A globális helymeghatározó rendszer A műholdas helymeghatározás kialakulása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A globális helymeghatározó rendszer A műholdas helymeghatározás kialakulása"

Átírás

1 A globális helymeghatározó rendszer A műholdas helymeghatározás kialakulása A földfelszíni pontok helyének azonosítására kezdetben az emberek jól azonosítható tereptárgyakat használtak pl. nagyméretű fa, sziklák, folyótorkolatok stb. Később az égitestek alapján történő helymeghatározás vált általánossá. Ennek nagy előnye az általános használhatóság volt, nemcsak a szárazföldeken, hanem a tengereken is jó lehetett tájékozódni a jellegzetes égitestek alapján műszerek segítségével. Hátrányaként a viszonylagos pontatlanságot és a nappali használhatatlanságot emelhetjük ki. A csillagászati alapú tájékozódást jól kiegészítették a nappal is működő iránytűk és tájolók. A földfelszíni pontok helyének pontos azonosításában a két rendszer közötti eltérés (mágneses deklináció) nem okozott nagy problémát. A minél pontossab helymeghatározás igénye a technikai fejlődéssel és az emberi létesítmények egyre nagyobb számával fokozódott. A korábbi eljárások pontatlanságának kiküszöbölésére egy új eszköz jelent meg a 20. század közepén, a műhold. A szovjetek 1957-ben lőtték fel az első műholdat, a Szputnyik 1-et. Mozgásának nyomonkövetése során megfigyelték, hogy a műhold által kibocsájtott rádiójel hossza alapján a Doppler-effektus figyelembe vételével nagy pontossággal meghatározható a műhold helyzete. Ezzel párhuzamosan a múlt század második felében egyre tökéletesedett az idő mérése. Az atomórák korábban nem látott pontossággal mutatták az időt. A két eszköz együttes alkalmazása a helymeghatározásban már az 1950-es években elkezdődött. Az Amerikai Egyesült Államok haditengerészete 1958-ban kezdte kiépíteni az újabb és pontosabb navigációs rendszerét, amelyben már a műholdak is szerepet kaptak ben a Transit rendszerben már 4 műhold keringett 1000 km magasságban a Föld körül. A velük való kapcsolat alapján már a vizek mélyén levő tengeralattjárók is meg tudták határozni a helyzetüket. Így soha nem látott pontossággal már lehetett azonosítani az egyes földfelszíni és vízalatti 5

2 objektumokat 1. A Transit rendszerrel párhuzamosan az 1970-es években kifejezetten navigációs céllal működtetett műholdakat állítottak üzembe (GPS NAVSTAR). A rendszer adta az alapját a globális helymeghatározó rendszernek (Global Positioning System - GPS). A Transit rendszer a GPS kiépítése után még egy ideig használatban maradt, de az évezred végén már itt is megtörtént az átállás. Az USA által kifejlesztett GPS kezdetben katonai céllal jött létre a Reagan-féle csillagháborús terv alapján. Segítségével kívánták navigálni az űrbe telepített hadászati eszközöket. A hidegháború megszűntével a fegyverek telepítése nem lett jelentős, ugyanakkor a tájékozódást segítő műholdak egyre fontosabb szerepet kaptak. A GPS katonai felhasználásra kiépített változata (Precise Positionning System - PPS) mellett 1995 óta civil felhasználásra is engedélyezett a polgári célú Standard Positioning System (SPS). A hosszú távú szabad, nem katonai célú felhasználást az USA Védelmi Minisztériuma (DOD), a Nemzetközi Polgári Repülésügyi Szervezet (ICAO) és a Nemzetközi Hajózási Szervezet (IMO) által kötött szerződés szavatolja. Kezdetben a polgári mérések eredményeit az USA Védelmi Minisztériuma biztonsági okokból rontotta (ez volt a korlátozott hozzáférés - SA), de május 2-től csökkentették a civil mérések zavarását. Ezzel a valós idejű műholdas helyzetmeghatározás polgári alkalmazása méteres pontosságúvá vált. A ládászáshoz ez a pontosság teljesen elegendő, néha azonban a helyszínen ki kell egészíteni a ládász által végzett kereséssel. A 20. század végén további két világméretű helymeghatározó rendszer kezdett kiépülni: Oroszország a GLONASS-t 2 fejleszti, az Európai Unió a GALILEO-t 3 szervezi, Kína a Beidou 1-2-t (másnéven: Compass-t) 4 építi ki. Napjainkban e három újabb műholdas helymeghatározó szisztéma még nem működőképes, de néhány éven belül remélhetőleg méltó alternatívái lesznek a ma használatos GPS- SPS-nek. A Föld egészére kiterjedő helymeghatározó rendszereket egységesen GNNS-nek (Global Navigation Satellite Systems) nevezik. A különálló egységek közötti együttműködés és átjárhatóság miatt fontos az alapadatok (koordináták, magasság, földrajzi koordinátarendszerektől való eltérés stb.) rögzítése. Ennek érdekében hazánkban is ki

3 építettek egy mérőállomás hálózatot és az adatok feldolgozását segítő központot (FÖMI). Adatszolgáltatásaik segítségével a geoládászat igényeit messze meghaladó mértékben, nagyon pontosan (akár centiméteres pontossággal is) meghatározhatók a földfelszíni pontok koordinátái 5, 6, 7. A GPS rendszer működésének lényege Jelenleg (2010 októberében) még csak az Amerikai Egyesült Államok védelmi minisztériuma (Department of Defense, DoD) által üzemeltetett GPS rendszer érhető el, ezért ennek a felépítését és működését vázoljuk. A GPS NAVSTAR műholdjai km-es magasságban a Föld körül keringve naponta kétszer haladnak el ugyanazon felszíni pontok fölött. Úgy állították őket pályára, hogy minden sík területen levő földfelszíni pontról egyidőben legalább 4-12 darabot lehessen látni. A helyzetmeghatározáshoz 4 műhold jeleinek vétele már elegendő, de a jobb pontosság érdekében célszerű, ha többet is érzékelnek a műholdvevő készülékek. A vevőkészülék helyzetének (földfelszíni elhelyezkedés, tengerszint feletti magasság) meghatározásához elvileg már 3 műhold is elegendő, de ez elég pontatlan eredményt ad. A megfelelő pontosság eléréséhez a műholdak és a vevőkészülék óráját folyamatosan szinkronizálni szükséges. Ezt a 4. műhold jeleivel végzik el. Általánosságban azonban elmondható: minél több műhold jelét tudjuk fogni, annál pontosabb a koordináták meghatározása. Ennek szellemében a GPS eszközök használatakor arra kell törekednünk, hogy minél több műhold jelét észlelje a vevőnk. A készülékek általában kijelzik az általuk látott és az észlelt műholdak helyzetét és jelük erősségét. A 24 műhold hat csoportra osztva működtetik (4-4 műhold/csoport). A csoportok keringési síkja egymással 60 o -ot zár be. A GPS műholdak két fekvencián sugároznak (L 1 és L 2 ) jeleket, amelyek a rádiónavigációt és a pontos időt továbbítják. Minden műholdon kétkét rubídium vagy cézium atomóra van, ezek az egyezményes koordinált világidővel (UTC) vannak összehangolva. A műholdak atomóráit a földi állomások jeleivel szinkronizálják, illetve korrigálják, ha az szükséges. Így a műholdak által szabályozott jelek a nagyon pontos polgári időt közvetítik az észlelő készülékek számára

4 A műholdak folyamatosan sugározzák saját helyzetük adatait, az őket érő külső hatásokra (pl. a Föld gravitációs terének nem teljesen gömbszimmetrikus volta és a napszél miatt) azonban pályaelemeik (helyzet, magasság, sebesség) módosulnak. A földi radarállomások folyamatosan mérik az eltéréseket és szükség esetén korrekciós jeleket küldenek a műholdakra. A műholdas helymeghatározás az időméréssel összefüggő távolságmérésen alapul. A rádióhullámok terjedési sebességének, valamint a rádióhullámok kibocsátásának és beérkezésének ideje alapján meg lehet határozni a földfelszíni pont pozícióját. A másik kettő műholddal a háromszöglelés alapján tovább lehet pontosítani a mért értékeket. A 4. műhold órájának segítségével a távolságok pontosíthatók, így meg lehet határozni a tengerszint feletti magasságot is. A vevőkészüékek általában kijelzik az általuk észlelt műholdak számát, látható, hogy általában négynél több égitest alapján már nagy pontosságú mérésre is alkalmasak a kézi vevőkészülékek is. A műholdas helymeghatározás előnyei: bármely csillagállásnál (napszakban) működőképes, független a földfelszín feletti magasságtól, mozgó vevők esetén is használható. Ugyanakkor néhány hátrányos tényezőit is figyelembe kell venni: a vevő-műhold rendszer összehangolódása időt (néha több percet is) vesz igénybe, akkor alkalmazható, ha a vevő látja a műholdakat, a tereptárgyakról, épületekről visszaverődő jelek zavarhatják a mérést, a nagyon erős napkitörések módosíthatják, de akár meg is szüntethetik a jelek vételét. 8 A földrajzi koordináta rendszer A Föld felszínén lévő pontok helyzetét többféle módszerrel lehet megadni. A legelterjedtebb a földrajzi koodináta rendszer. Az egyes földfelszíni pontokat helyzetét három adattal határozhatjuk meg, mindhárom egy viszonyítási alapsíktól való eltérést mutatja. Földrajzi szélesség (φ). Értékét úgy kapjuk meg, hogy a pontot összekötjük a Föld középpontjával, majd az így kapott egyenes és az Egyenlítő síkja által meghatározott szög lesz a szélességi érték. Egyezményesen, az Egyenlítő 0 o, a sarkok 90 o

5 értékűek. Az északi félteke szélességét pozitív számmal északi szélességnek (N), míg a déli féltekéét negatívval déli szélességnek (S) jelöljük. Az azonos szélességű pontokat összekötő vonalak az Egyenlítővel párhuzamos szélességi körök. Hosszuk az Egyenlítőtől (0 o )távolodva csökken, a sarkokat (Északi- és Déli-sark) egy-egy pontként értelmezzük (390 o és -90 o ). Földrajzi hosszúság (λ). Értelmezéséhez két kör síkját kell felvennünk. Először kijelöljük a nemzetközi egyezményekben rögzített kezdő délkört vagy ún. nullmeridiánt. Ez olyan gömbi főkör lesz, amely átmegy a London külvárosában, Greenwichben levő csillagvizsgálón és érinti a két sarkpontot. Majd az adott ponton keresztül egy olyan kört állítunk, amely középpontja megegyezik a Föld középpontjával és egyaránt átmegy az Északi- és a Déli-sarkon. Ezt nevezzük a hely hoszszúsági körének. A hosszúsági körök kerülete egyforma hoszszú, értékük 0 o (nullmeridián) és 180 o (dátumválasztó) közötti. A kezdő délkörtől keletre levő hosszúsági értékeket pozitívnak tekintjük, illetve keleti hosszúságnak nevezzük, míg a 0 o hosszúsági körtől nyugatra esőket negatívan jelöljük és nyugati hosszúságnak hívjuk. A földrajzi hosszúság értékét az a szög határozza meg, amelyet a nullmeridián síkja és az adott földrajzi helyen keresztülmenő hosszúsági kör síkja bezár egymással. Magasság. A földfelszíni pontok magasságértékeinek meghatározására kijelölnek egy viszonyítási pontot vagy alapsíkot, mint nullértéket. Ez lehet a Föld középpontja, vagy a geofizikai mérések által meghatározott elméleti felszín (geoid) szintje az adott pontban, illetve nemzetközi egyezményekben rögzített tenger egy meghatározott pontjának középvízszintje. A mindennapi életben ez utóbbi az elterjedtebb. A tengerszint feletti magasság viszonyítási alapja a történelem folyamán gyakran módosult, 1960-ig hazánkban a magasságot a trieszti móló középvízszintjéhez, majd ezt követően a balti-tengeri kronstadti kikötőhöz viszonyították. Az Európai Unióhoz csatlakozást követően az amszterdami vízmagasságmérő nullpontjához viszonyítanak (EULN-95). A három viszonyítási alap szintje kismértékben eltér egymástól, ezért lehet látni a térképeken eltérő magassági értékeket ugyanazon tereptárgyra vonatkozóan a különböző korok térképein. 9

6 1. ábra. A földrajzi szélessség és hosszúság

7 Globális vonatkoztatási rendszerek A földrajzi koordináta rendszer mellett a műholdak alkalmazásával szükségessé vált más, a földfelszínt pontosabban leképező koordináta rendszerek használata. A globális vonatkoztatási rendszerek egy-egy, a Föld alakját követő ellipszoid transzformálásával kaphatók meg. Létrehozásuk egy dátumhoz kötődik, ezért szerepel a megnevezésükben az az év, amelyben létrehozták őket. Igen sok ilyen dátum létezik, attól függően, hogy a Föld mely területét szeretnénk közelíteni vele. Vannak olyan kitüntetett ellipszoidok, melyek alkalmasak arra, hogy könnyen lehessen velük a Föld egy részének alakját jól közelíteni. A ma használt és szabványosításhoz legközelebb álló ilyen ellipszoid a WGS84 (World Geodetic System), amelyben a 84-es szám azt az évet jelöli, amióta alkalmazzák 9. Ez az alapja a GPS-nek, mivel a Föld egészére elfogadható adatokat generál, nemcsak kis területen közelíti jól a földfelszínt. A rendszer középpontja a Föld tömegközéppontjában van (geocentrikus), pontjait az Egyenlítőtől mért szélességek és a Geenwichtől számított hosszúságok alapján határozzák meg. Hazánkban földrajzi helymeghatározásban többféle rendszert használnak. A polgári térképészetben elsősorban az Egységes Országos Térképrendszerrel (EOTR) összhangban álló Egységes Országos Vetület (EOV) a legelterjedtebb, a műholdas helymeghatározás a nemzetközileg elfogadott WGS84 vonatkoztatási rendszeren alapul. A kettő között a koordináta adatokban eltérés van, ezért az adatok közlésekor meg kell adni, hogy milyen vonatkozási rendszerben alapulnak. Az EOV és a WGS84 koordináták megfelelő segítséggel könnyen átszámíthatók egymásba (pl. hu/szolgaltatasok/eov-wgs84-gps-koordinata-atszamitas.html). A GPS vevőkészülékek a magasságot (h) a WGS84 ellipszoid felületétől számítják, arra merőleges egyenes mentén adják meg (2. ábra). A mindennapi életben azonban a földfelszíni pontok tengerszint feletti (a geoid feletti 10 ) H magasságával számolunk, nem a el- 9 Koordinátarendszerek, dátumok, GPS koordinatarendszerek.pdf Geoidnak nevezzük azt a felszínt, amelyet az egyes földfelszíni pontokban a gravitációs erőre állított merőleges síkok metszenek ki. Ez megegyezik a középtengerszint magasságával, felszínét a kontinensek alatt is meghosszabbítva képzelhetjük el. A geoid jó közelítéssel a nyugalomban lévő tengerfelszínnek tekinthető. 11

8 lipszoidtól mért távolsággal (h). A H meghatározásához ismernünk kell az egyes mérési pontokban az ún. geoidundulációt, amely megegyezik az ellipszoid és a geoid felszíne közötti távolsággal (N) 11. A GPS vevőkészülékek ezt a korrekciót közelítő pontossággal végzik el, tehát megadják a tereppontok tengerszint feletti magasságát is. 2. ábra. A magassági adatok értelmezése 12 A koordináta adatok megjelenítése A földfelszíni helymeghatározásban a tereptárgyak helyének kijelölésére két koordináta adatot használunk: a földrajzi hosszúságot és a szélességet. Egy pont helyzetét meg tudjuk adni, ha ez a két adat rendelkezésre áll, tehát mely szélességi és hosszúsági kör keresztezi egymást az adott helyen. A két számadat önmagában nem elegendő, ki kell egészíteni egy-egy betűjelzéssel: északi (N azaz North) vagy déli (S azaz South) szélességről, keleti (E, azaz East) vagy nyugati (W azaz West) hosszúságról van szó. A koordináták szögeit fokokra ( ), percekre ( ) és másodpercekre ( )

9 osztjuk fel. Az egész fokok nagyon nagy léptékű felosztást jelentenek, ezért a helymeghatározáshoz a fok törtrészeit kell megadni. A koordináták közlésének leggyakoribb formái: Tizedes fok (Decimal Degree - DD). Csak fokokat szerepeltetnek, a nagyságrendileg méteres pontosság eléréséhez 5 tizedesig. Például a kaposvári székesegyház szentélye: 46, , Ha itt negatív előjelet látunk (külföldön), az a déli szélességet illetve a nyugati hosszúságot jelöli. Fok:perc (Degree:Minute - DM). A szentély adatai: N46 21,404 E17 47,351 Fok:Perc:Másodperc (Degree:Minute:Second - DMS). A példahelyet koordinátáit ezzel a módszerel a következőképpen adjuk meg: N ,24 E ,06. Példák az átváltásokra: 1. DM-ről vagy DMS-ről DD-re: tizedes fok = fokok egész száma + percek száma osztva 60-nal + másodpercek száma osztva 3600-zal. 2. DMS-ről DM-re: a fok értéke megegyezik mindkét rendszerben, a percek meghatározásához a DMS perc értékéhez hozzáadjuk a másodpeceket 60-al osztva. Ezt az átváltási módot használjuk a Google térképek DMS és a geocaching.hu DM rendszere közötti átszámolásra. A geoládász gyakorlatban leginkább a fok, perc több tizedes jegyig szerepeltetése használatos. Miért 3 tizedesig van megadva a fokperc? Egy foknyi szélességi kör változás egészre kerekítve 111 km-t jelent. Egy szögperc ennek 1/60 része, vagyis 1,85 km-rel egyenértékű. Egy ezred fokperc tehát 1,85 métert jelent észak-dél irányban. Ezt tovább finomítani ma nincs értelme, hiszen ezt a pontosságot egyelőre csak kivételes esetekben produkálja az SPS rendszer. Kelet-nyugati irányban az 1,85 m csak az Egyenlítőn érvényes, Kaposváron a hosszúsági körök már közelebb helyezkednek el egymáshoz, így egy ezred fokperc itt már csak 1,28 m. 13

Hegyi Ádám István ELTE, április 25.

Hegyi Ádám István ELTE, április 25. Hegyi Ádám István ELTE, 2012. április 25. GPS = Global Positioning System Department of Defense = Amerikai Egyesült Államok Védelmi Minisztériuma 1973 DNSS = Defense Navigation Satellite System vagy Navstar-GPS

Részletesebben

Alapok GPS előzmnyei Navstar How the GPS locate the position Tények Q/A GPS. Varsányi Péter

Alapok GPS előzmnyei Navstar How the GPS locate the position Tények Q/A GPS. Varsányi Péter Alapok előzmnyei Navstar How the locate the position Tények Q/A Óbudai Egyetem Alba Regia Egyetemi Központ (AREK) Székesfehérvár 2011. december 8. Alapok előzmnyei Navstar How the locate the position Tények

Részletesebben

TestLine - nummulites_gnss Minta feladatsor

TestLine - nummulites_gnss Minta feladatsor 1.* Egy műholdas helymeghatározás lehet egyszerre abszolút és kinematikus. 2.* műholdak pillanatnyi helyzetéből és a megmért távolságokból számítható a vevő pozíciója. 3.* 0:55 Nehéz kinai BEIDOU, az amerikai

Részletesebben

Fontos szélességi körök. Északi sarkkör (Ész. 66 30') Ráktérítő (Ész. 23 30') Egyenlítő (0 ) Baktérítő (Dsz. 23 30') Déli sarkkör (Dsz.

Fontos szélességi körök. Északi sarkkör (Ész. 66 30') Ráktérítő (Ész. 23 30') Egyenlítő (0 ) Baktérítő (Dsz. 23 30') Déli sarkkör (Dsz. Tájékozódás Földrajzi szélesség Földrajzi szélesség (φ): A P pont szélességét úgy kapjuk, hogy összekötjük a Föld középpontjával, és az így kapott egyenes és az Egyenlítő síkja által bezárt szög adja

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. GPS, GPRS (mobilkommunikációs) ismeretek Helymeghatározás GPS rendszer alapelve GNSS rendszerek

Részletesebben

Koordinátarendszerek, dátumok, GPS

Koordinátarendszerek, dátumok, GPS Koordinátarendszerek, dátumok, GPS KOORDINÁTARENDSZEREK A SPATIAL-BEN Koordinátarendszer típusok 1. Descartes-féle koordinátarendszer: egy adott pontból (origó) kiinduló, egymásra merőleges egyenesek alkotják,

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

GPS mérési jegyz könyv

GPS mérési jegyz könyv GPS mérési jegyz könyv Mérést végezte: Csutak Balázs, Laczkó Hunor Mérés helye: ITK 320. terem és az egyetem környéke Mérés ideje: 2016.03.16 A mérés célja: Ismerkedés a globális helymeghatározó rendszerrel,

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Alapfokú barlangjáró tanfolyam

Alapfokú barlangjáró tanfolyam Tájékozódási ismeretek, barlangtérképezés Ország János Szegedi Karszt- és Barlangkutató Egyesület Alapfokú barlangjáró tanfolyam Orfű Tájékozódás felszínen: Térképek segítségével GPS koordinátákkal

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János 6. HÍRADÁSTECHNIKA I. Dr.Varga Péter János 2 Műholdas kommunikáció 3 4 Helymeghatározás 5 Alkalmazott műholdpályák, tulajdonságaik 6 Alkalmazott műholdpályák, tulajdonságaik A LEO [Low Earth Orbiter ]

Részletesebben

ADATÁTVITELI RENDSZEREK A GLOBÁLIS LOGISZTIKÁBAN

ADATÁTVITELI RENDSZEREK A GLOBÁLIS LOGISZTIKÁBAN 9. ELŐADÁS ADATÁTVITELI RENDSZEREK A GLOBÁLIS LOGISZTIKÁBAN A logisztikai rendszerek irányításához szükség van az adatok továbbítására a rendszer különböző elemei között. Ezt a feladatot a különböző adatátviteli

Részletesebben

Híradástechnika I. 5.ea

Híradástechnika I. 5.ea } Híradástechnika I. 5.ea Dr.Varga Péter János 2 Műholdas kommunikáció 3 4 Alkalmazott műholdpályák, tulajdonságaik 5 Alkalmazott műholdpályák, tulajdonságaik A LEO [Low Earth Orbiter ] magába foglalja

Részletesebben

GPS szótár. A legfontosabb 25 kifejezés a GPS világából. Készítette: Gere Tamás A GPSArena.hu alapítója

GPS szótár. A legfontosabb 25 kifejezés a GPS világából. Készítette: Gere Tamás A GPSArena.hu alapítója A legfontosabb 25 kifejezés a GPS világából Készítette: Gere Tamás A GPSArena.hu alapítója 2D/3D vétel Megadja, hogy a GPS vétel síkbeli (2D) vagy térbeli (3D). Utóbbi esetben magassági adat is rendelkezésre

Részletesebben

GPS. Lehoczki Róbert Vadvilág Megőrzési Intézet Szent István Egyetem, Gödöllő

GPS. Lehoczki Róbert Vadvilág Megőrzési Intézet Szent István Egyetem, Gödöllő GPS Lehoczki Róbert Vadvilág Megőrzési Intézet Szent István Egyetem, Gödöllő Három technológiát egyesít: GPS (helymeghatározás) Robosztus terepen is használható hardver Egyszerű és hatékony szoftver Mire

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Pont helyének maghatározása a síkban

Pont helyének maghatározása a síkban Tájékozódás Pont helyének maghatározása a síkban Pont helyének meghatározása a térben Földrajzi hosszúság és szélesség értelmezése Földrajzi szélesség Földrajzi szélesség (φ): A P pont szélességét úgy

Részletesebben

GPS és atomóra. Kunsági-Máté Sándor. Fizikus MSc 1. évfolyam

GPS és atomóra. Kunsági-Máté Sándor. Fizikus MSc 1. évfolyam GPS és atomóra Kunsági-Máté Sándor Fizikus MSc 1. évfolyam Informatikai eszközök fizikai alapjai, 2017. március 1. Eötvös Loránd Tudományegyetem, Természettudományi Kar, Budapest Történeti bevezető 1957

Részletesebben

A rendszer legfontosabb jellemzőit az alábbiakban foglalhatjuk össze:

A rendszer legfontosabb jellemzőit az alábbiakban foglalhatjuk össze: GPS nyomkövető készülék, illetve navigációs rendszerek A GPS a Global Positioning System angol rövidítése és globális helymeghatározó rendszert jelent. Egy rendszer, amely 24 műholdból áll, melyet az USA

Részletesebben

2007. március 23. INFO SAVARIA 2007. GNSS alapok. Eötvös Loránd Tudományegyetem, Informatika Kar. Térképtudományi és Geoinformatikai Tanszék

2007. március 23. INFO SAVARIA 2007. GNSS alapok. Eötvös Loránd Tudományegyetem, Informatika Kar. Térképtudományi és Geoinformatikai Tanszék 2007. március 23. INFO SAVARIA 2007 GPS/GNSS GNSS alapok Kovács Béla Térképtudományi és Geoinformatikai Tanszék Eötvös Loránd Tudományegyetem, Informatika Kar Térképtudományi és Geoinformatikai Tanszék

Részletesebben

Rádiófrekvenciás kommunikációs rendszerek

Rádiófrekvenciás kommunikációs rendszerek Rádiófrekvenciás kommunikációs rendszerek Adó Adó Vevő Jellemzően broadcast adás (széles földrajzi terület besugárzása, TV, Rádió műsor adás) Adó Vevő Vevő Adó Különböző kommunikációs formák. Kis- és nagykapacitású

Részletesebben

Adatgyűjtés. Kézi technológiák. Adatgyűjtési technológiák. Térbeli adatok jelenségek térbeli elhelyezkedése, kiterjedése, stb.

Adatgyűjtés. Kézi technológiák. Adatgyűjtési technológiák. Térbeli adatok jelenségek térbeli elhelyezkedése, kiterjedése, stb. Adatgyűjtés Adatgyűjtés Adatgyűjtési és adatnyerési technikák a térinformatikában Térbeli adatok jelenségek térbeli elhelyezkedése, kiterjedése, stb. Leíró (attributum) adatok a térképi objektumokhoz rendelt

Részletesebben

Kincskeresés GPS-el: a korszerű navigáció alapjai

Kincskeresés GPS-el: a korszerű navigáció alapjai 2007. február 22. : a korszerű navigáció alapjai Kovács Béla Térképtudományi és Geoinformatikai Tanszék Eötvös Loránd Tudományegyetem, Informatika Kar Térképtudományi és Geoinformatikai Tanszék 1117 Budapest,

Részletesebben

Kozmikus geodézia MSc

Kozmikus geodézia MSc Kozmikus geodézia MSc 1-4 előadás: Tóth Gy. 5-13 előadás: Ádám J. 2 ZH: 6/7. és 12/13. héten (max. 30 pont) alapismeretek, csillagkatalógusok, koordináta- és időrendszerek, függővonal iránymeghatározása

Részletesebben

Tér, idő, hely, mozgás (sebesség, gyorsulás)

Tér, idő, hely, mozgás (sebesség, gyorsulás) Tér, idő, hely, mozgás (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez képest,

Részletesebben

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Hely, idő, haladó mozgások (sebesség, gyorsulás) Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez

Részletesebben

A PPP. a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján

A PPP. a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján GISopen konferencia, Székesfehérvár, 2017. 04. 11-13. A PPP a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján Busics György

Részletesebben

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) Módli Hunor(HHW6Q9) 2015 Április 15. Mérés helye: Mérés ideje: Mérés tárgya: Mérés eszköze: PPKE-ITK 3. emeleti 321-es Mérőlabor,

Részletesebben

I. Telematikai rendszerek

I. Telematikai rendszerek I. Telematikai rendszerek Telekommunikáció+Informatika=TeleMatika TRACKING & TRACING - áru és jármű nyomon követés, útvonaltervezés TRANSZPONDERES azonosítás veszélyes, romlandó áruk kezelése NAVIGÁCIÓ

Részletesebben

GPS. 1.a A GLONASS rendszer. Feladata. A rendszer felépítése. A GLONASS és s a GALILEO GPS- rendszerek. Céljaiban NAVSTAR GPS rendszerhez

GPS. 1.a A GLONASS rendszer. Feladata. A rendszer felépítése. A GLONASS és s a GALILEO GPS- rendszerek. Céljaiban NAVSTAR GPS rendszerhez GPS A GLONASS és s a GALILEO GPS- rendszerek Összeállította: Szűcs LászlL szló 1.a A GLONASS rendszer Globális lis Navigáci ciós s Műholdrendszer M orosz elnevezés s rövidr vidítése Céljaiban és s kialakításában

Részletesebben

BBS-INFO Kiadó, 2017.

BBS-INFO Kiadó, 2017. BBS-INFO Kiadó, 2017. 2 Tájékozódási kézikönyv Minden jog fenntartva! A könyv vagy annak oldalainak másolása, sokszorosítása csak a kiadó írásbeli hozzájárulásával történhet. A könyv nagyobb mennyiségben

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

Helymeghatározó technikák

Helymeghatározó technikák Mobil Informatika Dr. Kutor László Helymeghatározó technikák http://uni-obuda.hu/users/kutor/ MoI 5/24/1 Műholdas távközlési rendszerek GEO (Geostationary Earth Orbit Satellite) Geostacionáris pályán keringő

Részletesebben

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2008/2009. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók

Részletesebben

, ,457. GNSS technológia Budapest június 20 július 1.

, ,457. GNSS technológia Budapest június 20 július 1. 110,457 110,457 2 1 3 4 2 GNNS Elv, módszerek, Budapest 2016. június Földmérési és Távérzékelési Intézet Navigare necesse est, vivere non est necesse! Hajózni kell, élni nem kell!", Pompeius 6 3 TÁJÉKOZÓDÁS

Részletesebben

Helymeghatározó rendszerek

Helymeghatározó rendszerek Helymeghatározó rendszerek objektumok (járművek, utazók, áruk, stb.) térbeli jellemzői + digitális térkép forgalomirányító, forgalombefolyásoló és navigációs rendszerek, valamint a helytől függő információs

Részletesebben

Babeș Bólyai Tudományegyetem Informatika kar Műholdas helymeghatározás a GPS rendszerrel

Babeș Bólyai Tudományegyetem Informatika kar Műholdas helymeghatározás a GPS rendszerrel Babeș Bólyai Tudományegyetem Informatika kar Műholdas helymeghatározás a GPS rendszerrel Szűcs Attila Levente Kolozsvár, 2010 Április 29. 1. Bevezető A GPS az angol Global Positioning System megnevezés

Részletesebben

(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció

(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció Az egész térképre érvényes meghatározása: A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M = 1 : m (m=méretarányszám) A méretarány

Részletesebben

A távérzékelésről. A műholdas helymeghatározás GPS 2012.05.18. 1

A távérzékelésről. A műholdas helymeghatározás GPS 2012.05.18. 1 A távérzékelésről. A műholdas helymeghatározás GPS 2012.05.18. 1 A térbeli adatok meghatározása elsődleges geometriai adatnyerési eljárások, másodlagos adatnyerési eljárások 2012.05.18. 2 Az elsődleges

Részletesebben

Az éggömb. Csillagászat

Az éggömb. Csillagászat Az éggömb A csillagászati koordináta-rendszerek típusai topocentrikus geocentrikus heliocentrikus baricentrikus galaktocentrikus alapsík, kiindulási pont, körüljárási irány (ábra forrása: Marik Miklós:

Részletesebben

Természetismereti- és környezetvédelmi vetélkedő

Természetismereti- és környezetvédelmi vetélkedő Miskolc - Szirmai Református Általános Iskola, Alapfokú Művészeti Iskola és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 Versenyző

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

Csatlakozási állapot megjelenítése

Csatlakozási állapot megjelenítése Csatlakozási állapot megjelenítése Ellenőrizheti a vevő és a jármű között a csatlakozás állapotát. Ezek a kapcsolatok felelősek az olyan információkért, mint a GPS információ és a parkolási jelzések. 1

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A művelést segítő szenzorok és monitorok I. 139.lecke Globális helymeghatározás

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Bluetooth és a GPS technológia bemutatása. Készítette: Szentesi Szabolcs Neptun kód: DUOQTK

Bluetooth és a GPS technológia bemutatása. Készítette: Szentesi Szabolcs Neptun kód: DUOQTK Bluetooth és a GPS technológia bemutatása Készítette: Szentesi Szabolcs Neptun kód: DUOQTK Mi is valójában a Bluetooth? Történelmi áttekintés X. század : Dán Viking kékfog Harald király egyesítette Dániát

Részletesebben

Műholdas infokommunikációs rendszerek

Műholdas infokommunikációs rendszerek Mobil Informatika Műholdas infokommunikációs rendszerek Dr. Kutor László OE-NIK, Dr.Kutor László MoI 4/24/1 Műholdas távközlési rendszerek GEO (Geostationary Earth Orbit Satellite) Geostacionáris pályán

Részletesebben

5. előadás: Földi vonatkoztatási rendszerek

5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek A Nemzetközi Földi Vonatkoztatási Rendszer A csillagászati geodézia története során egészen a XX. század kezdetéig

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 11. Globális helymeghatározás pontosító rendszerei Pontosságot befolyásoló tényezők Differenciális

Részletesebben

3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan

3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/6., 8., 10.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi

Részletesebben

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél 3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél A cikk két olyan eljárást mutat be, amely a függõleges napórák elkészítésében nyújt segítséget. A fal tájolásának

Részletesebben

GNSS/RNSS rendszerek a földmegfigyelésben. Dr. Rózsa Szabolcs. Általános és Felsőgeodézia Tanszék

GNSS/RNSS rendszerek a földmegfigyelésben. Dr. Rózsa Szabolcs. Általános és Felsőgeodézia Tanszék GNSS/RNSS rendszerek a földmegfigyelésben Általános és Felsőgeodézia Tanszék Dr. Rózsa Szabolcs Minőségorientált, összehangolt oktatási és K+F+I stratégia, valamint működési modell kidolgozása a Műegyetemen

Részletesebben

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu 4. Előadás Magyarországi topográfiai

Részletesebben

Geodézia. Felosztása:

Geodézia. Felosztása: Geodézia Görög eredetű szó. Geos = föld, geometria = földmérés A geodézia magyarul földméréstan, a Föld felületének, alakjána méreteinek, valamint a Föld felületén levő létesítmények és ponto helymeghatározásával,

Részletesebben

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,

Részletesebben

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók. Leíró adatok vagy attribútumok: az egyes objektumok sajátságait, tulajdonságait írják le számítógépek számára feldolgozható módon. A FIR- ek által megválaszolható kérdések: < 1. Mi van egy adott helyen?

Részletesebben

A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS AZ IDŐ ÉS FAJTÁI

A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS AZ IDŐ ÉS FAJTÁI Urbán István A TERRESZTRIKUS-NAVIGÁCIÓS IDŐSZÁMÍTÁS ÉS GYAKORLATI ALKALMAZÁSAI BEVEZETÉS A terresztrikus navigáció alkalmazásáról elmondható, hogy kis túlzással ugyan, de egyidős az emberiséggel. A navigáció

Részletesebben

A műholdas helymeghatározás alapjai

A műholdas helymeghatározás alapjai Népszerűen a műholdas helymeghatározásról és navigációról 1. rész Az idő mérése, karóránk leolvasása, ma mindannyiunk számára természetes tevékenység. De vajon ugyanilyen természetes és szükséges lesz-e

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék ELSŐDLEGES ADATNYERÉSI ELJÁRÁSOK 1. Geodézia Fotogrammetria Mesterséges holdak GEOMETRIAI

Részletesebben

Bevezetés a geodézia tudományába

Bevezetés a geodézia tudományába Bevezetés a geodézia tudomány nyába Geodézia Görög eredetű szó. Geos = föld, geometria = földmérés A geodézia magyarul földméréstan, a Föld felületének, alakjának, méreteinek, valamint a Föld felületén

Részletesebben

Esri Arcpad 7.0.1. Utó- feldolgozás. Oktatási anyag - utókorrekció

Esri Arcpad 7.0.1. Utó- feldolgozás. Oktatási anyag - utókorrekció Esri Arcpad 7.0.1 & MobileMapper CE Utó- feldolgozás Oktatási anyag - utókorrekció Tartalomjegyzék GPS- MÉRÉSEK UTÓ- FELDOLGOZÁSA... 3 1.1 MŰHOLD ADATOK GYŰJTÉSÉNEK ELINDÍTÁSA, A ESRI ArcPad PROGRAMMAL

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék 3. előadás MAGYARORSZÁGON ALKALMAZOTT MODERN TÉRKÉPRENDSZEREK Magyarország I. katonai felmérése

Részletesebben

Az idő története múzeumpedagógiai foglalkozás

Az idő története múzeumpedagógiai foglalkozás Az idő története múzeumpedagógiai foglalkozás 2. Ismerkedés a napórával FELADATLAP A az egyik legősibb időmérő eszköz, amelynek elve azon a megfigyelésen alapszik, hogy az egyes testek árnyékának hossza

Részletesebben

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Péter Tamás Földmérő földrendező mérnök BSc. Szak, V. évfolyam Dr.

Részletesebben

GNSS Modernizáció. Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium Penc. Tea előadás, 2006. június 1., Penc

GNSS Modernizáció. Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium Penc. Tea előadás, 2006. június 1., Penc 1 GNSS Modernizáció Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium Penc Tea előadás, 2006. június 1., Penc Tartalom GPS GLONASS Galileo 2 GPS Block IIR Block IIA Block IIF 3 A GPS pontossága GPS

Részletesebben

Helymeghatározás Nokia N76-1

Helymeghatározás Nokia N76-1 Nokia N76-1 2007 Nokia. Minden jog fenntartva. A Nokia, a Nokia Connecting People, az Nseries és az N76 a Nokia Corporation védjegye, illetve bejegyzett védjegye. Az említett egyéb termékek és cégek neve

Részletesebben

Csillagászati földrajzzal. Megoldási útmutatókkal

Csillagászati földrajzzal. Megoldási útmutatókkal Csillagászati földrajzzal kapcsolatos feladatok Megoldási útmutatókkal A Nap delelési magasságának kiszámítása Feladat: Hány fokos szögben látják delelni a Napot június 22-én a következő szélességi körökön?

Részletesebben

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN Juni Ildikó Budapesti Műszaki és Gazdaságtudományi Egyetem BSc IV. évfolyam Konzulens: Dr. Rózsa Szabolcs MFTT 29. Vándorgyűlés,

Részletesebben

Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással

Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium horvath@gnssnet.hu www.gnssnet.hu Tel.: 06-27-200-930 Mobil: 06-30-867-2570

Részletesebben

Kartográfia, Térképészet 2. gyakorlat

Kartográfia, Térképészet 2. gyakorlat Kartográfia, Térképészet 2. gyakorlat Szintvonalas domborzatábrázolás Dr. Sümeghy Zoltán, Rajhona Gábor sumeghy@stud.u-szeged.hu szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület?

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület? Gyakorlás 1. Az út emelkedésének nevezzük annak a szögnek a tangensét, amelyet az út a vízszintessel bezár. Ezt általában %-ban adják meg. (100 %-os emelkedésű a vízszintessel 1 tangensű szöget bezáró

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások A csillagképek története és látnivalói 2018. február 14. Bevezetés: Az alapvető égi mozgások A csillagok látszólagos mozgása A Föld kb. 24 óra alatt megfordul a tengelye körül a földi megfigyelő számára

Részletesebben

SZKA_106_21. Utazás a világ körül Tudósítások a világból

SZKA_106_21. Utazás a világ körül Tudósítások a világból SZKA_106_21 Utazás a világ körül Tudósítások a világból szka106_01_d.indd 127 2007.10.16. 21:51:19 szka106_01_d.indd 128 2007.10.16. 21:51:19 tanulói utazás a világ körül 6. évfolyam 129 21/1 A kontinensek

Részletesebben

Globális mőholdas navigációs rendszerek

Globális mőholdas navigációs rendszerek Globális mőholdas navigációs rendszerek Oktatási segédanyag a vadgazda MSc levelezı hallgatók számára az EG520 Geomatikai és térinformatikai ismeretek címő tárgyhoz Készítette: Bazsó Tamás Kiegészítette:

Részletesebben

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO) A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás Borza Tibor (FÖMI KGO) Busics György (NyME GEO) Tartalom Mi a GNSS, a GNSS infrastruktúra? Melyek az infrastruktúra szintjei? Mi a hazai helyzet?

Részletesebben

A navigációs műholdrendszerek fontosabb jellemzői. A műholdas helymeghatározás fejlődéstörténete.

A navigációs műholdrendszerek fontosabb jellemzői. A műholdas helymeghatározás fejlődéstörténete. 1. előadás: A navigációs műholdrendszerek fontosabb jellemzői. A műholdas helymeghatározás fejlődéstörténete. 1.1 Bevezetés Napjainkban egyre inkább felértékelődik a helyhez kapcsolt információk szerepe.

Részletesebben

szló egyetemi tanár, igazgató szségügyi gyi informatikai Workshop Miskolctapolca, 2006. December 11.

szló egyetemi tanár, igazgató szségügyi gyi informatikai Workshop Miskolctapolca, 2006. December 11. Tóth LászlL szló egyetemi tanár, igazgató Honnan jövünk? j Hol vagyunk? Merre megyünk? Paul GAUGIN, 1897 (Boston, Museum of Fine Arts, 141x376 cm) A tudományban és a technológiában az alapvető fejlődések

Részletesebben

Benapozás vizsgálata VARGA ÁDÁM. Budapest, április 7. ÉMI Nonprofit Kft.

Benapozás vizsgálata VARGA ÁDÁM. Budapest, április 7. ÉMI Nonprofit Kft. Benapozás vizsgálata VARGA ÁDÁM Budapest, 2011. április 7. ÉMI Nonprofit Kft. A napsugárzás hatása A Nap által a Föld felszínére érkező energiának csak elenyészően kis észét hasznosítjuk épületeink szükségletinek

Részletesebben

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2012/2013. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók A feladatlap 4 feladatból áll, melyeket tetszőleges

Részletesebben

15/2013. (III. 11.) VM rendelet

15/2013. (III. 11.) VM rendelet 15/2013. (III. 11.) VM rendelet a térképészetért felelős miniszter felelősségi körébe tartozó állami alapadatok és térképi adatbázisok vonatkoztatási és vetületi rendszeréről, alapadat-tartalmáról, létrehozásának,

Részletesebben

Milyen északi irány található a tájfutótérképen?

Milyen északi irány található a tájfutótérképen? Milyen északi irány található a tájfutótérképen? A felmérést a Hárshegy :000 méretarányú tájfutótérképén végeztem. Olyan pontokat választottam ki, amik a terepen és a térképen is jól azonosíthatók. ezeket

Részletesebben

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK GISopen 2011 2011. március 16-18. Konasoft Project Tanácsadó Kft. Maros Olivér - projektvezető MIÉRT MOBIL TÉRKÉPEZÉS? A mobil térképezés egyetlen rendszerben

Részletesebben

Hatály: 2014.IX.8. Magyar joganyagok - 230/2014. (IX. 5.) Korm. rendelet - az M35 autópálya ( oldal

Hatály: 2014.IX.8. Magyar joganyagok - 230/2014. (IX. 5.) Korm. rendelet - az M35 autópálya ( oldal Hatály: 2014.IX.8. Magyar joganyagok - 230/2014. (IX. 5.) Korm. rendelet - az M35 autópálya (481. 1. oldal 230/2014. (IX. 5.) Korm. rendelet az M35 autópálya (481. számú főút) Berettyóújfalu (M4 autópálya)

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Precíziós mezőgazdaság információ technológiai alapjai I. 137.lecke Globális

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Precíziós mezőgazdaság információ technológiai alapjai II. 138.lecke

Részletesebben

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33 A vizsgafeladat ismertetése: A vizsgázó a térinformatika és a geodézia tudásterületei alapján összeállított komplex központi tételekből felel, folytat szakmai beszélgetést. Amennyiben a tétel kidolgozásához

Részletesebben

RTCM alapú VITEL transzformáció felhasználó oldali beállítása Trimble Survey Controller szoftver használata esetén

RTCM alapú VITEL transzformáció felhasználó oldali beállítása Trimble Survey Controller szoftver használata esetén RTCM alapú VITEL transzformáció felhasználó oldali beállítása Trimble Survey Controller szoftver használata esetén A http://www.gnssnet.hu/valos_trafo.php weboldalról letöltött RTCM VITEL.dc nevű Trimble

Részletesebben