSQL szintaxisa Táblák, adatok kezelésének alapjai SQL ALAPOK Bevezetés A MYSQL szintaxisa Táblák, adatok kezelésének alapjai BEVEZETÉS SQL: Structured Query Language Strukturált Lekérdező Nyelv Szabvány határozza meg, azonban számos nyelvjárása létezik

Részletesebben

Operációs Rendszerek II. labor. 2. alkalom

Operációs Rendszerek II. labor. 2. alkalom Operációs Rendszerek II. labor 2. alkalom Mai témák (e)grep Shell programozás (részletesebben, példákon keresztül) grep Alapvető működés: mintákat keres a bemeneti csatorna (STDIN vagy fájl) soraiban,

Részletesebben

TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek

TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok

Részletesebben

az Excel for Windows programban

az Excel for Windows programban az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási

Részletesebben

Adatbázis rendszerek. dr. Siki Zoltán

Adatbázis rendszerek. dr. Siki Zoltán Adatbázis rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati személyzeti

Részletesebben

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF ADATBÁZIS-KEZELÉS Relációalgebra, 5NF ABSZTRAKT LEKÉRDEZŐ NYELVEK relációalgebra relációkalkulus rekord alapú tartomány alapú Relációalgebra a matematikai halmazelméleten alapuló lekérdező nyelv a lekérdezés

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális

Részletesebben

Karakterkészlet. A kis- és nagybetűk nem különböznek, a sztringliterálok belsejét leszámítva!

Karakterkészlet. A kis- és nagybetűk nem különböznek, a sztringliterálok belsejét leszámítva! A PL/SQL alapelemei Karakterkészlet Az angol ABC kis- és nagybetűi: a-z, A-Z Számjegyek: 0-9 Egyéb karakterek: ( ) + - * / < > =! ~ ^ ; :. ' @ %, " # $ & _ { }? [ ] Szóköz, tabulátor, kocsivissza A kis-

Részletesebben

Adatmanipuláció, transzformáció, szelekció SPSS-ben

Adatmanipuláció, transzformáció, szelekció SPSS-ben Adatmanipuláció, transzformáció, szelekció SPSS-ben Statisztikai szoftver alkalmazás Géczi-Papp Renáta Számított változó A már meglévő adatokból (változókból) további adatokat származtathatunk. munkavállalók.sav

Részletesebben

Az informatika kulcsfogalmai

Az informatika kulcsfogalmai Az informatika kulcsfogalmai Kulcsfogalmak Melyek azok a fogalmak, amelyek nagyon sok más fogalommal kapcsolatba hozhatók? Melyek azok a fogalmak, amelyek más-más környezetben újra és újra megjelennek?

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

Informatikai alapismeretek Földtudományi BSC számára

Informatikai alapismeretek Földtudományi BSC számára Informatikai alapismeretek Földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Titkosítás,hitelesítés Szimmetrikus DES 56 bites kulcs (kb. 1000 év) felcserél, helyettesít

Részletesebben

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson

Részletesebben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben 1.0 Bevezetés. A relációs adatmodell. 1.1 Relációs algebra 1.2 Műveletek a relációs

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Adatbázisok-1 előadás Előadó: dr. Hajas Csilla

Adatbázisok-1 előadás Előadó: dr. Hajas Csilla Adatbázisok-1 előadás Előadó: dr. Hajas Csilla Áttekintés az I.zh-ig Áttekintés az 1ZH-ig // Adatbázisok-1 elıadás // Ullman (Stanford) tananyaga alapján // Hajas Csilla (ELTE IK) 1 Hol tartunk? Mit tanultunk

Részletesebben

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF. Adatbázisrendszerek előadás november 7.

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF. Adatbázisrendszerek előadás november 7. 7. előadás,,,,, 4NF, 5NF Adatbázisrendszerek előadás 2016. november 7., és Debreceni Egyetem Informatikai Kar Az előadások Elmasry & Navathe: Database Systems alapján készültek. Nem hivatalos tervezési

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

10-es Kurzus. OMT modellek és diagramok OMT metodológia. OMT (Object Modelling Technique)

10-es Kurzus. OMT modellek és diagramok OMT metodológia. OMT (Object Modelling Technique) 10-es Kurzus OMT modellek és diagramok OMT metodológia OMT (Object Modelling Technique) 1 3 Modell és 6 Diagram Statikus modell : OMT Modellek és diagramok: Statikus leírása az összes objektumnak (Név,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Cellák. Sorok számozás Oszlop betű Cellák jelölése C5

Cellák. Sorok számozás Oszlop betű Cellák jelölése C5 Táblázatkezelés Cellák Sorok számozás Oszlop betű Cellák jelölése C5 Típusok Szám Különleges számok: Tudományos: 1E2, 5E-3 Szöveg Dátum Logikai Tört: kettedes, negyedes, stb. A cella értéke nem változik

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

A benchmarking fogalma

A benchmarking fogalma Benchmarking Dr. Koczor Zoltán 1 A fogalma Összevetésként használt szervezet Felhasznált erőforrások ESZKÖZÖK CÉLOK Belső folyamatszabályozás Dr. Koczor Zoltán 2 1 A célja Értékelnünk kell a jelenlegi

Részletesebben

Adatbázisok I. Jánosi-Rancz Katalin Tünde 327A 1-1

Adatbázisok I. Jánosi-Rancz Katalin Tünde 327A 1-1 Adatbázisok I. 5 Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1 Normalizálás logikai adatbázis megtervezésére szolgáló módszer táblázat szétbontó relációs műveletek sorozata, eredményeképpen

Részletesebben

Lekérdezések az SQL-ben 1.rész

Lekérdezések az SQL-ben 1.rész Lekérdezések az SQL-ben 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 6.1. Egyszerű (egy-relációs) lekérdezések az SQL-ben - Select-From-Where utasítás

Részletesebben

A digitális analóg és az analóg digitális átalakító áramkör

A digitális analóg és az analóg digitális átalakító áramkör A digitális analóg és az analóg digitális átalakító áramkör I. rész Bevezetésként tisztázzuk a címben szereplő két fogalmat. A számítástechnikai kislexikon a következőképpen fogalmaz: digitális jel: olyan

Részletesebben

Circuit breaker control function funkcióhoz block description. Beállítási útmutató az árambemeneti

Circuit breaker control function funkcióhoz block description. Beállítási útmutató az árambemeneti Circuit breaker control function funkcióhoz block description Beállítási útmutató az árambemeneti Document Budapest, ID: PRELIMINARY 2015. január VERSION Felhasználói kézikönyv, változat-információ Változat

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

Adatbányászati technikák (VISZM185) 2015 tavasz

Adatbányászati technikák (VISZM185) 2015 tavasz Adatbányászati technikák (VISZM185) 2015 tavasz Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Adatbányászati technikák (VISZM185) 2015 tavasz 1 / 27

Részletesebben

Apple Swift kurzus 3. gyakorlat

Apple Swift kurzus 3. gyakorlat Készítette: Jánki Zoltán Richárd Dátum: 2016.09.20. Apple Swift kurzus 3. gyakorlat Kollekciók: Tömb: - let array = [] - üres konstans tömb - var array = [] - üres változó tömb - var array = [String]()

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50 Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

Adatbáziskezelés alapjai. jegyzet

Adatbáziskezelés alapjai. jegyzet Juhász Adrienn Adatbáziskezelés alapja 1 Adatbáziskezelés alapjai jegyzet Készítette: Juhász Adrienn Juhász Adrienn Adatbáziskezelés alapja 2 Fogalmak: Adatbázis: logikailag összefüggı információ vagy

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10.

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. Matematika J a v í t ó k u l c s 8. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. IEA, 2011 1/1. feladat 1/2. feladat : B : B Item: M032757 Item: M032721

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Adatbázis tervezés normál formák segítségével

Adatbázis tervezés normál formák segítségével Adatbázis tervezés normál formák segítségével A normál formák - egzakt módszer a redundancia mentes adatbázis létrehozására A normál formák egymásra épülnek Funkcionális függőségek és a kulcsok ismeretére

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 2. Adatbáziskezelés eszközei Adatbáziskezelés feladata Adatmodell típusai Relációs adatmodell

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben