Légsebesség profil- és légmennyiség mérése légcsatornában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Légsebesség profil- és légmennyiség mérése légcsatornában"

Átírás

1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÉPÜLETGÉPÉSZETI ÉS GÉPÉSZETI ELJÁRÁSTECHNIKA TANSZÉK Légsebesség profil- és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése 4. változat Összeállította: Both Balázs, egyetemi tanársegéd Lektorálta: Dr. Goda Róbert, egyetemi adjunktus Budapest, szeptember 22.

2 1. Bevezetés A mérnöki gyakorlatban felmerülő műszaki problémák megoldása a legtöbb esetben háromféle módszerrel lehetséges: 1. analitikus módszerek, 2. méréses módszerek, 3. numerikus szimuláció alkalmazása (CFD = Computational Fluid Dynamics). Méréseket legtöbbször akkor végzünk, ha az adott feladat megoldása elméleti úton túlságosan bonyolult, kevés a rendelkezésre álló szakirodalom, esetleg a numerikus szimulációval kapott eredményeinket szeretnénk a mérési adatokkal hitelesíteni (validálni, pl. CFD alkalmazása egyes gyártási folyamatoknál). A különböző légtechnikai rendszerek telepítés utáni beüzemelésénél igen fontos szerep jut a méréseknek, melyek segítségével egyrészt ellenőrizhetők az előírt tervezési értékek (térfogatáram, nyomásértékek, páratartalom, hőmérséklet, stb.), másrészt elvégezhető az adott légtechnikai rendszer beszabályozása. 2. Mérési feladat ismertetése A Légtechnikai Laboratóriumban található frisslevegős, keresztáramú, lemezes hővisszanyerővel ellátott légkezelő berendezéssel kiegyenlített szellőzést szeretnénk megvalósítani a térben. Ehhez az szükséges, hogy a befúvó- és az elszívó ágban is közel azonos legyen a térfogatáram értéke (ld pont). Első feladat a kiegyenlített szellőzés beállításához szükséges dinamikus nyomás mérése, amiből számítható a klímaközpont által szállított térfogatáram egy adott fordulatszámon, mindkét ágra. Az elszívó ág térfogatáramát állandónak tekintve, a frisslevegős ághoz tartozó frekvenciaváltót addig állítjuk, amíg a két ágban mért térfogatáram közötti eltérés kisebb, mint 5 [%]. A laborgyakorlat során ez körülbelül 2-3 mérési sorozattal megvalósítható. További cél a hővisszanyerő elem áramlástechnikai ellenállásának (nyomásesésének) meghatározása egy adott térfogatáram mellett statikus nyomásmérés segítségével. A mért- és számított eredményeket szabványos mérési jegyzőkönyvben kell rögzíteni, melynek követelményeit a pont tartalmazza. 3. Elméleti háttér Légtechnikai rendszerek beüzemelése A fogyasztó által igényelt értékek beállításához minden újonnan telepített légtechnikai rendszernél szükséges a beüzemelés elvégzése. Egy üzembe helyezés alkalmával a beüzemelő - 2 -

3 csoport először leellenőrzi az adott légkezelő berendezés és szükség esetén a légcsatornák külső-belső állapotát. Legtöbb esetben tehát a következőket célszerű vizsgálni: légszűrők megfelelő illeszkedése a keretbe; az ellenőrző ajtók légmentes záródása; frekvenciaváltók megfelelő működése; tömítések állapota; a ventilátor modul rugalmas alátámasztásának ellenőrzése; hajtómotor megfelelő bekötése; szíjhajtás esetén a szíjak megfelelő állapota és illeszkedése az ékszíjtárcsába. Az ellenőrzési fázist követően beindítják a klímaközpontot, majd a vonatkozó szabvány ajánlásai alapján legtöbb esetben a légkezelő légszállítását és az egyes légkezelő elemek nyomásesését (ellenállását) mérik. Az így kapott adatokat összehasonlítják a tervező által megadott névleges értékekkel, illetve a fogyasztói igényekkel, és ha az eltérés egy megengedett intervallumba esik, akkor a rendszer üzemvitelre megfelelő. Szintén a beüzemelés része a rendszer beszabályozása, amellyel biztosíthatók az előírt légmennyiségek és nyomásviszonyok valamennyi helyiségben A helyiség nyomásviszonyai Egy adott helyiségben kialakuló nyomásviszonyokat tekintve a mesterséges szellőztetésnek három típusa létezik: 1. pozitív túlnyomásos szellőzés: a helyiségbe több levegőt juttatunk be, mint amennyit onnan elszívunk, ezért (pozitív) túlnyomás alakul ki a légköri nyomáshoz képest. A gyakorlatban ennek a tisztatereknél (műtők, mikrochip gyártók) van nagy jelentősége, hiszen a helyiségben kialakuló, légkörihez viszonyított nagyobb nyomás biztosítja, hogy szennyező anyagok ne juthassanak be a külső térből. 2. kiegyenlített szellőzés: a befújt- és az elszívott levegő mennyisége közel azonos. Tiszta kiegyenlített szellőzést azonban két ok miatt sem tudunk megvalósítani. Az egyik a légsebesség mérési hibája, ami a pontos légszállítás beállítását eleve bizonytalanná teszi. Másik probléma a nyílászárók jelenléte, melyeken keresztül mindig van adott mértékű légcsere a helyiség és környezete között. 3. negatív túlnyomásos szellőzés: ebben az esetben a helyiségből több levegőt szívunk el, mint amennyit oda bejuttatunk, de gyakori eset csupán elszívás alkalmazása, például vizesblokkok (WC, mosdó, stb.), vagy konyhák esetében. Ennek eredményeként a helyiségben kialakul egy negatív túlnyomás (depresszió) a légköri nyomáshoz képest. A - 3 -

4 gyakorlatban negatív túlnyomásos szellőzéssel akkor találkozunk, ha az egyes szen-- nyező anyagoknak és szagoknak a külső térbe való kiáramlását szeretnénk megakadályozni Légkezelő komponensek áramlástechnikai ellenállása Egy zárt csatornában áramló közeg áramlási ellenállása két részre bontható. Az egyik a csőfal- és a közeg közötti súrlódásból származik, a másik pedig az alaki ellenállásokból. A hidraulikai ellenállás definíció szerint: Hidraulikai ellenállás: = Nyomásesés Térfogatáram. A hidraulikai ellenállásból származtatható alaki ellenállástényező pedig: Statikus nyomásveszteség ζ = Dinamikus nyomás (kinetikus energia) [ ]. Mint ismeretes, az össznyomás a statikus- és dinamikus nyomás összege, így ezek mérésével számítható az áramlásba helyezett test alaki ellenállás-tényezője. A hidraulikai ellenállástényező (ζ) definíciójából jól látható, hogy amennyiben nő a statikus nyomásveszteség, akkor az ellenállás értéke is növekszik. A légkezelő berendezés egyes elemeinek áramlástechnikai ellenállását azért nagyon fontos meghatározni, mert konstans légmennyiség szállítása esetén nagyobb ellenállás több villamos teljesítményfelvételt jelent, ami hosszú távon magasabb üzemeltetési költséget okoz Sebesség mérése légcsatornában A légtechnikai mérésekre vonatkozó szabványok az egyes fizikai mennyiségek mérésére többféle műszert kínálnak fel. Az MSZ EN ISO :2003 szerint a nyomás- és sebesség mérésére bármilyen, erre alkalmas mérőműszer használható azzal a feltétellel, hogy az áramlás képében nem okozhat számottevő zavarást. A gyakorlatban ez azt jelenti, hogy minél kisebb az adott mérési keresztmetszet, annál kisebb műszert kell alkalmazni. További követelmény, hogy a mérőműszereket meghatározott időközönként kalibrálni kell. Az MSZ EN 24006:2002 azt ajánlja, hogy a levegő áramlási sebességének normális irányú komponense merőleges legyen a műszer mérési síkjára. Ennek megfelelően nagyon fontos, hogy a sebességméréshez alkalmazott műszer szára mindig merőleges legyen a légcsatorna oldalfalára. A légtechnikai méréseknél leggyakrabban alkalmazott mérőműszerek a szárnykerekes- és hődrótos anemométerek, illetve a Prandtl-cső

5 Szárnykerekes anemométer: a szárnykerekes szondák mérési elve a forgó mozgás elektromos jellé történő átalakításán alapszik. Az áramló közeg a szárnykereket mozgásba hozza (1. ábra). A szárnykerék fordulatait egy induktív közelítő kapcsoló,,számlálja és az általa szállított impulzussort a mérőműszer átalakítja és áramlásértékként jelezi ki. A műszer egy digitális kijelzésű adatgyűjtőre csatlakoztatható, ahol a megfelelő keresztmetszet megadásával a levegő térfogatárama közvetlenül is meghatározható. 1. ábra Hődrótos anemométer: működési elvük egy fűtött hődróton alapszik, amiből a fellépő hidegebb áramlás miatt hő elvonására kerül sor (2. ábra). Szabályozással a hőmérséklet állandó értéken tartható, a szabályozó áram pedig arányos a légsebességgel. A hődrótos anemométerek hátránya a szárnykerekes megoldásokkal szemben az, hogy nagyobb az irányérzékenységük, vagyis a kisebb elmozdulásokra a mért érték pontosságát tekintve érzékenyebben reagálnak. 2. ábra Prandtl-cső: a cső áramlással szembeni nyílása érzékeli a teljes (összes) nyomást és tovább vezeti a nyomásmérő szonda csatlakozására (a). A tisztán statikus nyomás érzékelése az áramlási irányra merőleges oldalnyíláson történik és a (b) csatlakozásra kerül továbbításra (3. ábra). Az ebből származó nyomáskülönbség az áramlásfüggő dinamikus nyomás: (pd = pö-ps). Csatlakoztatható például Betz-mikromanométerhez, vagy digitális kijelzésű műszerhez is. Miután már ismertek a mérendő mennyiségek, a mérőműszerek kiválasztásának főbb követelményei és a leggyakrabban alkalmazott típusok, következő lépés a 3. ábra mérési keresztmetszet (sík) és ezen belül a mérési pontok kiválasztása (4. ábra). Az MSZ EN 12599:2013 szabvány ajánlása alapján a légsebesség méréséhez mindig olyan mérési síkot kell kiválasztani, amely megfelelő távolságra van a szabványban megadott elemektől (1. Táblázat). Ennek oka, hogy minden áramlásba helyezett test görbíti az áramvonalakat, ezáltal torzul a sebességprofil, megjelennek a szekunder áramlások, ami jelentős mérési pontatlanságot okoz. Ahhoz tehát, hogy a mérési eredményeink pontosak legyenek homogén sebességprofilban szükséges mérni. Gyakori eset, hogy a légcsatorna egyes elemeibe egyen

6 irányítókat építenek be az áramlási kép homogenizálása érdekében, ezáltal csökkenthető a mérési sík előtt- és után szükséges távolság. Légcsatornáknál különösen ügyelni kell a könyökidomokra, mivel az 5. ábrán látható módon jelentős inhomogenitást okoznak a sebességprofilban. Mérőhely előtti szerkezet Mérőszakasz hosszúsága legalább nincs egyenirányító egyenirányító esetén Centrifugál ventilátor 5*D e 3*D e Axiál ventilátor nem mérhető 5*D e Terelőlemezes könyök 5*D e 3*D e Könyök terelőlemez nélkül, ív 10*D e 5*D e Zsalu nyitva 5*D e 2*D e Zsalu szabályozva 8*D e 4*D e Kalorifer 1*D e 1*D e Konfúzor 5*D e 2*D e Diffúzor 10*D e 5*D e Mérőhely utáni szerkezet Terelőlemezes könyök Könyök terelőlemez nélkül, ív Zsalu nyitva Zsalu szabályozva Kalorifer Konfúzor Diffúzor Mérőszakasz hosszúsága legalább 1*D e 1*D e 1*D e 2*D e 0,5*D e 0,5*D e 1*D e 1. Táblázat, melyben De az egyenértékű átmérő 4. ábra Mérési sík és a mérési pontok - 6 -

7 5. ábra Egy légkezelő berendezésben az egyes elemek közötti kis távolság miatt szekunder áramlások, határréteg-leválások tapasztalhatók, aminek következménye a fent említett inhomogén sebességprofil. Ennek megfelelően légsebességet, vagy dinamikus nyomást kizárólag légcsatornában szabad mérni, majd ebből számítható a térfogatáram az áramlási keresztmetszet ismeretében. Természetesen a kontinuitás miatt a légcsatornában áramló levegő térfogatárama azonos a klímaközpont légszállításával (a szivárgásokat elhanyagolva). Az MSZ EN 12599:2013 szabvány segítségével az előbb kiválasztott mérési síkban kijelölhetők a sebességmérési pontok (6. ábra). Fontos, hogy egy-egy irányban a mérési pontok száma legalább kettő legyen. A pontok távolsága egymástól és a légcsatorna falaitól a következő összefüggéssel számítható: ahol A i = A 2 i 1 2 n és B i = B 2 i 1 2 n. Ai, Bi a mérési pontoknak a csatorna falától mért távolsága [mm], A, B a légcsatorna oldalméretei [mm], i a mérési pont rendszáma A, vagy B irányban, n a mérési pontok száma egy irányban. Jelen feladatban a vizsgált légcsatorna oldalméretei A = 500 [mm], B = 500 [mm], n = 5, valamint i = 1 5, így a sebességmérési pontok pozíciója: - 7 -

8 a b c d e ábra Sebességmérési pontok Statikus nyomás mérése légkezelőben A légkezelő belsejében uralkodó statikus nyomás kivezetésére az áramlás irányára merőlegesen behelyezett cső nem alkalmas, mivel az áramképet helyileg megzavarhatja. Ezt elkerülendő, a furatba az áramlás irányával párhuzamosan Ser-tárcsát helyeznek, amire a műszert csatlakoztatva mérhető a statikus nyomás. Az MSZ EN ISO :2003 és az MSZ EN ISO 5801:2009 azt ajánlja, hogy egy mérési keresztmetszetben 4 nyomáskivezető furat legyen. Ezen furatoktól egy közös műanyag csövön keresztül a statikus nyomás kivezethető a mérőműszerhez (7. ábra). A további számításokhoz felhasznált nyomásérték 4 egyenkénti leolvasás átlaga. A szabvány azt is meghatározza, hogy a mérőműszer Ser-tárcsára való kapcsolását követően körülbelül 60 másodpercet kell várni, amíg a nyomás beáll egy közel állandó értékre. 7. ábra Statikus nyomás kivezetése a légkezelőn - 8 -

9 4. A mérés kapcsolási vázlata, mérési elrendezés 8. ábra A vizsgált légkezelő berendezés 9. ábra Kapcsolási vázlat Jelmagyarázat: ZS1, ZS2: légmennyiség szabályozó zsaluk a befúvó- és az elszívó ágakban; SZ1, SZ2: táskás szűrők; HV: keresztáramú, lemezes hővisszanyerő; FK: fűtő kalorifer; HK: hűtő kalorifer; CS: cseppleválasztó; V1, V2: befúvó-, elszívó ventilátor; BZS: bypass zsalu - 9 -

10 10. ábra Befúvó légcsatorna a sebességmérő furatokkal 11. ábra Elszívó légcsatorna a sebességmérő furatokkal

11 12. ábra Hővisszanyerő modul, oldalán a nyomásmérő furatokkal és a Ser-tárcsával

12 5. Mérési eredmények értékelése A mért értékek alapsokaságot alkotnak, a statisztikai elemzések során cél ennek a sokaságnak a megismerése. A teljes alapsokaság meghatározása azonban nagyon hosszadalmas, esetleg költséges lenne, így a mérések során a sokaságból ún. mintát veszünk, ezt elemezzük, és ez alapján következtetünk a teljes alapsoka-ságra, illetve magára a megfigyelt jelenségre. A mérési eredmények értékelésénél általában alapfeltétel, hogy a mért jellemzők eloszlása normális (Gauss-eloszlású) legyen. Közepes (N > 30) és nagy (N > 100) minták esetében erre való a normalitásvizsgálat. Mivel most kisméretű a minta elemszáma, így a centrális határeloszlás-tétel értelmében feltételezzük, hogy a mért légsebességeket egyidejűleg több tényező befolyásolja, ezért a sebesség eloszlása normálisnak vehető. A normális eloszlás két becsült paramétere: minta átlaga (sokasági várható érték) és a minta korrigált tapasztalati szórása (sokasági variancia), melyek a mintát jellemzik. A mért dinamikus nyomás átlaga egy adott mérési keresztmetszetben: N p á = 1 N p i [Pa]. A mért sebesség átlaga egy adott mérési keresztmetszetben: i=1 N v á = 1 N v i [ m s ]. ahol N mérési pontok száma a teljes mérési keresztmetszetben (jelen esetben 25 darab), p i az i. pontban mért dinamikus nyomás értéke [Pa], vi az i. pontban mért légsebesség [m/s]. Az átlagértékeket az Excel-ben az =ÁTLAG() függvénnyel kell számítani. A mért dinamikus nyomásokból számított átlagos légsebesség: i=1 p á = ρ 2 v á 2 [Pa] v á = 2 p á ρ [ m s ]. ahol Jó közelítéssel a 20 [ C]-os levegő sűrűsége 1,2 [kg/m 3 ]. Az átlagsebességből számított átlagos térfogatáram: V á = A v á [ m3 s ], A a vizsgát légcsatorna keresztmetszete [m 2 ],

13 vá az áramló levegő átlagsebessége az adott keresztmetszetben [m/s]. ahol A sebességprofil szabálytalansága: vmax - legnagyobb mért sebesség [m/s], vmin legkisebb mért sebesség [m/s]. U = v max v min 4 v á 100 [%], A maximum és minimum értékeket az Excel =MAX() és =(MIN) függvényeivel lehet meghatározni. A mérési pontok számának és a sebességprofil szabálytalanságának ismeretében a sebességmérés hibája a 2. Táblázatból kereshető ki. A sebességprofil szabálytalansága U [%] A mérési pontok száma A sebességmérés hibája [%] ,5 7, ,5 14, Táblázat A mért dinamikus nyomás korrigált tapasztalati szórása: σ Δp = 1 N N 1 (Δp i Δp á ) 2 i=1 A mért sebesség korrigált tapasztalati szórása: σ v = 1 N N 1 (v i v á ) 2 i= [Pa]. [m/s]. A szórásokat az Excelben a =SZÓR.M() függvénnyel kell számítani. A mintaátlag standard hibája azt mutatja meg, hogy egy mintavétel, vagyis mérés esetén átlagosan mekkora hibát követünk el. Ezt a hibát gyakran a reprezentatív megfigyelés hibájának is nevezik, számítása pedig:

14 SH= σ N. Értelemszerűen a mért sebességnek és dinamikus nyomásnak is lesz standard hibája, így a számlálóba mindig a megfelelő mennyiség szórását kell helyettesíteni. A mérések során mért mennyiségek valamennyi esetben valószínűségi változók, hiszen értékük mérésről mérésre változik. Ennek oka lehet a mérési hiba, ami származhat a műszer, vagy a mérést végző személy pontatlanságából is. Ugyanakkor a mért jellemzők valószínűségi változó jellegét az is okozhatja, hogy a természetben sokszor változnak a megfigyelt jelenségek (pl. egy légsebesség). Amikor ugyanazt a mennyiséget többször mérjük (mint jelen esetben a légcsatornában áramló levegő sebességét egy mérési keresztmetszetben), akkor szükség van a mérési eredmények átlagának számítására. Ezt már láthattuk fentebb is, ugyanakkor honnan tudjuk, hogy az általunk számított átlag pl. egy 10. mérési alkalommal is ugyanaz lesz? A válasz a konfidencia-intervallum meghatározása. Ez egy olyan intervallum, amely adott valószínűséggel (jellemzően P = 95%) tartalmazza a mérési adatokból számított átlagot, megadási formája a következő: ahol xá a mért jellemző átlaga, σ P (x á - z p N ; x σ á+z p N ) =95%, zp adott valószínűséghez tartozó táblázatbeli kritikus érték, melynek Excel-függvénye: =NORM.S.INVERZ(valószínűség), ahol a valószínűség p = P + α/2); az α = 1 P. A 95%- kos valószínűséggel számolva tehát: p = 0,95 + 0,05/2 = 0,975. ahol σ a mért jellemző szórása, N a korábban bemutatott mérési pontok darabszáma. A hővisszanyerő veszteségtényezője: ζ = p stat,átlag ρ v á 2 2 Δpstat,átlag a hővisszanyerő elem két oldalán mért statikus nyomások számtani átlaga [Pa] Mért- és számított értékek, diagramok A kiértékeléshez szükséges táblázatokat és minta diagramot a Melléklet tartalmazza Szabványos mérési jegyzőkönyvek formai-tartalmi követelményei A szabványos jegyzőkönyvekre vonatkozó főbb tartalmi követelmények (MSZ EN ISO/IEC 17025:2005): [1],

15 a) Cím, b) Labor neve és címe, vizsgálatok és/vagy kalibrálások helyszíne, ha ez nem azonos a labor címével, c) A vizsgálati (vagy kalibrálási) jegyzőkönyv egyedi azonosítója és minden egyes oldalon valamilyen azonosító (pl. oldalszám), d) A megrendelő/beruházó neve és címe, e) Az alkalmazott mérési módszerek azonosítása, f) A vizsgált elemek, műszerek leírása, állapota és egyértelmű azonosítása, g) Vizsgálati eredmények a mértékegységek helyes megadásával, h) Azoknak a személyeknek a neve, feladatköre, adott esetben aláírása, vagy egyértelmű azonosítása, akik a vizsgálati jegyzőkönyvet jóváhagyták, i) Környezeti viszonyok, feltételek, j) Mérési bizonytalanságok, hibaszámítás, k) Vélemények, észrevételek, l) Dátum, időpont, m) Mérés kapcsolási rajza. A gyakorlat végén elkészítendő jegyzőkönyvben teljesülnie kell az aláhúzással kiemelt követelményeknek! Amire szükség van a mérésekhez: üres A4-es papírok, számológép, laptop Microsoft Excellel, mérési segédlet és a melléklet kinyomtatva. A kiértékelés során elkészítendő: a Melléklet táblázatainak kitöltése a mérési adatok alapján, minden egyes mérési sorozatra el kell készíteni a Mellékletben található diagramot a befúvó- és az elszívó ágra is, a mérési jegyzőkönyvhöz csatolható a fenti mérési segédlet, hiszen az tartalmazza a mérés elméleti hátterét, kapcsolási rajzát és a számítási összefüggéseket. Ellenőrző kérdések 1) A mérnöki gyakorlatban legtöbbször mikor- és hol alkalmazunk méréses vizsgálatokat? (egy-egy példa)

16 2) Röviden ismertesse az elvégzendő mérési feladatokat és a mérés menetét! (kapcsolási rajz) 3) Mit nevezünk egy légtechnikai rendszer beüzemelésének? Röviden ismertesse a főbb lépéseit és alapfeladatait! 4) A helyiségekben kialakuló nyomásviszonyokat tekintve sorolja fel- és példákkal együtt jellemezze a szellőztetési alaptípusokat! 5) Ismertesse az áramló közegekben fellépő áramlási ellenállások típusait! Miért van jelentősége az áramlási ellenállások ismeretének? 6) Röviden jellemezze a sebesség mérésére vonatkozó főbb követelményeket (beleértve a mérőműszer megválasztását is)! 7) Ábra segítségével röviden jellemezze a sebesség- és nyomásmérésekhez leggyakrabban alkalmazott szabványos mérőműszereket! 8) Ábrával ismertesse a sebességmérésekhez alkalmazott mérési sík- és a mérési pontok kiválasztásának főbb ismérveit! Mi az oka, hogy a légsebességet csak a légcsatornában szabad mérni? 9) Milyen összefüggéssel számítható a sebességmérési pontok pozíciója egy A*B keresztmetszetű légcsatornában? 10) Milyen főbb követelmények vonatkoznak a statikus nyomás mérésére légkezelőben? 11) Mit nevezünk mintának és miben különbözik az alapsokaságtól? Milyen becsült paraméterek jellemzik a mintát? 12) Miért nem kell normalitásvizsgálatot végezni kis mintaelemszám esetén? Válaszát indokolja! 13) Mit nevezünk standard hibának és hogyan számítjuk? 14) Mit nevezünk konfidencia-intervallumnak és hogyan adjuk meg, miért van rá szükség a gyakorlatban? 15) A mért értékekből hogyan számíthatók a következő mennyiségek? a. átlagos térfogatáram, b. átlagos légsebesség a dinamikus nyomásból, c. átlagos légsebesség N darab mérési pontból, d. hővisszanyerő veszteségtényező (ζ, csak a végösszefüggés), e. hidraulikailag egyenértékű átmérő

17 Mért légsebesség, v [m/s] Épületgépészeti mérések Minta az elkészítendő diagramokhoz 1. mérés - befúvó ág 5,8 5,5 5,2 4,9 4,6 4,3 "a" mérőhely "b" mérőhely "c" mérőhely "d" mérőhely "e" mérőhely Mérési pont sorszáma a mérőhelyen belül

18 Melléklet Megjegyzés: A szórást és átlagokat két tizedesre kell kerekíteni, míg a térfogatáramot egész számra! 1. mérés befúvó ág, f = [Hz] a b c d e Δpá [Pa] vá [m/s] Ṽá [m 3 /h] vmax [m/s] vmin [m/s] U [%] σδp [Pa] σv [m/s] SHp [Pa] SHv [m/s] Seb. konfidencia-int. P( ; ) = 95% Sebességmérés hibája [%] Δp stat Δp stat, átlag [Pa] [Pa] ζ = Megjegyzés: A szórást és átlagokat két tizedesre kell kerekíteni, míg a térfogatáramot egész számra! 2. mérés befúvó ág, f = [Hz] a b c d e Δpá [Pa] vá [m/s] Ṽá [m 3 /h] vmax [m/s] vmin [m/s] U [%] σδp [Pa] σv [m/s] SHp [Pa] SHv [m/s] Seb. konfidencia-int. P( ; ) = 95% Sebességmérés hibája [%] Δp stat Δp stat, átlag [Pa] [Pa] ζ =

19 Megjegyzés: A szórást és átlagokat két tizedesre kell kerekíteni, míg a térfogatáramot egész számra! 1. mérés elszívó ág a b c d e Δpá [Pa] vá [m/s] Ṽá [m 3 /h] vmax [m/s] vmin [m/s] U [%] σδp [Pa] σv [m/s] SHp [Pa] SHv [m/s] Seb. konfidencia-int. P( ; ) = 95% Sebességmérés hibája [%] Δp stat Δp stat, átlag [Pa] [Pa] ζ = Megjegyzés: A szórást és átlagokat két tizedesre kell kerekíteni, míg a térfogatáramot egész számra! 2. mérés elszívó ág a b c d e Δpá [Pa] vá [m/s] Ṽá [m 3 /h] vmax [m/s] vmin [m/s] U [%] σδp [Pa] σv [m/s] SHp [Pa] SHv [m/s] Seb. konfidencia-int. P( ; ) = 95% Sebességmérés hibája [%] Δp stat Δp stat, átlag [Pa] [Pa] ζ =

Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése

Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÉPÜLETGÉPÉSZETI ÉS GÉPÉSZETI ELJÁRÁSTECHNIKA TANSZÉK Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

VAV BASiQ. VAV BASiQ. VAV szabályozó zsalu

VAV BASiQ. VAV BASiQ. VAV szabályozó zsalu VAV szabályozó zsalu Leírás A légmennyiség szabályozók a légcsatornában áramló levegő pontos szabályozására és állandó értéken tartására használhatók. A fő elemei a légmennyiség beállításáért felelős zsalu

Részletesebben

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában Tanév,félév 2010/2011 1. Tantárgy Áramlástan GEATAG01 Képzés egyetem x főiskola Mérés A B C Nap kedd 12-14 x Hét páros páratlan A mérés dátuma 2010.??.?? A MÉRÉSVEZETŐ OKTATÓ TÖLTI KI! DÁTUM PONTSZÁM MEGJEGYZÉS

Részletesebben

Gravi-szell huzatfokozó jelleggörbe mérése

Gravi-szell huzatfokozó jelleggörbe mérése Gravi-szell huzatfokozó jelleggörbe mérése Jelen dokumentáció a CS&K Duna Kft. kizárólagos tulajdonát képezi, részben vagy egészben történő engedély nélküli másolása, felhasználása TILOS! 1. A huzatfokozó

Részletesebben

2. mérés Áramlási veszteségek mérése

2. mérés Áramlási veszteségek mérése . mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4

Részletesebben

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges

Részletesebben

Szabályozó áramlásmérővel

Szabályozó áramlásmérővel Méretek Ød Ødi l Leírás Alkalmazási terület Az áramlásmérő felhasználható szabályozásra és folyamatos áramlásmérésre is. Állandó beépítésre készült, így már a tervezési fázisban specifikálni kell. Szerelési,

Részletesebben

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének

Részletesebben

GROX huzatszabályzók szélcsatorna vizsgálata

GROX huzatszabályzók szélcsatorna vizsgálata GROX huzatszabályzók szélcsatorna vizsgálata 1. Előzmények Megbízást kaptunk a Gróf kereskedelmi és Szolgáltató kft-től (H-9653 Répcelak, Petőfi Sándor u. 84.) hogy a huzatszabályzó (két különböző méretű)

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

BDLD. Négyszög könyök hangcsillapító. Méretek

BDLD. Négyszög könyök hangcsillapító. Méretek Négyszög könyök hangcsillapító Méretek Függőleges beépítés Vízszintes beépítés b a a Leírás egy hagyományos kulisszás könyök hangcsillapító, melynek külső mérete megegyezik a csatlakozó mérettel. A hangcsillapító

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,, F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Négyszög egyenes hangcsillapító DLD. Méretek

Négyszög egyenes hangcsillapító DLD. Méretek Méretek DLD b a 0 Leírás A DLD egy hagyományos kulisszás, melynek külső mérete megegyezik a csatlakozó mérettel. A minden standard méretben elérhető. Kialakítás DLD háza trapéz merevítésű, mely javítja

Részletesebben

Állítható sugárfúvóka

Állítható sugárfúvóka Állítható sugárfúvóka A Méretek A-0 Karimával falba vagy légcsatorna oldalába való szereléshez. Ø ( ) 0 Ø F Ø Nom 0 0 Ø A Ø B Ø E Leírás A A állítható sugárfúvóka, amely alkalmas nagy területek szellőztetésére,

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

A BLOWER DOOR mérés. VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, október 27. ÉMI Nonprofit Kft.

A BLOWER DOOR mérés. VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, október 27. ÉMI Nonprofit Kft. A BLOWER DOOR mérés VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, 2010. október 27. ÉMI Nonprofit Kft. A légcsere hatása az épület energiafelhasználására A szellőzési veszteség az épület légtömörségének a függvénye:

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI

Részletesebben

A VAQ légmennyiség szabályozók 15 méretben készülnek. Igény esetén a VAQ hangcsillapított kivitelben is kapható. Lásd a következő oldalon.

A VAQ légmennyiség szabályozók 15 méretben készülnek. Igény esetén a VAQ hangcsillapított kivitelben is kapható. Lásd a következő oldalon. légmennyiség szabályozó állítómotorral Alkalmazási terület A légmennyiségszabályozókat a légcsatorna-hálózatban átáramló légmennyiség pontos beállítására és a beállított érték állandó szinten tartására

Részletesebben

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA 1. A mérés célja A mérési feladat moduláris felépítésű járműmodellen a c D ellenállástényező meghatározása különböző kialakítások esetén, szélcsatornában.

Részletesebben

c o m f o r t s u g á r f ú v ó k á k Méretek 0. szerelés 1. szerelés Leírás Karbantartás 2. szerelés Anyag és felületkezelés Súly Rendelési minta

c o m f o r t s u g á r f ú v ó k á k Méretek 0. szerelés 1. szerelés Leírás Karbantartás 2. szerelés Anyag és felületkezelés Súly Rendelési minta GTI Méretek. szerelés Ød Leírás A GTI olyan sugárfúvóka, amely nagy területek szellőztetésére alkalmas. A fúvóka meleg és hideg levegő befúvására egyaránt használható, a levegőt szórt és koncentrált formában

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

DLDY. Négyszög egyenes hangcsillapító. Méretek

DLDY. Négyszög egyenes hangcsillapító. Méretek Négyszög egyenes hangcsillapító Méretek a + 00 b Leírás A egy kulisszás hangcsillapító, melyben a csatlakozó keresztmetszeten kívül beépített oldalsó kulisszák találhatók. A hangcsillapító minden standard

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Tájékoztató. Használható segédeszköz: számológép. Értékelési skála:

Tájékoztató. Használható segédeszköz: számológép. Értékelési skála: A 29/2016. (VIII. 26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 582 01 Épületgépész technikus Tájékoztató A vizsgázó az első lapra írja fel a

Részletesebben

XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ

XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ Szaszák Norbert II. éves doktoranduszhallgató, Dr. Szabó Szilárd Miskolci Egyetem, Áramlás- és Hőtechnikai Gépek Tanszéke 2013. Összefoglaló Doktori téma: turbulenciagenerátorok

Részletesebben

FEHU-U uszodai légkezelők

FEHU-U uszodai légkezelők A légkezelés, klimatizálás különleges területei az uszodai alkalmazások. A magas páratartalmú közegek miatt a nedvességgel való gazdálkodás, a levegő szárítása, a rejtett hő visszanyerése nagyon fontos.

Részletesebben

KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd

KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd KORSZERŐ ÁRAMLÁSMÉRÉS 1. - Dr. Vad János docens Általános áramlásmérési blokk: páratlan okt. h. kedd 14.15-16.00 Interaktív prezentációk - JUTALOMPONTOK Ipari esettanulmányok Laboratóriumi bemutatók Laboratóriumi

Részletesebben

TRS-K TRS-R TRSE-R sorozat

TRS-K TRS-R TRSE-R sorozat 1/3/U/4 Szellõzõrácsok TRS-K TRS-R TRSE-R sorozat TROX Austria GmbH Telefon 212-1211; 212-9121 Magyarországi Fióktelep Telefax 212-07 1016 Budapest http://www.troxaustria.at Krisztina krt. 99. e-mail trox@trox.hu

Részletesebben

Vizsgálati jelentés. BLOWER DOOR légtömörség mérésről

Vizsgálati jelentés. BLOWER DOOR légtömörség mérésről Vizsgálati jelentés BLOWER DOOR légtömörség mérésről Új építési családiház Gordonka u. 55. 1165 Budapest Időpont: 2010.05.26 A DIN EN 13829 szabvány szerint az " A " eljárás alapján az 50 Pascal nyomás

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Labormérések minimumkérdései a B.Sc képzésben

Labormérések minimumkérdései a B.Sc képzésben Labormérések minimumkérdései a B.Sc képzésben 1. Ismertesse a levegő sűrűség meghatározásának módját a légnyomás és a levegő hőmérséklet alapján! Adja meg a képletben szereplő mennyiségek jelentését és

Részletesebben

H05 CSŐVEZETÉKBEN HASZNÁLT TÉRFOGATÁRAM-MÉRÉSI MÓDSZEREK ÖSSZEHASONLÍTÁSA

H05 CSŐVEZETÉKBEN HASZNÁLT TÉRFOGATÁRAM-MÉRÉSI MÓDSZEREK ÖSSZEHASONLÍTÁSA H05 CSŐVEZETÉKBEN HASZNÁLT TÉRFOGATÁRAM-MÉRÉSI MÓDSZEREK ÖSSZEHASONLÍTÁSA. A mérés célja A mérési feladat több, a térfogatáram mérésére szolgáló eljárás összehasonlítása. Térfogatáram mérése történhet

Részletesebben

KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13

KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13 KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13 1. BEVEZETÉS 1.1. Az áramlástani mérések célja 1.1.1. Globális (integrál) jellemzők Áramlástechnikai gépek és a csatlakozó rendszer üzemének általános megítélése, hibafeltárás

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Pillangószelep DKG Tartalom Leírás...3 Kivitel és méretek...4 Műszaki adatok...5 Jelmagyarázat...6 Rendelési adatok...6 Kiírási szöveg...

Pillangószelep DKG Tartalom Leírás...3 Kivitel és méretek...4 Műszaki adatok...5 Jelmagyarázat...6 Rendelési adatok...6 Kiírási szöveg... Pillangószelep DKG Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Telefon +49 74 63-980 - 0 Telefax +49 74 63-980 - 200 info@schako.de www.schako.de Tartalom Leírás...3 Kialakítás... 3 Kivitel...

Részletesebben

Beszabályozó szelep - Csökkentett Kv értékkel

Beszabályozó szelep - Csökkentett Kv értékkel Beszabályozó szelepek STAD-R Beszabályozó szelep - Csökkentett Kv értékkel Nyomástartás & Vízminőség Beszabályozás & Szabályozás Hőmérséklet-szabályozás ENGINEERING ADVANTAGE A STAD-R beszabályozó szelep

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

KS-409.3 / KS-409.1 ELŐNYPONTOK

KS-409.3 / KS-409.1 ELŐNYPONTOK KS-409.3 / KS-409.1 AUTOMATIZÁLT IZOKINETIKUS MINTAVEVŐ MÉRŐKÖR SÓSAV, FLUORIDOK, ILLÉKONY FÉMEK TÖMEGKONCENTRÁCIÓJÁNAK, EMISSZIÓJÁNAK MEGHATÁROZÁSÁRA ELŐNYPONTOK A burkoló csőből könnyen kivehető, tisztítható

Részletesebben

A precíz mérés szerepe az épületgépészetben. 2015.11.30. Előadó: Engel György

A precíz mérés szerepe az épületgépészetben. 2015.11.30. Előadó: Engel György A precíz mérés szerepe az épületgépészetben 2015.11.30. Előadó: Engel György Miért kell mérni? Megfelelő beállítás Hibafeltárás Hibaelhárítás 2/24 Mit kell mérni? Hűtő-klíma rendszert Légtechnikai rendszert

Részletesebben

3. Mérőeszközök és segédberendezések

3. Mérőeszközök és segédberendezések 3. Mérőeszközök és segédberendezések A leggyakrabban használt mérőeszközöket és használatukat is ismertetjük. Az ipari műszerek helyi, vagy távmérésre szolgálnak; lehetnek jelző és/vagy regisztráló műszerek;

Részletesebben

KS 404 220 TÍPUSÚ IZOKINETIKUS MINTAVEVŐ SZONDA SZÉLCSATORNA VIZSGÁLATA

KS 404 220 TÍPUSÚ IZOKINETIKUS MINTAVEVŐ SZONDA SZÉLCSATORNA VIZSGÁLATA KS 44 22 TÍPUSÚ IZOKINETIKUS MINTAVEVŐ SZONDA SZÉLCSATORNA VIZSGÁLATA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM 1782 27 MÁJUS A KÁLMÁN SYSTEM KÖRNYEZETVÉDELMI MŰSZER FEJLESZTŐ GYÁRTÓ KERESKEDELMI

Részletesebben

Sugárfúvóka. Méretek. Légcsatornába szerelt. Karbantartás A fúvóka látható részei nedves ruhával tisztíthatók. Rendelési minta

Sugárfúvóka. Méretek. Légcsatornába szerelt. Karbantartás A fúvóka látható részei nedves ruhával tisztíthatók. Rendelési minta Méretek 0 min. O 0 Ø 0 Ø eírás A egy gumiból készült sugárfúvóka, amely alkalmas nagy területek szellőztetésére, ahol nagy vetőtávolságra van szükség. A fúvóka a légszállítás iránya szerint állítható,

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Térfogatáram mérő kés zülékek

Térfogatáram mérő kés zülékek ,1 X X testregistrierung Térfogatáram mérő kés zülékek típus Statikus nyomás különbség jeladó Térfogatáramok méréséhez légcsatornákban Négyszög keresztmetszetű térfogatáram mérő egységek, térfogatáram

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

MP 210. Nyomás-légsebesség-hőmérsékletmérő. Jellemzők. Kapcsolat. Típusok (további érzékelők külön rendelhetők)

MP 210. Nyomás-légsebesség-hőmérsékletmérő. Jellemzők. Kapcsolat. Típusok (további érzékelők külön rendelhetők) -légsebesség-hőmérsékletmérő MP 210 Jellemzők Mérhető paraméterek: nyomás, hőmérséklet, légsebesség és térfogatáram Cserélhető k és modulok 2 db csatlakoztatható Akár 6 mérés egyidőben Nagyméretű grafikus

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony:

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony: Ventilátorok Jellemzők: Gáz munkaközeg Munkagép: Teljesítmény-bevitel árán kisebb nyomású térből (szívótér) nagyobb nyomású térbe (nyomótér) szállítanak közeget. Működési elv: Euler-elv (áramlástechnikai

Részletesebben

Mennyezeti örvénybefúvó DQJA / DQJR típus

Mennyezeti örvénybefúvó DQJA / DQJR típus Mennyezeti örvénybefúvó DQJA / DQJR típus Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Telefon +49 (0) 74 63-980 - 0 Telefax +49 (0) 74 63-980 - 200 info@schako.de www.schako.de Tartalom Leírás...3

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta

Részletesebben

VIZSGA ÍRÁSBELI FELADATSOR

VIZSGA ÍRÁSBELI FELADATSOR NINCS TESZT, PÉLDASOR (150 perc) BMEGEÁTAM01, -AM11 (Zalagegerszegi BSc képzések) ÁRAMLÁSTAN I. Mechatronikai mérnök BSc képzés (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI:

Részletesebben

versenyképes választás

versenyképes választás Vvégtelenül V versenyképes választás V Légcsatornába építhetõ szellõzõ rendszer Vento - Légcsatornába építhetõ szellõzõ rendszer végtelenül versenyképes választás A Vento légcsatornába építhetõ légkezelõ-

Részletesebben

Kör légcsatornára szerelhető rács

Kör légcsatornára szerelhető rács Méretek B+0 A+0 A B Leírás Az négyszögletes szellőzőrács állítható, függőleges lamellákkal, amely közvetlenül felszerelhető kör keresztmetszetű légcsatornára. A rács egyaránt használható befúvásra és elszívásra.

Részletesebben

MSZ EN :2015. Tartalomjegyzék. Oldal. Előszó Alkalmazási terület Rendelkező hivatkozások...10

MSZ EN :2015. Tartalomjegyzék. Oldal. Előszó Alkalmazási terület Rendelkező hivatkozások...10 Tartalomjegyzék Előszó...9 1. Alkalmazási terület...10 2. Rendelkező hivatkozások...10 3. Szakkifejezések és meghatározásuk...10 4. Jelölések, rövidítések...17 5. Nem kiegyenlített égéstermék-elvezető

Részletesebben

A tételhez segédeszköz nem használható.

A tételhez segédeszköz nem használható. A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései tartalmazzák: Általános épületgépészeti rendszerismereteit Légcsatornák, légtechnikai- és klímaberendezések felépítésének,

Részletesebben

PFM 5000 mérőberendezés

PFM 5000 mérőberendezés Alkalmazás Több ágat tartalmazó rendszerek A PFM 5000 több ágat tartalmazó, összetett fűtőrendszerekkel is használható; a berendezés szimulálja a hidraulikus rendszert, és az egyes ágakon mért adatok alapján

Részletesebben

STAD-R. Beszabályozó szelepek DN 15-25, csökkentett Kv értékkel

STAD-R. Beszabályozó szelepek DN 15-25, csökkentett Kv értékkel STAD-R Beszabályozó szelepek DN 15-25, csökkentett Kv értékkel IMI TA / Beszabályozó szelepek / STAD-R STAD-R A STAD-R beszabályozó szelep felújítások esetén pontos hidraulikai működést tesz lehetővé rendkívül

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

FEHU-H kompakt álló légkezelők

FEHU-H kompakt álló légkezelők A FEHU-H egy kompakt levegő betápláló és elszívó készülék, keresztáramú lemezes hővisszanyerővel, meleg vizes fűtéssel és opcioként kérhető beépített hűtött vizes hűtő hőcserélővel. A készülék extrudált

Részletesebben

ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE

ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE 1. A mérés célja ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE KÜLÖNBÖZŐ FORDULATSZÁMOKON (AFFINITÁSI TÖRVÉNYEK) A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele különböző fordulatszámokon,

Részletesebben

VIZSGA ÍRÁSBELI FELADATSOR

VIZSGA ÍRÁSBELI FELADATSOR ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI

Részletesebben

HALLGATÓI SEGÉDLET. Térfogatáram-mérés. Tőzsér Eszter, MSc hallgató Dr. Hégely László, adjunktus

HALLGATÓI SEGÉDLET. Térfogatáram-mérés. Tőzsér Eszter, MSc hallgató Dr. Hégely László, adjunktus BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Térfogatáram-mérés Készítette: Átdolgozta: Ellenőrizte: Dr. Poós Tibor, adjunktus

Részletesebben

BEÉPÍTÉSI ÚTMUTATÓ VEC típusú központi ventilátorok. VEC típusú központi ventilátorok szereléséhez

BEÉPÍTÉSI ÚTMUTATÓ VEC típusú központi ventilátorok. VEC típusú központi ventilátorok szereléséhez BEÉPÍTÉSI ÚTMUTATÓ VEC típusú központi ventilátorok VEC típusú központi ventilátorok szereléséhez A VEC egy olyan elszívó központi ventilátor család, amelyet kifejezetten a különböző lakó- és kereskedelmi

Részletesebben

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Épületgépészeti rendszerismeret; Hűtőtechnikai

Részletesebben

Teli frontlapos anemosztát

Teli frontlapos anemosztát Méretek Ø U Ø d Ø D Leírás Az kör alakú, teli frontlapos anemosztát, amely befúvásra és elszívásra egyaránt alkalmazható. Az alkalmas hűtött levegő vízszintes befúvására, ahol nagy impulzus szükséges.

Részletesebben

Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr)

Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr) Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr) 1. Folyadékáram mérése torlócsővel (Prandtl-csővel) Torlócsővel csak egyfázisú folyadék vagy gáz áramlása mérhető. A folyadék vagy gáz

Részletesebben

KS-404 AUTOMATIZÁLT IZOKINETIKUS AEROSOL - PORMINTAVEVŐ MÉRŐKÖR, HORDOZHATÓ BELSŐTÉRI KIVITEL ISO 9096 STANDARD KÁLMÁN SYSTEM SINCE 1976

KS-404 AUTOMATIZÁLT IZOKINETIKUS AEROSOL - PORMINTAVEVŐ MÉRŐKÖR, HORDOZHATÓ BELSŐTÉRI KIVITEL ISO 9096 STANDARD KÁLMÁN SYSTEM SINCE 1976 KS-404 AUTOMATIZÁLT IZOKINETIKUS AEROSOL - PORMINTAVEVŐ MÉRŐKÖR, HORDOZHATÓ BELSŐTÉRI KIVITEL ISO 9096 STANDARD KÁLMÁN SYSTEM SINCE 1976 ELŐNYPONTOK Kalibrált venturi térfogatáram-mérő. Négyféle mérési

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

GÖRGŐS LÁNCHAJTÁS tervezése

GÖRGŐS LÁNCHAJTÁS tervezése MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK II. c. tantárgyhoz GÖRGŐS LÁNCHAJTÁS tervezése Összeállította: Dr. Szente József egyetemi docens Miskolc, 008. A lánchajtás tervezése során

Részletesebben

Légszelepek LV Sorozat

Légszelepek LV Sorozat 1/4/U/4 Légszelepek LV Sorozat befúvásra, elszívásra TROX Austria GmbH Telefon: 212-1211; 212-9121 Magyaroroszági Fióktelep Telefax: 212-0735 1016 Budapest http://www.troxtechnik.at Krisztina krt. 99.

Részletesebben

HV-STYLVENT. AXIÁLIS ABLAK- ÉS FALI VENTILÁTOROK HV-STYLVENT sorozat

HV-STYLVENT. AXIÁLIS ABLAK- ÉS FALI VENTILÁTOROK HV-STYLVENT sorozat AXIÁLIS ABLAK- ÉS FALI VENTILÁTOROK HV-STYLVENT sorozat Axiális ventilátorok falba vagy ablakba szereléshez. Mindegyik ventilátor kemény ABS műanyag ráccsokkal, zsaluval és egyfázisú V-5 Hz motorral rendelkezik.

Részletesebben

Versenyző kódja: 14 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny

Versenyző kódja: 14 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny 34 582 05-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 34 582 05 Hűtő-és légtechnikai rendszerszerelő SZVK rendelet száma: 27/2012. (VIII.

Részletesebben

Perforált ipari befúvó

Perforált ipari befúvó ek Ød Leírás A kör alakú, elárasztásos befúvó, amely ipari igények kielégítésére alkalmas. A szabályozóval rendelkezik, ami lehetővé teszi a befúvás irányának vízszintes és a függőleges közötti változtatását

Részletesebben

Gravitációs vagy mesterséges? Laképületek szellőzésének energetikai kérdései. Baumann Mihály adjunktus PTE MIK Épületgépészeti Tanszék

Gravitációs vagy mesterséges? Laképületek szellőzésének energetikai kérdései. Baumann Mihály adjunktus PTE MIK Épületgépészeti Tanszék Gravitációs vagy mesterséges? Laképületek szellőzésének energetikai kérdései Baumann Mihály adjunktus PTE MIK Épületgépészeti Tanszék A légtömörség szerepe Az épületállomány túlnyomó része természetes

Részletesebben

ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés

ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett

Részletesebben

4. A mérések pontosságának megítélése

4. A mérések pontosságának megítélése 4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési

Részletesebben

Örvényszivattyú A feladat

Örvényszivattyú A feladat Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Alapvető információ és meghatározások

Alapvető információ és meghatározások .3 X X testregistrierung Alapvető információ és meghatározások Állandó légmennyiség-szabályozás CONSTANTFLOW Termékkiválasztás Alapvető méretek Jelmagyarázat Korrekciós értékek rendszercsillapításhoz Mérések

Részletesebben

2.GYAKORLAT (4. oktatási hét) PÉLDA

2.GYAKORLAT (4. oktatási hét) PÉLDA 2.GYAKORLAT (4. oktatási hét) z Egy folyadékban felvett, a mellékelt ábrán látható, térben rögzített, dx=dy=dz=100mm élhosszúságú, kocka alakú V térrészre az alábbiak V ismeretesek: I.) Inkompresszibilis

Részletesebben

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Szikra Csaba Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Alapelvek: A füstvédett térhez tartozó fajlagos felület értéke Zárt lépcsıház esetén: 5 %. Kiürítési út vízszintes szakasza (közlekedı,

Részletesebben

Segédlet az ADCA szabályzó szelepekhez

Segédlet az ADCA szabályzó szelepekhez Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Energiatakarékos lakásszellőztetés

Energiatakarékos lakásszellőztetés Energiatakarékos lakásszellőztetés Kollár Csaba Értékesítési vezető COMFORT Budapest Épületgépészeti Szakkiállítás,Konferencia 2007. április 18. Előadás tartalma Miért szükséges a gépi szellőztetés Szükséges

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

HASZNÁLATI UTASÍTÁS. AM50 légsebességmérő

HASZNÁLATI UTASÍTÁS. AM50 légsebességmérő HŰTŐTECHNIKAI ÁRUHÁZAK 1163. Budapest, Kövirózsa u. 5. Tel.: 403-4473, Fax: 404-1374 3527. Miskolc, József Attila u. 43. Tel.: (46) 322-866, Fax: (46) 347-215 5000. Szolnok, Csáklya u. 6. Tel./Fax: (56)

Részletesebben