1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok
|
|
- Bálint Illés
- 2 évvel ezelőtt
- Látták:
Átírás
1 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, A sugárzás érése (42-47) KAD levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4 aj energia szükséges 3 Prefixuok yotta zetta exa peta tera giga ega kilo hekto deka deci centi illi ikro nano piko feto atto zepto yocto Y Z E P T G M k h da d c μ n p f a z y nagyságrendenként külön prefixu inden nagyságrendre külön prefixu 3 nagyságrendenként külön prefixu 4
2 Alfa-sugárzás és az anyag kölcsönhatása pályája egyenes (v. atoagon szóródás) alfa-részecske: He atoag elektroos töltése: 2e + kezdő sebesség több int 1000 k/s kinetikus energia néhány MeV ionizálóképesség jellezése lineáris ionsűrűség (fajlagos v. specifikus ionizáció) l hosszúságú úton n db ionpárt hoz létre Po α-részecskéjének fajlagos ionizációja (levegő esetén) a egtett út függvényében (Rontó - Tarján 3.1 ábra) α- forrás árnyékolás 6 hatótávolság (R, Reichweite): az a távolság, ait egy részecske a közegben befut, íg energiája a terikus értékre ne csökken pl. Ra: R (levegőben) 3.4 c, R (folyadékban) µ fékezőképesség: egységnyi úthosszra vonatkoztatott energia veszteség (a közeg szepontjából) lineáris energia átadás (LET, Linear Energy Transfer) (a részecske szepontjából) LET (lineáris ionsűrűség). (1 ionpár keltésére jutó energia) egyéb hatások: (ionizáció/gerjesztések) karakterisztikus röntgen-sugárzás szcintilláció biológiai: funkcionális és orfológiai elváltozások végül: hő atoaggal való ütközés: agreakció (kis valószínűséggel) 7 Béta-sugárzás és az anyag kölcsönhatása béta-részecske: elektron (vagy pozitron) elektroos töltése: 1e (vagy 1e + ) lineáris ionsűrűség: az alfáénál 1000-szer kisebb pályája zegzugos (az elektron szóródik az elektronokon), visszaszórás is lehet spektrua folytonos (antineutrinó!), így nincs egységes hatótávolság levegőben: 10 c- 1 víz (szövet): 1-1c 8
3 ionpár/1 levegő Töltéssel rendelkező részecskék Sugárzás fajlagos ionizációja és anyag kölcsönhatása levegőben 1000 α-részecske 100 proton 32 P β-spektrua (Rontó - Tarján 3.2 ábra) 10 elektron 0,01 0,1 1 Az α-, a β- és a proton sugárzás átlagos fajlagos ionizációja a részecske energia függvényében, a levegőben 16 as 9 β sugárzás axiális hatótávolsága a axiális energia függvényében (Rontó - Tarján 3.3 ábra) 10 kitérő Eloszlás sűrűségfüggvény ΔN 1 h: testagasság Δh 10c ΔH Δh H: kollektív agasság H h Spektru int speciális eloszlás sűrűségfüggvény 11 kitérő ΔN Δh Eloszlás sűrűségfüggvény 1 10c görbe alatti terület: n ΔH Δh h (c) Spektru görbe alatti terület: H h (c) 12
4 Gaa/röntgen-sugárzás anyaggal való kölcsönhatása
5 (találkozik egy elektronnal) annihiláció A sugárzás leírására használható fizikai ennyiségek A sugárintenzitás gyengülése energia teljesítény intenzitás E [] J ΔE J P W Δt s energia ára (Power) J ΔP ΔA W 2 elegendően vékony (Δx) abszorbensre: x (akroszkopikus) vastagságú abszorbensre: μ : ΔJ μjδx ΔJ μj Δx J J 0 e μ x gyengítési együttható spektru is!? eV ev 19 pl. D 2 c 0,693 μ D D felezési rétegvastagság 20
6 A sugárintenzitás gyengülése J J 0 e μ x J J 0 e μ x ( Z, ρ ε ) μ μ ; gyengítési együttható 0,693 μ D J J 0 e μ részleges gyengítési eh.-k μx töeggyengítési együttható 0,693 D ( Z ε ) μ μ ; μ τ + σ + κ μ μ ρ 21 ( Z, ρ ε ) μ μ ; * μx μρx ε cx σnx gyengítési együttható, 1/c ( Z ε ) μ μ ; töeggyengítési együttható, c2 /g * ε σ a kitevő: sűrűség oláris konc. oláris extinkciós együttható, L/(ol*c) hatáskeresztetszet, c 2 részecske konc. 22 Gyengítési együttható Töeggyengítési együttható 23 24
7 Gyengítési/töeggyengítési együttható μ fotonenergiától és az abszorbens inőségétől való függése μ részfolyaatainak fotonenergiától való függése ólo esetén μ részfolyaatainak fotonenergiától való függése víz esetén 27 28
8 Z eff ( fiz ) 3 3 i vezető kölcsönhatás Effektív rendszáok 80 fotoeffektus párképződés anyag Z eff zsír 6-7 levegő 7.26 víz 7.5 lágy szövet 7-8 csont jód 53 báriu 56 ólo rendszá, Z Copton effektus kev 10 kev 100 kev 1 MeV 10 MeV 100 MeV Neutronsugárzás egyes agreakciók teréke, bobázott atoagok gerjesztett állapotba kerülnek, felesleges energiájuktól neutronkibocsátással szabadulnak eg elektroos töltéssel ne rendelkezik, ezért csak közvetve ionizál; a kölcsönhatások fajtái: rugalas szóródás (rugalas ütközés, proton és neutron töege egyenlő), a proton ionizál rugalatlan szóródás (jellezően 5 MeV felett): a neutronnal kölcsönható atoag gerjesztett állapotba kerül, ajd γ vagy alfa kibocsátás neutronbefogás (a terikus neutron beépül az atoagba): radioaktív izotóp keletkezik protonok közegbeli kölcsönhatása nagyon hasonló az alfa sugárzáséhoz a felülethez közeli rétegekben csak kicsi a lefékeződés a Bragg csúcshoz tartozó behatolási élység: hatótávolság terápiás felhasználás! Protonsugárzás különböző energiájú protonsugárzá s behatolása vízbe (DFS 2.67 ábra) Bragg csúcsok aghasítás (>100 MeV): agtöredékek, n-ok, γ-sugárzás 31 32
9 alfa béta gaa neutron áthatolóképesség nagyon kicsi kicsi nagyon nagy nagyon nagy veszélyesség belső belső/ külső külső külső védele papír űanyag ólo, beton víz, beton elnyelt dózis D Δ E ΔE Δ ρδv érvényesség: 2. Fizikai dózis-fogalak inden ionizáló sugárzásra korlátozás nélkül régi egység:1 rad 0,01 Gy elnyelt energia töeg J kg [ D ] Gy (Gray) 35 Sugárterhelés és dózisszintek halálos dózis (LD): az a dózisennyiség, aely 30 napon belül a besugárzott szeélyek 100 %-ának a halálához vezet, LD> 8 Gy teljes test besugárzás esetén félhalálos dózis (LD 50 ): az a dózisennyiség, aely 30 napon belül a besugárzott szeélyek 50 %-ának a halálához vezet, LD 50 > 5-8 Gy teljes test besugárzás esetén 36
10 besugárzás i dózis ( létrehozott pozitív) töltés ( levegő)töeg A besugárzási és az elnyelt dózis kapcsolata levegőben átlagosan 34 ev szükséges egy ionpár keltéséhez D lev f 0 X, ahol f 0 34 J/C X ΔQ Δ levegő ΔQ ρ ΔV levegő [ X ] C kg kis részecskeenergia esetén <0.6 MeV< nagy részecskeenergia esetén érvényesség: Röntgen és gaa sugárzásra levegőben D lev? D szöv 3 MeV alatt elektronegyensúly esetén 37 töeggyengítési együttható töegfékező 38 képesség Elektronegyensúly kis fotonenergia esetén < 0.6 MeV Bragg-Gray elv nagy fotonenergia esetén > 0.6 MeV szövet (levegőekvivalens) fekete pontok: prier elektronok fekete vonalak: szekunder elektronok a V térfogatból kilépő és az abba belépő elektronok száa egegyezik 39 olyan vékony karafal, hogy az elektronok akadály nélkül behatolnak levegővel telt üreg karafal az ionsűrűség a érőüregben egyezik a szövetivel szövetekvivalens karafal 40
11 dózisteljesítény 3. A sugárzások érése dózis kiszáítása pontszerű gaa sugárforrás esetén levegőben néhány sugárforrás dóziskonstansa forrás Szcintillációs száláló Ionizációs kara 43 Orvosi fizika gyakorlatok, 2005 A: rekobináció B: ionizációs kara (összegyűjti az összes iont, a sugárzás ionizáló hatását éri) C: proporcionális tartoány D: Geiger tartoány (lavina effektus) 44
12 Fildoziéter Zsebkara doziéter GM-csöves szálálók fil fényzáró tokban egfeketedése arányos az ionizáló sugárzás dózisával két réteg: érzékenyebb (50 Sv-50 Sv) érzéketlenebb (50 Sv-10 Sv). szűrők: űanyag, Al, Pb, stb. lehetővé teszik a sugárzás fajtájának és energiájának egállapítását, Orvosi fizika gyakorlatok, 2005 hátrányok: csekély pontosság, utólagos kiértékelés (pl. 1 hónap). 45 Orvosi fizika gyakorlatok, Teroluineszcens dózisérő az elektronok csapdába kerülnek gyűrűbe foglalt TLDkapszula (a kéz sugárterhelésének detektálására), ill. a agyar fejlesztésű PILLE nevű teroluineszcens doziéter kiértékelő egysége az űrben (Sally Ride 1984). 47
1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges
Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2009.04.06 1. Az ionizáló sugárzások és az anyag kölcsönhatása levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai
Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések
Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Radioaktív sugárzás elnyelődésének vizsgálata
11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű
FIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
A röntgendiagnosztika alapjai
A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás
Az ionizáló sugárzások előállítása és alkalmazása
Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások
LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése
LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK
1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag
Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó
Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása
Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin
Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,
RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS
Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton
Röntgendiagnosztika és CT
Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Izotópos méréstechnika, alkalmazási lehetőségek
Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil
Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás
Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy
Röntgendiagnosztika és CT
Röntgendiagnosztika és CT 2013.04.08. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései
Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok
Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.
2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai
1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata
1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására
rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest
Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,
1. A radioaktív sugárzás hatásai az emberi szervezetre
1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés
ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN
ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági
Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata
Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL
3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,
Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.
Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.
A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
1991. évi XLV. törvény. a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel. I.
1991. évi XLV. törvény a mérésügyrıl, egységes szerkezetben a végrehajtásáról szóló 127/1991. (X. 9.) Korm. rendelettel [Vastag betővel szedve az 1991. évi XLV. törvény (a továbbiakban: Tv.), vékony betővel
Radiokémia. A) Béta-sugárzás mérése GM csővel
Radiokémia Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes, más része mesterséges eredetű. Valamely radioaktív izotóp bomlása során az atommagból származó sugárzásnak három
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
SUGÁRZÁS DETEKTÁLÁS - MÉRÉS SUGÁRZÁS DETEKTÁLÁS - MÉRÉS. A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások
SUGÁRZÁS DETEKTÁLÁS - MÉRÉS A sugárzás mérés eszközei Méréstechnikai módszerek, eljárások Dr. Kári Béla Semmelweis Egyetem ÁOK Radiológiai és Onkoterápiás Klinka / Nukleáris Medicina Tanszék SUGÁRZÁS DETEKTÁLÁS
Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok
Orvosi biofizika II Orvosi Biofizika II Röntgensugárzás előállítása és tulajdonságai Röntgendiagnosztikai alapok Az elektromosság orvosi alkalmazásai Termodinamika - egyensúly, változás, főtételek Diffúzió,
Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései
Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok
SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)
SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából
Általános Géptan I. SI mértékegységek és jelölésük
Általános Géptan I. 1. Előadás Dr. Fazekas Lajos SI mértékegységek és jelölésük Alapmennyiségek Jele Mértékegysége Jele hosszúság l méter m tömeg m kilogramm kg idő t másodperc s elektromos áramerősség
A sugárzás biológiai hatásai
A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát
Gamma-kamera SPECT PET
Gamma-kamera SPECT PET 2011.04.17. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő
Biofizika tesztkérdések
Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!
Sugárvédelmi mérések és berendezések
Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás
1 2 Röntgen Osztály 9-15 8.00 10.00 2. illetve 5. csoport 11.00 13.00 1. illetve 4. csoport 13.00 15.00 3. illetve 6. csoport 3 4 Sebészeti röntgenvizit: 8.30 5 6 Honlapok www. univet.hu egységek sebészet
RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék
RADIOKÉMIA SZÁMOLÁSI FELADATOK 2005. Szilárdtest- és Radiokémiai Tanszék 1. Az atommag kötési energiája Az atommag kötési energiája az ún. tömegdefektusból ( m) számítható ki. m = [Z M p + N M n ] - M
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Megmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)
- 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.
RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium
A röntgensugárzás természete, forrásai és biológiai hatásai X-rays
A röntgensugárzás terészete, forrásai és biológiai hatásai X-rays elékeztető Elektroágneses sugárzások Foton koncepció az anyagi kölcsönhatásokban Foton partnere az elektron A foton energiát gyakran ev
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135
RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Mágneses momentum, mágneses szuszceptibilitás
Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz
Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás
Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)
(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)
Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen
A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α
Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai
Orvosi Biofizika. A tudomány küldetése A valóság minél pontosabb megismerése - a tudományos igazságok feltárása. Orvosi Biofizika
A tudomány küldetése A valóság minél pontosabb megismerése - a tudományos igazságok feltárása Orvosi Biofizika Kellermayer Miklós Jó ez? Fontos ez? Igen(!): Megközelítési módjaink: A valóság sokkal szebb,
A kozmikus sugárzás hatásai. Szimler András BME HVT, Őrtechnika Laboratórium V1/105
A kozmikus sugárzás hatásai Szimler András BME HVT, Őrtechnika Laboratórium V1/105 A kozmikus sugárzás Fıbb összetétele Primer sugárzás 90% proton 9% α (He 2+ ) 1% elektron és egyéb ion Szekunder sugárzás
A sugárzás és az anyag kölcsönhatása. A gamma/röntgensugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölsönatása A gamma/röntgensugárzás és anyag kölsönatása y Szóródások: rugalmatlan x Compton-szórás Rugalmas szórás kis energiáknál van, azaz
ORVOSI-BIOLÓGIAI IZOTÓPLABORATÓRIUMOK SUGÁRVÉDELME
ORVOSI-BIOLÓGIAI IZOTÓPLABORATÓRIUMOK SUGÁRVÉDELME ORVOSI-BIOLÓGIAI SUGÁRVÉDELME IZOTÓPLABORATÓRIUMOK Tartalom 1. AZ IONIZÁLÓ SUGÁRZÁS FIZIKÁJA... 1 1. Az ionizáló sugárzás fizikája... 1 2. Radioaktivitás,
Talián Csaba Gábor Biofizikai Intézet 2012. április 17.
SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás
Fizikai kémia és radiokémia félév 2. zárthelyi megoldások
A csoport Fizikai kémia és radiokémia 2012-2013. 1. félév 2. zárthelyi megoldások 1. Mit értünk a magok kötési energiáján és hogyan tudná azt meghatározni. Mekkora a legstabilisabb magok egy nukleonra
Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4
99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás
Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása
Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás
TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS
TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi
2015.02. Általános radiológia - előadás. Arany-Tóth Attila. Radiológia-Aneszteziológia: 6. félév: 3 kredit
1 4 Sebészeti és Szemészeti Tanszék és Klinika Radiológia-Aneszteziológia: 6. félév: 3 kredit KOLLOKVIUM Általános és részletes sebészet I. 7. félév: 2 kredit Részletes sebészet II.: 8. félév: 6 kredit
Tamás Ferenc: Természetes radioaktivitás és hatásai
Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást
Ionizáló sugárzások. Ionizáló sugárzások. dozimetriája. A dozimetria feladata. Megfelelő mennyiségek megfogalmazása
Ionizáló sugárzások dozimetriája Ionizáló sugárzások Alkalmazások optimalizálása Káros következmények becslése, minimalizálása Ionizáló sugárzások csoportosításuk a kiváltott hatás alapján. Közvetlenül
Radiológiai technikák
Radiológiai technikák Előadásvázlat, készítette: Dr. Sükösd Csaba (Az Orvosbiologia Mérnökképzés "Radiologiai Technikák" cimű tantárgyának egy részlete. A további részeket :Dr. Blaskó Katalin és Dr. Makó
318. Radioaktív sugárzás vizsgálata szilárdtest nyomdetektorral
318. Radioaktív sugárzás vizsgálata szilárdtest nyomdetektorral Feladat: 39 Pu forrás -sugárzásának detektálása cellulóz-nitrát nyomdetektor segítségével, optimális előhívási idő meghatározása. Elméleti
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Dozimetria és sugárvédelem
PR/B10ZP0318N0019FD003 Dozimetria és sugárvédelem Dr. Zagyvai Péter egyetemi docens Atomenergetikai Tanszék Nukleáris Technikai Intézet Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem
vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség
ULTRAHANG Dr. Basó solt kitérés A részeskék mozgása x y Asinω t Δt x/ ω (π/t) sebesség gyorsulás d y x v Aω osω t d t d v x a Aω sinω t d t ULTRAHANG Hang mehanikai rezgés longitudinális hullám inrahang
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József
MATROSHKA kísérletek a Nemzetközi Űrállomáson Kató Zoltán, Pálfalvi József Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2010 A Matroshka kísérletek: Az Európai Űrügynökség (ESA) dozimetriai programjának
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
Diagnosztikai röntgen képalkotás, CT
Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak
A nukleáris fizika története, a nukleáris energetika születése
Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Elektronok, atomok. Tartalom
Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom
Az atomnak az a része, amely az atom tömegének túlnyomó részét tartalmazza. Protonok és neutronok alkotják. vagy: Elektronjaitól megfosztott atom.
radioaktív bomlás radioactive decay atommag nucleus nukleon nucleon izotóp isotope izobár isobar izoton isoton izomer mag isomer nucleus nukleogenezis eredetű izotóp nucleogenesis isotope primordiális
Mag- és neutronfizika 5. elıadás
Mag- és neutronfizika 5. elıadás 5. elıadás Szcintillációs detektorok (emlékeztetı) Egyes anyagokban fényfelvillanás (szcintilláció) jön létre, ha energiát kapnak becsapódó részecskéktıl. Anyagát tekintve
bodizs 2007/3/7 9:55 page 1 #1 Atommagsugárzások méréstechnikái
bodizs 2007/3/7 9:55 page 1 #1 Atommagsugárzások méréstechnikái bodizs 2007/3/7 9:55 page 2 #2 További olvasnivaló a kiadó kínálatából: Frei Zsolt Patkós András: Inflációs kozmológia Hraskó Péter: Relativitáselmélet
Charles Simonyi űrdozimetriai méréseinek eredményei
Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Charles Simonyi űrdozimetriai méréseinek eredményei Apáthy István, Pázmándi Tamás Sugárvédelmi és Környezetfizikai Laboratórium Űrdozimetriai Csoport