ÁTVITELI ALAPOK, ALAPFOGALMAK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ÁTVITELI ALAPOK, ALAPFOGALMAK"

Átírás

1 HÁZI DOLGOZAT SZÁMÍTÓGÉP HÁLÓZATOK II. (A FIZIKAI RÉTEGBEN HASZNÁLT ÁTVTELI KÖZEGEK) Készítette: Borbás Zoltán

2 A dolgozat célja, hogy rövid áttekintést adjon a napjainkban legelterjedtebben használt átviteli közegekről, megismertetve azok főbb szerkezeti felépítését, átviteli jellemzőit és főbb típusait. Ennek keretében a dolgozatban röviden ismertetem az átvitellel kapcsolatos, a fizikai réteg vonatkozásában értelmezhető alapfogalmakat, majd a fizikai közegek részletes leírása után az átviteli közegek fizikai és átviteli jellemzőinek összefoglalása következik. ÁTVITELI ALAPOK, ALAPFOGALMAK Az adatok átvitele egy fizikai csatornán mindig a csatorna valamelyik fizikai jellemzőjének (feszültség, áram, frekvencia, fázisszög, fény intenzitás) megváltoztatásával történik. Az információ forrás és a cél közötti effektív átvitel távolságát a csatornában a jelek gyengülése, és a csatorna zaja egyaránt befolyásolja. Kommunikáció általános modellje. A fentiek értelmében a csatornának három fontos tulajdonságát vesszük figyelembe: a sávszélességét; csillapítását; késleltetését; a csatorna zaját. Sávszélesség: az átvitt legmagasabb és legalacsonyabb frekvencia különbsége. A valós rendszerekben a sávszélességet műszaki eszközökkel korlátozzák, az alsó és felső határfrekvenciánál meredek levágás van. Jelzési sebesség: A csatornán másodpercenként bekövetkező jelváltások száma. Egy jelzés több bitet is hordozhat. Ha a jelzési szintünk pl.: +3V, +1V, -1V, -3V, akkor egy feszültségszínt 2 bitet kódolhat. Multiplexelés: minden bemeneti csatornához hozzárendelünk egy kimeneti csatornát. Ebben az esetben a csatornák nem versengenek a vonalakért, torlódás nem tud keletkezni, mert a csatornák kapacitása előre rögzített. Két változata a frekvenciaosztásos és az időosztásos. Frekvenciaosztásos multiplexelés: az átvitelre kerülő analóg jelek viszonylag kis frekvenciatartományba esnek. Mivel a vonal sávszélessége ennél jelentősen nagyobb, több ilyen tartomány vihető át egyszerre rajta. Időosztásos multiplexelés: Digitális átvitelnél az idő-multiplex (STDM - Synchronous Time- Division Multiplexing) berendezések a nagyobb sávszélességű adatvonalat időben osztják fel több, elemi adatcsatornára. Minden elemi adatcsatorna egy-egy időszeletet kap. A fővonal két végén elhelyezkedő vonali multiplexerek előre meghatározott időben, periodikusan, egymással szinkronban működve összekapcsolják egy-egy rövid időre néha egyetlen bit, legtöbbször egyetlen karakter vagy bájt, esetleg néhány bájt átviteli idejére az összetartozó be-, illetve kifutó vonalakat.

3 Csillapítás: A jel amplitúdója csökken a jel haladása során az átviteli közegben. Az átviteli közeg hosszát úgy állapítják meg, hogy a jel biztonsággal értelmezhető legyen a vételi oldalon. Ha nagyobb távolságot kell áthidalni, akkor erősítők (jelismétlők) beiktatásával kell a jelet visszaállítani. A csillapítás frekvenciafüggő, ezért az erősítőknek frekvenciafüggő erősítéssel kell ezt kompenzálniuk. Késleltetés: A jel terjedésének ideje frekvenciafüggő, ezért a jelek szinuszos komponensei eltérő időben érkeznek a vevőhöz, és ún. késleltetési torzítást okoznak. A torzítás mértéke az adatátviteli sebesség növelésével növekszik. Ennek oka, hogy bizonyos bitekhez tartozó néhány frekvencia komponens olyan mértékben késik, hogy interferál a következő bit bizonyos frekvencia komponenseivel. Vonali zaj: Az átviteli közeg környezetéből származó zavarokat vonali zajnak nevezik. Az átvitt jelek csillapítása miatt a zajszint összemérhetővé válhat a jelszinttel, és a jelek helyes érzékelése lehetetlenné válhat. Ezt a torzítást szimbólumok közötti interferenciának (intersymbol interference) nevezik. Interferencia: Egymást átfedő frekvenciatartományokban találkozó jelek torzulnak, vagy kioltják egymást. ÁTVITELI KÖZEGEK Az átviteli közegeknek két nagy csoportját különböztetjük meg, a vezetékes (rész, optika), illetve a vezeték nélküli átvitelt. Vezetékes átviteli közegek: 1. Koaxiális kábel: A koaxiális kábel nagyon hosszú ideig egyeduralkodó volt a számítógép-hálózatok területén. Felépítése az alábbi ábrán látható: A legbelső szinten húzódik a vezető ér (melegér). Ennek anyaga lehet tömör, vagy sodrott. A tömör jobb paraméterekkel rendelkezik, viszont a szerelhetősége a merev belső ér miatt nehezebb. A melegér körül egy néhány mm falvastagságú szigetelőanyag található. Erre készítik el a kábel hidegvezetőjeként szolgáló árnyékolást. Ennek kialakítása az olcsóbb típusokban alumíniumfóliából, a jobb minőségűben sodrott hálóból áll. Az árnyékoló harisnyán elhelyeznek még egy szigetelő réteget, amely a külső környezeti határok ellen véd. A környezet zavarainak a kiküszöbölését lehet fokozni úgy, hogy az árnyékolást két rétegben

4 készítjük el. Ezt a technikát elsősorban olyan helyeken alkalmazzák, ahol a jelvezetékek fokozattan ki vannak téve a környezet zavarainak. A koax kábel főbb jellemzői: hullám impedancia; csillapítás; késleltetési idő; A koaxiális kábel fő típusai: Szélessávú koaxiális kábel: analóg átvitelt tesznek lehetővé a televízió sugárzás jeleinek továbbítására kialakított kábelrendszeren. A kábelek alkalmasak MHz-es jelek átvitelére akár 100 km távolságba is. Ahhoz, hogy a kábelt használhassuk, a számítógépből kikerülő digitális jeleket át kell alakítani analóg jelekké, majd a fogadó oldalon el kell végezni a konverziót az ellenkező irányba. A szélessávú koaxiális kábelek sávszélessége akár GHz-es jelek átvitelét is lehetővé teszik. Ez a sávszélesség nagyon nagy, ezért ezekben a rendszerekben a vonalat több, kisebb sávszélességű csatornára osztják, amelyeken egymástól független információátvitel valósulhat meg. Ez a már ismertetett frekvenciaosztásos multiplexelés. Alapsávú koaxiális kábelt a digitális adatátvitelben alkalmaznak előszeretettel. Két további típusra bonthatók, a vékony és a vastag koaxiális kábelre. Csavart érpár: o Vékony koaxiális kábel: az Ethernet hálózatokban alkalmazzák, hullámimpedanciája legtöbbször 50 Ohm, de előfordulhat 75 Ohmos változatban is. A jellemző adatátviteli sebesség 100 Mbit/s 1 km-es szakaszon. Kisebb távolságon a sebesség növelhető és ez fordítva is igaz. A sebesség és a távolság között a kapcsolat nem lineáris. Ez azt jelenti, hogy ha a távolságot megduplázzuk, akkor nem feleakkora lehet a maximális sebesség, hanem kisebb. A vékony koaxkábelt BNC (Bayone-Neil-Councelman) csatlakozókkal szerelik, ami lehet vagy csavaros vagy sajtolt (krimpelt). o Vastag koaxiális kábel a nevét onnan kapta, hogy az előzőnél vastagabb, a hullámimpedanciája majdnem duplája, 93 Ohm. A régebbi hálózati protokollokban használták, ma egyre inkább kikerül a piacról. A vastagkoax előnye, hogy a csillapítása kisebb, mint a vékony változaté, emiatt az áthidalható távolságok nagyobbak lehetnek ugyanakkora sebesség mellet. A kábel nehezen szerelhető a merevsége miatt, ezért ahhoz nem BNC, hanem ún. vámpírcsatlakozókat használnak a kapcsolat kialakítására. A nevét a működéséről kapta, mivel szereléskor a sajtolás következtében a szigeteléseket átszúrja és mind az árnyékolással, mind a belső érrel jó fémes kapcsolatot alakít ki. A csavart érpár két összesodort vezeték, meghatározott csavarás számmal. A sodrás biztosítja, hogy az érpár környezete felé szimmetrikus legyen, ezáltal a jelkisugárzást az egymás ellen hatás miatt minimálisra csökkentik. Amennyiben az érpár körül árnyékolás is található, akkor árnyékolt sodrott érpárnak (Shielded Twisted Pair, STP), míg az árnyékolás nélkülit UTP (Unshielded Twisted Pair) kábelnek nevezzük.

5 STP: UTP: A közepes méretű hálózatokban az esetek döntő többségében az UTP kábeleket alkalmazzák, mivel ezek jellemző/ár aránya biztos és költséghatékony összeköttetést biztosít. Az UTP kábeleket több kategóriára osztják, ezek jelátviteli tulajdonságokban és természetesen árban térnek el egymástól. A legelterjedtebbek a következők CAT1 hangátvitel 100kHZ CAT2 nem gyakori 4 MHZ CAT3 Ethernet 10MHz CAT4 nem gyakori 20MHz CAT5 Fast Ethernet 100MHZ CAT6 Fast Ethernet 200MHz CAT7 Gigabit Ethernet 600MHz Az Ethernet hálózatokban a kategóriájú kábeleket használják. Ezeket összefogták egy csoportba és a 10BaseT névvel látták el. A rendszer két sodrott érpáron működik, az egyik érpár adásra, míg a másik vételre szolgál. Az UTP kábel esetében a megengedett legnagyobb, még erősítés nélkül áthidalható távolság (szegmenshossz) 100 méter. A kábel a számítógéphez RJ-45 típusjelzésű csatlakozóval kapcsolódik. Ennek nyolc érintkezője van, tehát a kábelben négy érpárnak kell lennie. A vezetékek megkülönböztetése színkódolást alkalmaznak. Négy különböző színű vezeték van, a maradék négy pedig ezek és a fehér szín keveréke A szabványos színkód a következő: Színjelzés Csatlakozó Jel neve Jel neve Csatlakozó Színjelzés Fehér-narancs 1 8 Fehér-narancs

6 Narancs 2 DTR DSR 7 Narancs Fehér-zöld 3 TxD RxD 6 Fehér-zöld Zöld 4 GND GND 4 Zöld Fehér-Kék 5 GND GND 5 Fehér-Kék Kék 6 RxD TxD 3 Kék Fehér-Barna 7 DSR DTR 2 Fehér-Barna Barna 8 1 Barna Az RJ-45-ös csatlakozón lévő bekötését pedig az alábbi ábra szemlélteti: Optikai vezeték: Az optikai kábel egy speciális, nagyon vékony cső, amelynek belsejét üveg tölti ki. Ebben halad a fénysugár. A mag körül helyezkedik el a köpeny, aminek a törésmutatója kisebb, mint a magé, ezáltal megakadályozza, hogy a fény kilépjen a magból. A köpenyen egy lágy burkolat található, aminek a szerepe a nagyobb ellenállóság biztosítása a fizikai terhelésekkel szemben. Az egész szálat egy kemény, műanyag burkolat véd a környezet behatásaival szemben. Attól függően, hogy a fény milyen módon halad a csőben, beszélhetünk egy- és többmódusú optikai kábelről. Az átvitel három elem segítségével valósul meg: fényforrás átviteli közeg fényérzékelő. A fényforrás egy LED dióda, vagy lézerdióda. Ezek a

7 fényimpulzusokat a rajtuk átfolyó áram hatására generálják. A fényérzékelő egy fotótranzisztor vagy fotodióda, amelyek vezetési képessége a rájuk eső fény hatására megváltozik. Az átviteli közeg egyik oldalára fényforrást kapcsolva a közeg másik oldalán elhelyezett fényérzékelő a fényforrás jeleinek megfelelően változtatja az vezetőképességét. Fényveszteség három részből áll: a két közeg határán bekövetkező visszaverődés (reflexió), a közegben létrejövő csillapítás és a közegek határfelületén átlépő fénysugarak. Az első hatás a határfelületek gondos összeillesztésével minimálisra csökkenhető. Döntő jelentőségű az a tény, hogy a csillapítás nem az üveg alapvető tulajdonsága, hanem azt az üvegben lévő szennyeződések okozzák. A csillapítás megfelelő anyagválasztással minimalizálható. A közeg határfelületén való átlépés megakadályozására a megoldás az optikában jól ismert teljes visszaverődés jelensége. Ha a közeg határfelületére érkező fénysugár beesési szöge elér egy kritikus értéket, akkor a fénysugár már nem lép ki a levegőbe, hanem visszaverődik az üvegbe. Az üvegszálban az adóból kibocsátott számos fénysugár fog ide-oda verődni, az ilyen optikai szálakat többmódusú üvegszálnak (multimode fiber) nevezik. Ha azonban a szál átmérőjét a fény hullámhosszára csökkentjük, akkor a fénysugár már verődés nélkül terjed. Ez az egymódusú üvegszál (single (mono) mode fiber). Adóként ilyenkor lézerdiódát kell alkalmazni, de sokkal hatékonyabb, nagyobb távolságú összeköttetés alakítható ki segítségével. Létezik még a többmódusú üvegszál, amelynél a mag anyagának törésmutatója a tengelytől távolodva növekszik. Ez mintegy fókuszálja a fényt. E típus tulajdonságai az előző kettő közé tehető.

8 Jelenleg a nagytávolságú összeköttetésben általában db/km csillapítású fényvezető szálakat használnak, amelyek legfeljebb km távolság közbenső regenerálás nélküli áthidalását teszik lehetővé. Gondoskodni kell arról, hogy az optikai szálat csak minimális fizikai terhelés érje, minden nagyobb és hosszabb ideig tartó terhelést más szerkezeti elem vegyen át, mely védelmet és terhelésátvitelt a kábel konstrukciónak kell biztosítania. AZ ÁTVITELI KÖZEGEK FIZIKAI ÉS ÁTVITELI JELLEMZŐINEK ÖSSZEFOGLALÁSA Koaxiáli kábel: Átviteli jellemzők: Analóg átvitel esetén néhány km-enként szükséges erősítés. Mintegy 400 MHz-ig használható. Digitális átvitel esetén km-enként szükséges jelismétlő használata. Fizikai jellemzők: A kábel átmérője: mm. A koncentrikus felépítés miatt kevésbé érzékeny a zavarokra és az áthallásra, mint a csavart érpár. Nagyobb távolságra használható és többpontos alkalmazásban több állomást támogat a csavart érpárnál. Csavart érpár: Átviteli jellemzők: Analóg átvitel esetén 5-6 km-enként jelerősítésre van szükség. Digitális jelzésnél 2-3 km-enként kell ismétlőt (repeater) használni. A csavart érpár csillapítása erősen függ a frekvenciától. Érzékeny az interferenciára és a zajra. Például a párhuzamosan futó AC hálózatból könnyen fölveszi az 50Hz energiát. A zavarások csökkentésére árnyékolást alkalmaznak. A csavarás csökkenti az alacsony frekvenciás interferenciát. Különböző csavarási hosszak használata a szomszédos érpárok közötti áthallást (crosstalk) csökkenti. Pont-pont analóg jelzéssel 250KHz sávszélesség is elérhető (több hangcsatorna átvitele). Nagy távolságú digitális pont-pont kapcsolat esetén néhány Mbps érhető el. Rövid távolságra 100 Mbps sebesség is elérhető.

9 Fizikai jellemzők: A legolcsóbb, legelterjedtebben használt átviteli közeg. Két szigetelt rézvezetéket szabályos minta szerint összecsavarnak. Többnyire néhány csavart érpárt kötegelnek és védőszigeteléssel vonnak be. A csavarás csökkenti az áthallást az érpárok között és zajvédelmet biztosít. A csavarás hossza kicsit különbözhet az egyes érpárokban, hogy csökkenjen az áthallás. A csavarás hossza nagy távolságú összeköttetésekben mm között változik. A huzal átmérője mm. Optikai kábel: Átviteli jellemzők: Hz tartományban működik, amely az infravörös tartomány egy részét és a látható spektrumot öleli át. 3 változatát használják (ezek jellemzőit lásd feljebb): o több módusú (multi mode) o egy módusú (single mode)több módusú, o emelkedő törésmutatójú (multi mode graded index). Fizikai jellemzők: µm átmérőjű hajlékony optikai szál fénysugár továbbítására képes. Optikai szálat üvegből és műanyagból is készítenek. A védőbevonat szintén üveg vagy műanyag, más optikai tulajdonságokkal rendelkezik, mint a mag. A külső műanyag burkolat a szennyeződés, kopás és egyéb külső hatások ellen nyújt védelmet. Felhasznált irodalom: (a képek miatt megnézni!!!) 18fce

10 Kónya László: Számítógép-hálózatok LSI Oktatóközpont Andrew S. Tanenbaum: Számítógép-hálózatok (második, bővített, átdolgozott kiadás) Panem Könyvkiadó Kft

Hálózatok I. (MIN3E0IN-L) ELŐADÁS CÍME. Segédlet a gyakorlati órákhoz. 2.Gyakorlat. Göcs László

Hálózatok I. (MIN3E0IN-L) ELŐADÁS CÍME. Segédlet a gyakorlati órákhoz. 2.Gyakorlat. Göcs László (MIN3E0IN-L) ELŐADÁS CÍME Segédlet a gyakorlati órákhoz 2.Gyakorlat Göcs László Manchester kódolás A Manchester kódolást (Phase Encode, PE) nagyon gyakran használják, az Ethernet hálózatok ezt a kódolási

Részletesebben

Adatátviteli eszközök

Adatátviteli eszközök Adatátviteli eszközök Az adatátvitel közegei 1) Vezetékes adatátviteli közegek Csavart érpár Koaxiális kábelek Üvegszálas kábelek 2) Vezeték nélküli adatátviteli közegek Infravörös, lézer átvitel Rádióhullám

Részletesebben

Fizikai Réteg. Kábelek a hálózatban. Készítette: Várkonyi Zoltán. Szeged, 2013. március 04.

Fizikai Réteg. Kábelek a hálózatban. Készítette: Várkonyi Zoltán. Szeged, 2013. március 04. Fizikai Réteg Kábelek a hálózatban Készítette: Várkonyi Zoltán Szeged, 2013. március 04. Bevezetés 2013. március 04. [KÁBELEK A HÁLÓZATBAN] A fizikai réteg célja az, hogy egy bitfolyamot szállítson az

Részletesebben

Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése

Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése Tartalom 1. és 2. rétegű eszközök Kábelek és aktív eszközök első rétegű eszközök passzív eszköz: kábel és csatlakozó síntopológiás eszköz: ismétlő (repeater) csillag topológiás aktív eszköz: hub második

Részletesebben

TÁVKÖZLÉSI ISMERETEK

TÁVKÖZLÉSI ISMERETEK TÁVKÖZLÉSI ISMERETEK Varga József FÉNYVEZETŐS GYAKORLAT Elérhetőség Mail: endrei.varga@t-online.hu Mobil:30/977-4702 1 UTP kábel szerelés UTP (Unshielded Twisted Pair): Árnyékolatlan csavart érpár Külső

Részletesebben

Vezetékes átviteli közegek

Vezetékes átviteli közegek Vezetékes átviteli közegek Összekötés lehet: Fizikailag összekötött (bounded) pl.: jelvezetékek, optikai kábel o A vezetékes rendszer lehallgatás ellen védettebb; o Kis távolságra olcsóbb a létesítése;

Részletesebben

Hálózati kártyák hibalehetőségei: Sínrendszerek:

Hálózati kártyák hibalehetőségei: Sínrendszerek: 8. tétel Az Ön feladata munkahelyén az újonnan vásárolt munkaállomások csatlakoztatása a cég számítógépes hálózatára, valamint az esetleges kábelezési hibák elhárítása. Törekedjen a témával kapcsolatos

Részletesebben

Számítógép hálózatok kábelezése

Számítógép hálózatok kábelezése Számítógép hálózatok kábelezése A gyakorlat célja: Megismerkedni a hálózatok komponenseivel 2 számítógép közötti fizikai kapcsolat megvalósítása Elméleti bevezető: Hosztok / csomópontok: 1. Számítógépek,

Részletesebben

Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916

Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen

Részletesebben

Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak.

Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak. Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak. Előnyei Közös erőforrás-használat A hálózati összeköttetés révén a gépek a

Részletesebben

Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése

Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése Tartalom 1. és 2. rétegű eszközök Kábelek és aktív eszközök első rétegű eszközök passzív eszköz: kábel és csatlakozó síntopológiás eszköz: ismétlő (repeater) csillag topológiás aktív eszköz: hub második

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János 4. HÍRADÁSTECHNIKA I. Dr.Varga Péter János 2 A jelátvitel fizikai közegei Történelem 3 A hálózatok fejlődésének kezdetén különféle célorientált hálózatok jöttek létre: távközlő hálózatok műsorelosztó hálózatok

Részletesebben

MUNKAANYAG. Vér Ferenc. Számítógép hálózatok kiépítése - Átviteli közegek: fémes vezetők. A követelménymodul megnevezése: Számítógép összeszerelése

MUNKAANYAG. Vér Ferenc. Számítógép hálózatok kiépítése - Átviteli közegek: fémes vezetők. A követelménymodul megnevezése: Számítógép összeszerelése Vér Ferenc Számítógép hálózatok kiépítése - Átviteli közegek: fémes vezetők A követelménymodul megnevezése: Számítógép összeszerelése A követelménymodul száma: 1173-06 A tartalomelem azonosító száma és

Részletesebben

Számítógép-hálózat. Célok: Erőforrás megosztás. Megbízhatóság növelése. Sebességnövelés. Emberi kommunikáció.

Számítógép-hálózat. Célok: Erőforrás megosztás. Megbízhatóság növelése. Sebességnövelés. Emberi kommunikáció. Számítógép-hálózat Számítógéprendszerek valamilyen információátvitellel megvalósítható cél érdekében történő (hardveres és szoftveres) összekapcsolása. Célok: Erőforrás megosztás. Megbízhatóság növelése.

Részletesebben

Fényvezető szálak és optikai kábelek

Fényvezető szálak és optikai kábelek Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 2. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Alapfogalmak Referenciamodellek Fizikai réteg Knoppix Live Linux bevezető Áttekintés Alapfogalmak Számítógép-hálózat:

Részletesebben

A klasszikus Ethernet leggyakoribb típusai. 185 m BNC. 10Base-T sodrott érpár 100 m RJ45 A kábel 4 érpárjából 2 érpárat használ.

A klasszikus Ethernet leggyakoribb típusai. 185 m BNC. 10Base-T sodrott érpár 100 m RJ45 A kábel 4 érpárjából 2 érpárat használ. AST_v3\ 2.2. 2.2.5. A vezetékes átviteli közegek A fizikai réteg célja az, hogy küldött bitek egyenként és pontosan érkezzenek meg a vevő oldalára. Ezt a célt alapvetően kétféle közeg igénybevételével

Részletesebben

Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív elemei

Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív elemei Király László Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív elemei A követelménymodul megnevezése: Számítógép javítása, karbantartása A követelménymodul száma: 1174-06 A tartalomelem azonosító

Részletesebben

2.2. A számítógép felépítése Hálózatok: Hálózat fogalma: A számítógép hálózat olyan függőségben lévő vagy független számítógépek egymással

2.2. A számítógép felépítése Hálózatok: Hálózat fogalma: A számítógép hálózat olyan függőségben lévő vagy független számítógépek egymással 2.2. A számítógép felépítése 1 2.2.5. Hálózatok: Hálózat fogalma: A számítógép hálózat olyan függőségben lévő vagy független számítógépek egymással összekapcsolt együttese, amelyek abból a célból kommunikálnak

Részletesebben

13. KOMMUNIKÁCIÓS HÁLÓZATOK

13. KOMMUNIKÁCIÓS HÁLÓZATOK 13. KOMMUNIKÁCIÓS HÁLÓZATOK A mai digitális berendezések egy jelentős része más berendezések közötti adatátvitelt végez. Esetenként az átvitel megoldható minimális hardverrel, míg máskor összetett hardver-szoftver

Részletesebben

Hexium VIDOC-JANUS Twisted Pair Receiver Terméklap

Hexium VIDOC-JANUS Twisted Pair Receiver Terméklap Hexium VIDOC-JANUS Twisted Pair Receiver Terméklap Hexium Kft. VIDOC-JANUS-TWR 2 1. Általános leírás A TWR (Twisted Pair Receiver) csavart érpáron érkező differenciális videojelet alakítja vissza koaxiális

Részletesebben

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2015-16. tanév 1.

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2015-16. tanév 1. HÁLÓZATOK I. Segédlet a gyakorlati órákhoz 2. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék 2015-16. tanév 1. félév Koaxiális kábel: A koaxiális kábel egy belső és egy külső vezetőből

Részletesebben

Hexium VIDOC-JANUS Twisted Pair Transmitter Terméklap

Hexium VIDOC-JANUS Twisted Pair Transmitter Terméklap Hexium VIDOC-JANUS Twisted Pair Transmitter Terméklap Hexium Kft. VIDOC-JANUS-TWT 2 1. Általános leírás A TWT (Twisted Pair Transmitter) koaxiális kábelen érkező videojelet fogad, átalakítja differenciális

Részletesebben

Sodort érpár típusok: Vezeték és csatlakozó típusok

Sodort érpár típusok: Vezeték és csatlakozó típusok Sodort érpár típusok: Vezeték és csatlakozó típusok Csatlakozó típusok: - AUI (Attachment Unit Interface): 15 pólusú D-Sub csatlakozó, melyet a ma már kissé elavult 10Base-T Ethernethez használták -

Részletesebben

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA 2.ea Dr.Varga Péter János 2 A jelátvitel fizikai közegei 3 A jelátvitel fizikai közegei 4 A telekommunikáció elektromágneses spektruma Frekvencia (Hertz) 10 2 10 3 10 4 10 5 10 6 10 7

Részletesebben

FIZIKAI SZINTŰ KOMMUNIKÁCIÓ

FIZIKAI SZINTŰ KOMMUNIKÁCIÓ FIZIKAI SZINTŰ KOMMUNIKÁCIÓ Hírközlő csatornák a gyakorlatban Fizikai szintű kommunikáció 2.2013.február 26. Dr. Simon Vilmos adjunktus BME Hálózati Rendszerek és svilmos@hit.bme.hu 2 Az előző előadáson

Részletesebben

Tájékoztató. Értékelés. 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.

Tájékoztató. Értékelés. 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%. A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Fénytávközlő rendszerek és alkalmazások

Fénytávközlő rendszerek és alkalmazások Fénytávközlő rendszerek és alkalmazások 2015 ősz Történeti áttekintés 1 A kezdetek 1. Emberré válás kommunikáció megjelenése Információközlés meghatározó paraméterei Mennyiség Minőség Távolság Gyorsaság

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Hálózatok. Alapismeretek. Átviteli közegek

Hálózatok. Alapismeretek. Átviteli közegek Hálózatok Alapismeretek Átviteli közegek Az átviteli rendszer kiválasztásának főbb szempontjai: Sávszélesség Átviteli hibaarány (pl. zajérzékenység) Link maximális hossza Terjedési késleltetések (átviteli

Részletesebben

Kromatikus diszperzió mérése

Kromatikus diszperzió mérése Kromatikus diszperzió mérése Összeállította: Mészáros István tanszéki mérnök 1 Diszperziós jelenségek Diszperzió fogalma alatt a jel szóródását értjük. A gyakorlatban ez azt jelenti, hogy a bemeneti keskeny

Részletesebben

Roger UT-2. Kommunikációs interfész V3.0

Roger UT-2. Kommunikációs interfész V3.0 ROGER UT-2 1 Roger UT-2 Kommunikációs interfész V3.0 TELEPÍTŐI KÉZIKÖNYV ROGER UT-2 2 ÁLTALÁNOS LEÍRÁS Az UT-2 elektromos átalakítóként funkcionál az RS232 és az RS485 kommunikációs interfész-ek között.

Részletesebben

POF (Plastic (Polymer) Optical Fiber)

POF (Plastic (Polymer) Optical Fiber) POF (Plastic (Polymer) Optical Fiber) A hozzáférési hálózatokban az FTTO, FTTH kiépítésekhez, és a LAN oknál, figyelembe kell venni a házonbelüli nyomvonylak célszerű kialakítását. Ennek egyik lehetséges

Részletesebben

Optikai kábelek. Brunner Kristóf

Optikai kábelek. Brunner Kristóf Optikai kábelek Brunner Kristóf Távközlés A modern társadalomban elképzelhetetlen lenne, hogy ha egy levelet írunk a világ egyik oldaláról a másikra az ne érkezzen meg legrosszabb esetben egy percen belül

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János 3. HÍRADÁSTECHNIKA I. Dr.Varga Péter János Digitális modulációk 2 A digitális moduláció célja a lehető legtöbb információ átvitele a legkisebb sávszélesség felhasználásával, a legkisebb hibavalószínűséggel.

Részletesebben

4. Csatlakozás az Internethez. CCNA Discovery 1 4. fejezet Csatlakozás az internethez

4. Csatlakozás az Internethez. CCNA Discovery 1 4. fejezet Csatlakozás az internethez 4. Csatlakozás az Internethez Tartalom 4.1 Az internet fogalma és miként tudunk csatlakozni 4.2 Információ küldése az interneten keresztül 4.3 Hálózati eszközök egy NOC -ban 4.4 Kábelek és csatlakozók

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet

Részletesebben

Hálózati architektúrák és Protokollok PTI 3. Kocsis Gergely

Hálózati architektúrák és Protokollok PTI 3. Kocsis Gergely Hálózati architektúrák és Protokollok PTI 3 Kocsis Gergely 2018.02.21. Fizikai réteg Kábelek Koax kábel külső köpeny belső vezeték szigetelés árnyékolás + külső vezeték - mára kevéssé jellemző - jellemző

Részletesebben

- 1 - LAN (Helyi hálózti környezet)

- 1 - LAN (Helyi hálózti környezet) - 1 - LAN (Helyi hálózti környezet) A működő Helyi hálózatok legelterjedtebb típusa a SIN-topológiájú ETHERNET hálózat. A hálózat működési elvét és megvalósításának módját három intézmény dolgozta ki,

Részletesebben

UTP kábelszegmens átviteltechnikai paramétereinek vizsgálata (HW1-B)

UTP kábelszegmens átviteltechnikai paramétereinek vizsgálata (HW1-B) KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR HÍRADÁSTECHNIKA INTÉZET Infokommunikációs Hálózatok labormérési útmutató UTP kábelszegmens átviteltechnikai paramétereinek vizsgálata (HW1-B) Dr. Wührl Tibor Eszes András

Részletesebben

Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra

Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra Multimédiás adatok továbbítása és annak céljai Mozgókép és hang átvitele Szórakoztató elektronika Biztonsági funkciókat megvalósító

Részletesebben

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja.

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja. 6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja. Csoportosítás kiterjedés szerint PAN (Personal Area

Részletesebben

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok 1 Számítógépes hálózatok Hálózat fogalma A hálózat a számítógépek közötti kommunikációs rendszer. Miért érdemes több számítógépet összekapcsolni? Milyen érvek szólnak a hálózat kiépítése mellett? Megoszthatók

Részletesebben

A számítógépes hálózat célja

A számítógépes hálózat célja Hálózati alapok A számítógépes hálózat célja Erıforrás megosztás Adatátvitel, kommunikáció Adatvédelem, biztonság Pénzmegtakarítás Terhelésmegosztás A számítógépes hálózat osztályozása Kiterjedtség LAN

Részletesebben

Tartalomjegyzék. Bokor József, Gáspár Péter, BME www.tankonyvtar.hu

Tartalomjegyzék. Bokor József, Gáspár Péter, BME www.tankonyvtar.hu Tartalomjegyzék 1. A kommunikációs rendszerek típusai, osztályozásuk 8 1.1. Hálózati struktúrák 8 1.1.1. Pont-pont összeköttetés 8 1.1.2. Üzenetszórásos csatornával rendelkező alhálózatok (multipont összeköttetés)

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

AMP NETCONNECT XG Rendszer Korszerő kábelösszekötık, végelzárók.

AMP NETCONNECT XG Rendszer Korszerő kábelösszekötık, végelzárók. AMP NETCONNECT XG Rendszer Korszerő kábelösszekötık, végelzárók. MEE elıadás 2009 április 15. Endrész Viktor Strukturált Kábelezési Rendszer 3-as ép. Épület Belépési Pont Szinti Rendezı 2-es ép. Szinti

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok Számítógépes hálózatok Hajdu György: A vezetékes hálózatok Hajdu Gy. (ELTE) 2005 v.1.0 1 Hálózati alapfogalmak Kettő/több tetszőleges gép kommunikál A hálózat elemeinek bonyolult együttműködése Eltérő

Részletesebben

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA 2.ea Dr.Varga Péter János 2 Digitális jelek előállítása Digitális jelek előállítása 3 Híradástechnika I. (prezentáció) jegyzet 48.dia Digitális jelek előállítása 4 Híradástechnika I.

Részletesebben

MERRE TART A HFC. Koós Attila Gábor, Veres Zoltán , Balatonalmádi

MERRE TART A HFC. Koós Attila Gábor, Veres Zoltán , Balatonalmádi MERRE TART A HFC Koós Attila Gábor, Veres Zoltán - 2018.11.07, Balatonalmádi TARTALOMJEGYZÉK 1. Bevezetés 2. Frekvenciasávok bővítése 3. HFC hálózatok fejlődése 4. Docsis technológiák, szabványok 5. Legújabb

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

6.A. Ön egy közepes vállalat megrendelésére új informatikai hálózat kábelezési rendszerének kiépítésére kapott projektvezetői megbízást.

6.A. Ön egy közepes vállalat megrendelésére új informatikai hálózat kábelezési rendszerének kiépítésére kapott projektvezetői megbízást. 6.A. Ön egy közepes vállalat megrendelésére új informatikai hálózat kábelezési rendszerének kiépítésére kapott projektvezetői megbízást. 6.1 Mutassa be a megrendelőnek a hálózatok leggyakrabban használt

Részletesebben

Rutenbeck hálózati csatlakozódoboz Cat. 5 árnyékolt

Rutenbeck hálózati csatlakozódoboz Cat. 5 árnyékolt Rutenbeck hálózati csatlakozódoboz Cat. 5 árnyékolt egyszeres 1 x 8 pólusú Rendelési sz.: 0180 00 kétszeres 2 x 8 pólusú Rendelési sz.: 0178 00 egyszeres, (speciálisan a csatornaépítéshez) Rendelési sz.:

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N E3X-DA-N Nagyteljesítményû digitális fotokapcsoló száloptikához n látható a pillanatnyi érzékelési állapot abszolút értékben, illetve százalékban Nagytávolságú,

Részletesebben

Számítógép-hálózat fogalma (Network)

Számítógép-hálózat fogalma (Network) Hálózati ismeretek Két vagy több számítógép, melyek összeköttetésben állnak és kommunikálni tudnak egymással. Számítógép-hálózat fogalma (Network) A gyors adatátvitel, illetve összteljesítmény elérése

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3NT

OMRON FOTOELEKTROMOS KAPCSOLÓK E3NT E3NT Tárgyreflexiós érzékelõ háttér- és elõtér elnyomással 3 m-es érzékelési távolság (tárgyreflexiós) 16 m-es érzékelési távolság (prizmás) Analóg kimenetes típusok Homloklapfûtéssel ellátott kivitelek

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás

Részletesebben

Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív. elemei

Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív. elemei Király László Alkalmazott hálózati ismeretek - Számítógéphálózatok passzív elemei A követelménymodul megnevezése: Számítógép javítása, karbantartása A követelménymodul száma: 1174-06 A tartalomelem azonosító

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 03 Infokommunikációs hálózatépítő

Részletesebben

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK Gigabit Ethernet, 10 Gigabit Ethernet Jákó András goya@eik.bme.hu BME EISzK Agenda Előzmények Gigabit Ethernet 1000Base-X 1000Base-T 10 Gigabit Ethernet Networkshop 2002. Gigabit Ethernet, 10 Gigabit Ethernet

Részletesebben

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON Nagyteljesítményű Hengeres kialakítású, digitális fémtokozású fotokapcsoló közelítéskapcsoló száloptikához Digitális kijelzőn látható a pillanatnyi érzékelési állapot

Részletesebben

Híradástechnika I. 7.ea

Híradástechnika I. 7.ea } Híradástechnika I. 7.ea Dr.Varga Péter János Hálózatok 2 Távközlő hálózatok 3 4 Távközlés története Magyarországon 1939-ig Telefonhírmondó, 1938 10%-os telefonellátottság 1945-1990-ig Szolgáltatások

Részletesebben

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére A Control Techniques Plc, mint a hajtástechnika vezetõ világcége fontosnak tartja, hogy a legkorszerûbb technológia felhasználásával

Részletesebben

6. Fizikai réteg. 6.1. Az adatátvitel elméleti alapjai

6. Fizikai réteg. 6.1. Az adatátvitel elméleti alapjai 6. Fizikai réteg Az OSI ill. TCP/IP hivatkozási modellek legalsó rétegével fogunk foglalkozni a következő fejezetben. Ez a réteg definiálja a hálózatok mechanikai, elektromos és időzítési jellemzőit. A

Részletesebben

Rézkábelek Méteres kiszerelésű kábel - Installációs kábelek L.5. Rézkábelek Szerelt kábel - Patchkábel L.17

Rézkábelek Méteres kiszerelésű kábel - Installációs kábelek L.5. Rézkábelek Szerelt kábel - Patchkábel L.17 Tartalom Áttekintés Rézkábelek.2 Galaxy Rézkábel konfigurátor.4 Rézkábelek Méteres kiszerelésű kábel - Installációs kábelek.5 Rézkábelek Méteres kiszerelésű kábel - Csatlakozó kábel.9 Rézkábelek Méteres

Részletesebben

Topológia USB és FireWire

Topológia USB és FireWire Topológia és 308 PHOENIX CONTACT Adatvonali csatlakozók PLUSCON data Topológia és komponensek Sz. Termékmegnevezés Cikksz. Oldal és esetében csillagtopológiát alkalmazunk. A központi készüléktől, pl. egy

Részletesebben

ÚJDONSÁG. Csom. Kat. szám RJ45 - Cat. 6 csatlakozóaljzatok. 1 modul* Cat. 6 UTP 10 0786 60 8 érintkezô. 10 0792 60 8 érintkezô. 10 0786 61 8 érintkezô

ÚJDONSÁG. Csom. Kat. szám RJ45 - Cat. 6 csatlakozóaljzatok. 1 modul* Cat. 6 UTP 10 0786 60 8 érintkezô. 10 0792 60 8 érintkezô. 10 0786 61 8 érintkezô RJ45 informatikai aljzatok: RJ45 10 GIGA, Cat. 6 és Cat. 5e 0786 40 0786 41 0786 90 0792 90 0792 91 Megfelel az ISO 11801 (2.0 változat), EN 50173-1 és EIA/TIA 568 szabványoknak Szerszám nélkül csatlakoztatható

Részletesebben

AC206/6M Jack - XLR kábel (6m)

AC206/6M Jack - XLR kábel (6m) Szerelt kábelek VOICE-KRAFT AC206/6M Jack - XLR kábel (6m) Szerelt kábelek VOICE-KRAFT AC206/9M Jack - XLR kábel (9m) Szerelt kábelek VOICE-KRAFT AC211/09M XLR - XLR kábel (90cm) Szerelt kábelek VOICE-KRAFT

Részletesebben

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

AC feszültség detektor / Zseblámpa. Model TESTER-MS6811. Használati útmutató

AC feszültség detektor / Zseblámpa. Model TESTER-MS6811. Használati útmutató AC feszültség detektor / Zseblámpa Model TESTER-MS6811 Használati útmutató TARTALOMJEGYZÉK 1. Bevezetés... 3 2. Tulajdonságok... 3 3. A készülék leírása... 3 4. A hibák magyarázata... 4 5. Kezelés... 5

Részletesebben

HiCap a legjobb megoldás ha Gigabit Ethernetről

HiCap a legjobb megoldás ha Gigabit Ethernetről HiCap a legjobb megoldás ha Gigabit Ethernetről van szó. Ezzel kezdődött az Ethernet Source: 10 Gigabit Ethernet Alliance Az Ethernet fejlődési fokai 10Mbit/s 10Base 2, 10Base5, 10BaseT, 10BaseF 100Mbit/s

Részletesebben

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A

OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A F3SN-A 4-es kategóriájú fényfüggöny, mely megfelel a vonatkozó IEC és EN szabványoknak magasság = Fényfüggöny magasság 189... 1822 mm védett magasság 7 m illetve 10

Részletesebben

Csomagok dróton, üvegen, éterben. Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4

Csomagok dróton, üvegen, éterben. Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4 Csomagok dróton, üvegen, éterben Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4 Az Internet, a legnagyobb csomagalapú hálózat Az Internet, a legnagyobb csomagalapú hálózat Csomag

Részletesebben

KTV koaxiális kábelek mérése

KTV koaxiális kábelek mérése KTV koaxiális kábelek mérése Összeállította: Mészáros István tanszéki mérnök 1 Koaxiális kábelek Ez a széles körben használt átviteli közeg egy tömör belső érből áll, amely körül szigetelő van. A szigetelőt

Részletesebben

Elektronika 2. TFBE5302

Elektronika 2. TFBE5302 Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

Sávszélesség növelés a Magyar Telekom vezetékes access hálózatában. Nagy Tamás Magyar Telekom Budapest, 2015. május.

Sávszélesség növelés a Magyar Telekom vezetékes access hálózatában. Nagy Tamás Magyar Telekom Budapest, 2015. május. Sávszélesség növelés a Magyar Telekom vezetékes access hálózatában Nagy Tamás Magyar Telekom Budapest, 2015. május. A szélessávú távközlés jövőképe a 90-es évekből A távközlési hálózatok átviteli sebessége

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Optoelektronikai érzékelők BLA 50A-001-S115 Rendelési kód: BLA0001

Optoelektronikai érzékelők BLA 50A-001-S115 Rendelési kód: BLA0001 1) Adó, 2) kijelző- és kezelőmező, 3) vevő Display/Operation Beállítási lehetőség Mérési mód (analóg kimenetek) Tárgy mód (digitális kimenetek) Mérésmező határai Gyári beállítás (reset) billentyűzár be/ki

Részletesebben

100 V-os rendszerek és rendszerelemek

100 V-os rendszerek és rendszerelemek H A N G O S Z L O P O K CS4 20 100V-on 10W, 20W 70V-on 5W, 10W Fekete: közös, zöld:500 ohm, fehér: 1 Kohm SPL (1W/1m) 89dB ±3dB Max. SPL (W/1m) 102dB Frekvencia átvitel (-10dB) 150-13 khz Test: alumínium,

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 8. Gyakorlat Vezeték nélküli helyi hálózatok 2016.04.07. Számítógép hálózatok gyakorlat 1 Vezeték nélküli adatátvitel Infravörös technológia Még mindig sok helyen alkalmazzák

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János HÍRADÁSTECHNIKA I. 3. Dr.Varga Péter János 2 Modulációk 3 4 A jelátvitel fizikai közegei 5 A jelátvitel fizikai közegei 6 Réz alapú kábelek 7 Üvegszál alapú kábelek Üvegszál alapú kábelek előnyei 8 Magas

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon Németh Krisztián BME TMIT 2014. szept. 23. A tárgy felépítése 1. Bevezetés 2. IP hálózatok elérése távközlő és

Részletesebben

KÁBELEK, HÁLÓZATOK, CCTV RENDSZEREK

KÁBELEK, HÁLÓZATOK, CCTV RENDSZEREK VI. Évfolyam 3. szám - 2011. szeptember Horváth Tamás tamhorvath@mvm.hu KÁBELEK, HÁLÓZATOK, CCTV RENDSZEREK Absztrakt Biztonságtechnikai megfigyelő rendszerek egyik legfontosabb építőeleme a rendszer alapvető

Részletesebben

Hálózati architektúrák

Hálózati architektúrák Hálózati architektúrák Hálózati architektúra számítógép-hálózatok tervezését struktúrális módszerrel végzik, azaz a hálózat egyes részeit réteg-ekbe (layer) vagy más néven szint-ekbe (level) szervezik,

Részletesebben

Az optika és a kábeltv versenye a szélessávban. Előadó: Putz József

Az optika és a kábeltv versenye a szélessávban. Előadó: Putz József Az optika és a kábeltv versenye a szélessávban Előadó: Putz József A fejlődés motorja HD műsorok száma nő 3DTV megjelenése- nagy sávszélesség igény Új kódolás- sávszélesség igény csökken Interaktivitás

Részletesebben

1 NO (záróérintkező) 1 NO (záróérintkező) 1 NO (záróérintkező) Tartós határáram / max. bekapcs. áram

1 NO (záróérintkező) 1 NO (záróérintkező) 1 NO (záróérintkező) Tartós határáram / max. bekapcs. áram 18- - Kombinált kapcsolók (fénykapcsoló + mozgásérzékelő) 10 A 18- Mozgás- és jelenlétérzékelők Érzékelési teru let max. 120 m 2 A 18.51-es típusnál két érzékelési teru let: - Belső (4 x 4) m-es teru let:

Részletesebben

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H.

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H. Tartalom Port átalakítók, Port átalakítók, Port átalakítók, Port átalakítók, Áttekintés.2 Soros port átalakítók.4.6.1 Port átalakítók, Áttekintés Port átalakítók, Soros port jelátalakítók és /RS485/422

Részletesebben

Alapvető információk a vezetékezéssel kapcsolatban

Alapvető információk a vezetékezéssel kapcsolatban Alapvető információk a vezetékezéssel kapcsolatban Néhány tipp és tanács a gyors és problémamentes bekötés érdekében: Eszközeink 24 V DC tápellátást igényelnek. A Loxone link maximum 500 m hosszan vezethető

Részletesebben

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók A VSF-1xx műholdas KF elosztó család, a műholdvevő LNB-ről érkező SAT KF jelek veszteség nélküli, illetve alacsony beiktatási csillapítással

Részletesebben

Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat

Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat Erdős András (demonstrátor) Debreceni Egyetem - Informatikai Kar Informatikai Rendszerek és Hálózatok Tanszék 2016 9/20/2016 9:41 PM 1 Adatkapcsolati

Részletesebben

SEIK 110 AUTO OPI OPTIKAILAG SZIGETELT AUTOMATA INTERFÉSZ KONVERTER RS-232<>RS-422/485 HASZNÁLATI UTASÍTÁS

SEIK 110 AUTO OPI OPTIKAILAG SZIGETELT AUTOMATA INTERFÉSZ KONVERTER RS-232<>RS-422/485 HASZNÁLATI UTASÍTÁS OPTIKAILAG SZIGETELT AUTOMATA INTERFÉSZ KONVERTER RS-232RS-422/485 HASZNÁLATI UTASÍTÁS R S 4 8 5 A U T O M A T I C D A T A D I R E C T I O N C O N T R O L L! RS-422 (4-vezetékes! RS-485 (2/4 vezetékes)!

Részletesebben

Wireless technológiák. 2011. 05. 02 Meretei Balázs

Wireless technológiák. 2011. 05. 02 Meretei Balázs Wireless technológiák 2011. 05. 02 Meretei Balázs Tartalom Alapfogalmak (Rövidítések, Moduláció, Csatorna hozzáférés) Szabványok Csatorna hozzáférés PTP - PTmP Mire figyeljünk Az építés új szabályai SNR,

Részletesebben

Villamos szerelvények

Villamos szerelvények Szerelem szabadon szabadon szerelem A Grado termékcsalád több mint praktikus újradefiniálja a rugalmasság fogalmát. A kétféle kerettípus lehetővé teszi a választást a végtelen és a klasszikus sorolhatóság

Részletesebben

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola Elektronikus anyag a gyakorlati képzéshez GVT-417B AC voltmérő magyar nyelvű használati útmutatója 2010. Budapest Tartalomjegyzék

Részletesebben