rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest"

Átírás

1 Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest

2 chopin.web.elte.hu

3 Bevezetés 1. A radioaktivitás alapjai (atomszerkezet, atommag összetétele, a sugárzás fajtái, radioaktivitás, a bomlás típusai, természetes és mesterséges izotópok) 2. Sugárvédelem (dózisfogalmak, sugárterhelés típusai, sugárzásmérő műszerek, sugárbalesetek) 3. Sugárbiológia (az ionizáló sugárzás biológiai hatásai, lineárkvadratikus modell, 4R-szabály, sugárérzékenység sugárvédő anyagok, dózis-hatás összefüggések, frakcionálás, sugárzás okozta rosszindulatú daganatok, sugárbetegség)

4 Bevezetés 4. Diagnosztikai képalkotó eszközök (RTG - röntgen, CT számítógépes tomográfia, MR magmágneses rezonancia vizsgálat, PET pozitronemissziós tomográfia, UH ultrahang, ezek kombinációi, képfúzió) 5. Nukleáris medicina (diagnosztika és terápia, radiofarmakonok - nyomkövetők, SPECT foton-emissziós tomográfia) 6. Külső besugárzás (teleterápia) (folyamata, gyorsítók, kobaltágyú, RTG-terápia, dózis-profilok, mélydózis-görbék, kollimáció, besugárzási mezők, ékek, verifikáció) 7. Sugárterápiás besugárzás-tervezés (ICRU ajánlások, 2D/3D-s tervezés, céltérfogat, védendő szervek, dózis-térfogat hisztogram, minőségi indexek, konformális besugárzási technika)

5 Bevezetés 8. Speciális külső besugárzási technikák (IMRT intenzitásmodulált sugárterápia, IGRT képvezérelt sugárterápia, sztereotaxia, egésztestbesugárzás, teljes testfelszín-besugárzás, gamma-kés, Cyberknife, proton-, nehézion-terápia, ) 9. Belső, izotóppal végzett besugárzás (brachyterápia) (folyamata, típusai, izotópok, besugárzó készülékek, dózis-teljesítmény, dózis-előírási technikák, optimalizálási módszerek, különböző lokalizációk besugárzása, IGABT képvezérelt adaptív brachyterápia, in-vivo dozimetria) 10. Szövetközi besugárzások (intersticiális brachyterápia) (nagy dózisteljesítményű vs. permanens beültetések, lágyrész-, fej-nyaki, agyi és nőgyógyászati daganatok tűzdelési technikái)

6 Bevezetés 11. Emlődaganatok szövetközi besugárzása (nagy dózisteljesítményű izotóppal végzett ideiglenes beültetés, ballonos beültetés, seed-terápia kis dózisteljesítményű izotóppal végzett végleges beültetés, speciális dóziselőírási és -optimalizálási módszerek) 12. Prosztatadaganatok szövetközi besugárzása (nagy dózisteljesítményű izotóppal végzett ideiglenes beültetés, seed-terápia kis dózisteljesítményű izotóppal végzett végleges beültetés, folyamatuk, speciális dóziselőírási és -optimalizálási módszerek, sugárvédelem, verifikáció) 13. Látogatás az Országos Onkológiai Intézetbe (gyakorlati bemutató)

7 Ajánlott irodalom 1. Khan FM., The Physics of Radiation Therapy. Lippincott Williams & Wilkins, Philadelphia, PA, USA, Németh Gy. (szerk.), Sugárterápia. Springer Tudományos Kiadó Kft., Budapest, Köteles Gy. (szerk.), Sugáregészségtan. Medicina Könyvkiadó Rt., Budapest, Fehér I., Deme S. (szerk.), Sugárvédelem. ELTE Eötvös Kiadó, Budapest, Szilvási I. (szerk.), A nukleáris medicina tankönyve. B+V Lap- és Könyvkiadó Kft., Budapest, 2002.

8 A radioaktivitás alapjai

9 Sugárzások osztályozása I. sugárzások nem ionizáló -rádióhullámok - mikrohullámok -fény közvetetten (semleges részecskék) - fotonok (RTG, gamma) -neutronok ionizáló közvetlenül (töltött részecskék) - elektronok - protonok - a-részecskék - nehézionok

10 Sugárzások osztályozása II. sugárzások részecske - elektronok - protonok -neutronok - α-részecskék - nehézionok röntgensugárzás (atommagon kívül keletkezik) -RTG-készülékek, CT - lineáris gyorsítók (fékezési) elektromágneses* (fotonsugárzás) gammasugárzás (magsugárzás) - radioaktív izotópok (Ra-226, Co-60, Ir-192) *Csak megfelelő nagyságú energia esetén hoznak létre ionizációt.

11 Elektromágneses spektrum elegendő energia az ionizációhoz

12 Ionizáció

13 A sugárzás elnyelődésétől a biológiai károsodásig Biológiai rendszer fotonbesugárzása Elsődleges kölcsönhatás egy elektronnal A szórt foton nagy sebességű másodlagos elektronok A fékezési röntgensugárzás ionizáció, gerjesztés, molekuláris kötések megbontása, hő B Fizika kémiai változás Kémia biológiai károsodás Biológia Átlagosan kb. 30 kölcsönhatás alatt adódik át a foton kezdeti energiája a másodlagos elektronoknak.

14 A sugárzás típusai - közvetlen ionizáció: a részecske az energiáját közvetlenül az anyagnak adja le (e -, p + ) - közvetett ionizáció: az elsődleges részecske az energiáját egy másodlagos részecskének adja át, amely ionizációt okoz (foton, n 0 ) ionizáció

15 Mélydózis-görbék a sugárzás különböző típusaiban

16 leggyakrabban fotonokat használunk

17 Foto-effektus Compton-effektus Párkeltés

18 Fotonsugárzás és víz közötti kölcsönhatások százalékos megoszlása

19 30 kev 2 MeV

20 Fotonok - gamma-sugárzás: monoenergiás (1 vagy több vonal) - RTG-sug.: spektrum gamma - atommagban RTG - héjban C.W. Röntgen - az X-sugárzás

21 RTG-sugárzás Nagyenergiás elektronok céltárgynak (fém Au,W) ütköznek energiájuk egy része sugárzássá alakul: alacsony közepes energia ( kev) céltárgy e - RTG-sug. nagy energia > 1 MeV

22 Alacsony és közepes energiájú RTG-cső

23 RTG spektrum karakterisztikus RTG-sug. Bremsstrahlung szűrés utáni spektrum maximális elektron energia

24 Fotonnyaláb lineáris gyengítése I 0 I(x) I(x) x = I 0 e μx μ = lineáris gyengítési együttható Ha I(x) = I 0 / 2 x = HVL ( half value layer, felezőréteg-vastagság) HVL = 0,693 μ μ ab = E ab μ hν

25 Fotonnyaláb lineáris gyengítése

26 Tömeggyengítési együttható I = I 0 e -μx I = I 0 e -(μ/ρ)(ρx) (μ/ρ) a tömeggyengítési együttható (cm 2 /g) (ρx) felületi sűrűség (g/cm 2 )

27 Keskeny Co-60 sugárnyaláb gyengülése vízen történő áthaladáskor

28 Sugárzási tér jellemzésére szolgáló mennyiségek -mezőméret - fókusz-bőr távolság -energia - gócmélység - százalékos mélydózis b a ekv a - ekvivalens mezőméret: 2ab a ekv = a + b

29 Sugárzási tér jellemzésére szolgáló mennyiségek

30 Különböző energiájú fotonsugárzások mélydózisgörbéi

31 Fotonsugárzások tipikus dózismaximum mélységei 5 x 5 cm 2 -es mezőméretnél

32 Elektronsugárzás mélydózis-görbéi 6 MeV 9 MeV 12 MeV 15 MeV 18 MeV 21 MeV d 80% E / 3

33 Különböző energiájú fotonmezők dózisprofiljai

34 Nyílt 10 x 10 cm-es fotonmező dózisprofilja három mélységben 6 MV-s sugárnyalábnál

35 Ékelt 10 x 10 cm-es fotonmező dózisprofilja három mélységben 6 MV-s sugárnyalábnál

36 Geometriai félárnyék (penumbra) kialakulása s Sugárforrás SCD SSD Kollimátor d Felszín Félárnyék régió

37

38 Radioaktív izotópok atom elektronok atommag

39 Radioaktív izotópok Atommag: - protonok (+) és neutronok (nukleonok) - tömegük közel azonos ( 1, kg ( 1 ATE)) - protonszám elektronhéjak kémiai tulajdonságok - elem azonos számú proton (rendszám: Z) - izotóp azonos protonszám, eltérő neutronszám - tömegszám (A) = protonok (Z) + neutronok (N) - jelölés: 137 Cs, Cs-137

40 Radioaktív izotópok

41 Hogyan készítsünk atommagot? - atommagban ható erők: Coulomb-erő (taszítás) rövid hatótávolságú magerők (vonzás) -M mag < (Zm p +Nm n ) : tömegdefektus - kötési energia: E=mc 2 - az atommag felépítésekor energia szabadul fel (sugárzás formájában)

42 Kötési energia tömegszám-függése 1 MeV = 1, J

43 Stabil-instabil magok - minél nagyobb a rendszám (a mag mérete), annál több neutron kell a stabil kötéshez - egyes Z-N kombinációk stabilak (energetikailag kedvező állapot), mások nem radioaktivitás - Bi-209 : utolsó stabil nuklid

44 Radioaktív bomlás - instabil magok (spontán) átalakulással stabil (stabilabb) állapotba igyekeznek radioaktív bomlás - átalakulás formája (bomlási mód) a stabilabb állapot elérési módjától függ - radioaktív magok bomlási valószínűsége állandó (jellemző az adott magra): bomlási állandó (λ) dn/dt = -λ N (A aktivitás) N(t) = N 0 e -λt A(t) = A 0 e -λt - felezési idő: T 1/2 = ln2/λ

45 Radioaktív bomlás

46 Radioaktív bomlás - α - alfa-részecske kibocsátása: A leány = A anya 4; Z leány = Z anya 2 - energia megoszlása: alfa- (4,8 MeV), a maradék béta- és gamma-sugárzás - alfa-részecskék energiája diszkrét (4-9 MeV közötti) - nagy tömegű, töltött részecskék ( kölcsönhatás)

47 Radioaktív bomlás - β - béta-részecske kibocsátása: elektron: pozitron: A leány = A anya ; Z leány = Z anya ±1 - energia kibocsátása: béta- és gamma-sugárzás - béta-részecskék energiája folyamatos (0-E max között) -kis tömegű, töltött részecskék ( kölcsönhatás)

48 Radioaktív bomlás belső konverzió - elektron befogása (K-befogás): A leány = A anya ; Z leány = Z anya -1 - energia kibocsátása: gamma- és karakterisztikus röntgen (kaszkád-sugárzás)

49 Radioaktív bomlás γ - elektromágneses (foton-) sugárzás (töltés és nyugalmi tömeg nélküli részecskék) - valójában nem radioaktív bomlás, csak annak kísérője (mag energiafeleslegének kibocsátása) - a magban a nukleonok energiája kvantált, a gamma-sugárzás energiája is diszkrét eloszlású - a gamma-sugárzás kilépése általában az alfa-, béta-bomlással egyidejű, ha nem izomer magok (pl. Tc-99m)

50 Radioaktív bomlás neutron-sugárzás - töltés nélküli, nyugalmi tömeggel rendelkező részecskék -forrás: - hasadás (2-3 neutron/hasadás, átlagenergia 4-6 MeV) - fotonukleáris reakció (nagy energiájú protonok elnyelése a magban, küszöbenergia 2-10 MeV) - (alfa-sugárzó) + (Be vagy D) (nagy energiájú gammafotonok kölcsönhatása a maggal, küszöbenergia 2-3 MeV)

51 Radioaktív bomlás röntgen-sugárzás - karakterisztikus röntgensugárzás: - elektromágneses (foton-) sugárzás, a radioaktív bomlás kísérője - energiája diszkrét értékű - nem az atommagban, hanem az elektronhéjakban keletkezik, energiája 10 kev nagyságrendű (pl. K-befogás) -(fékezési röntgensugárzás töltött részecske elektromágneses térben gyorsul folyamatos energiaeloszlású elektromágneses sugárzás)

52 Radioaktív sugárzások α β alfabomlás bétabomlás 4 He mag 4-9 MeV A-4 Z-2 e -, e + folytonos (kev-mev) A Z±1 n n folyonos (0,01 ev-mev) γ α,β kísérő sug. karakterisz tikus RTG K-befogás e- átmenet fékezési RTG töltött részecskék gyorsulása elektromos térben diszkrét E-k (kev-mev) diszkrét E-k (kev-100 kev) folytonos (kev-100 kev)

53 Radioaktív sugárzások - konverziós elektronok: izomer magok energia-felesleg (γ-sug.) belső (K) elektron kilölése karakterisztikus RTG - Auger-elektron: fotoelektromos kh. karakterisztikus RTG saját atom elektronhéja Auger-elektron (kaszkád-szerű ütközések, biológiai hatás pl. a DNS-molekulákban)

54 Alfa- és béta-sugárzás kh.-a - alfa-sugárzás: ionizáció (1000-szerese a bétáénak, levegőben 3-7 ionpár/μm), hatótávolság (I 0): levegőben cm, szilárd anyagban μm - béta-sugárzás: ionizáció, gerjesztés, fékezési röntgen I I 0 e -μx, μ gyengítési együttható (1/cm) maximális hatótávolság (levegőben m, szilárd anyagban mm - cm, felezési rétegvastagság: ln 2/μ

55 Alfa- és béta-sugárzás maximális hatótávolságai

56 Neutron- és elmágn.-sugárzás kh.-a - neutronsugárzás: rugalmas és rugalmatlan ütközések, közvetett ionizáció (proton, alfa), neutronbefogás, hasadás - elektromágneses sugárzás (röntgen és gamma): közvetett ionizáció (levegőben 1-10 ionpár/cm*) - fotoelektromos hatás ( Z 5 E -3 ) - Compton-szóródás ( Z E -0,5 ) - párkeltés ( Z 2 E) E>1,02 MeV * alfa-sugárzás 4-5, béta-sugárzás 2 nagyságrenddel nagyobb (nem sűrűn ionizáló sugárzás)

57 Magsugárzások α- sugárzás (He-ion) - nagyon rövid hatótávolság, intenzív kölcsönhatás az anyaggal, sugárterápiás szempontból nem használják β - - sugárzás (e - ) - könnyű részecske, felszínhez közeli daganatok kezelésére pl. szem applikátorok (Sr-90, eye plaque ), intravaszkuláris AL technika (Sr-90, P-32) γ- sugárzás (foton) - manuális technika (I-125, Pd-103) - AL technika (Ir-192, Co-60, Cs-137)

58 Dozimetriai alapfogalmak - bármilyen anyag besugárzásakor a sugárzásnak csak egy része lép kölcsönhatásba az anyaggal, másik része kölcsönhatás nélkül továbbhalad (kölcsönhatáson a sugárzás energiájának az elnyelődését értjük) - csak a szervezet által elnyelt energia okoz biológiai hatást - az elnyelt energia nagysága: elnyelt dózis Elnyelt dózis: egységnyi tömeg által elnyelt energia, mértékegysége a gray (Gy) 1 Gy = 1 J/kg 1 Gy = 100 cgy Dózisteljesítmény: egységnyi idő alatti elnyelt dózis, mértékegysége: Gy/perc, Gy/s 1 Gy 2,4 x 10 4 o C

59 Brachyterápiás dozimetriai alapfogalmak Aktivitás (A) Időegység alatt (1 s) elbomlott atommagok száma Mértékegysége: becquerel 1 Bq = 1 bomlás / s 1 Ci = 3,7 x Bq Felezési idő (T 1/2 ) Azt az időtartamot jelenti, amely alatt a kezdeti aktivitás a felére csökken

60 Radioaktív izotóp bomlástörvénye A = A 0 2 t / T 1/ 2 A = aktivitás a t időpontban A 0 = aktivitás a kezdeti időpontban (t = 0) t = eltelt idő T 1/2 = felezési idő

61 Ir-192 sugárforrás aktivitásának időbeli változása (felezési idő = 74,2 nap)

62 Pontforrás körüli dózis számolása AΓ D = f r 2 S(r)t D = elnyelt dózis f = átváltási faktor sugárforrás A = aktivitás Γ = gamma konstans r = távolság S(r) = szöveti korrekció (elnyelés, szóródás) t = idő r D

63 Sugárzás intenzitásának változása a távolság függvényében I 1 r 2

64 Fordított távolságnégyzet geometriai hatása ref. távolság = 100 cm 80 Relatív érték (%) F ref. távolság 100 % távolság ref. távolság = 1 cm 0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 Ref. távolságtól mért távolság (cm)

65 Brachyterápiás izotópok (foton) Ra-226 sok klinikai tapasztalat, hosszú felezési idő, jelentős sugárvédelem, veszélyes izotóp Co-60 nagy fajlagos aktivitás, nagy energia, jelentős sugárvédelem Ir-192 kisebb sugárvédelem, nagy fajlagos aktivitás, gyakori forráscsere, huzal, HDR afterloading I-125 lokális sugárvédelem, alacsony dózisteljesítmény, jelentős szöveti korrekció, seed

66 Brachyterápiás izotópok fizikai paraméterei Izotóp Felezési idő Átlagenergia (MeV) HVL*-ólom (mm) Ra év 0,830 16,0 Co-60 5,26 év 1,250 11,0 Cs év 0,662 5,5 Ir ,2 nap 0,380 2,5 I ,2 nap 0,028 0,025 Pd ,0 nap 0,021 0,008 *HVL: felezőréteg-vastagság ("half value layer")

67 HDR Ir-192 sugárforrás körüli relatív dóziseloszlás

68 Köszönöm m a figyelmet!

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Orvosi biofizika képzk az ELTE-n

Orvosi biofizika képzk az ELTE-n Orvosi biofizika képzk pzés az ELTE-n Fröhlich Georgina Eötvös Loránd Tudományegyetem Természettudományi Kar Budapest Orvosi biofizika - Multidiszciplináris: fizika - mérnöki tudományok orvostudomány

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Repül l az elektron, ki tudja, hol áll meg, kit hogyan talál l meg...

Repül l az elektron, ki tudja, hol áll meg, kit hogyan talál l meg... Repül l az elektron, ki tudja, hol áll meg, kit hogyan talál l meg... Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Az atomoktól a csillagokig ELTE TTK, Budapest Ionizáló

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok Ionizáló sugárzás Sugárterápia Lövey József Országos Onkológiai Intézet SE Radiológiai és Onkoterápiás Klinika Budapest Az elnyelt sugárzás mértékegysége J/kg = Gray 100 % Terápiás ablak T C P N T C P

Részletesebben

Teleterápia Dr. Fröhlich Georgina

Teleterápia Dr. Fröhlich Georgina Teleterápia Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés Sugárterápia: - az egyik fő modalitás a daganatok

Részletesebben

Radioaktív izotópok a testünkben A prosztata belső sugárkezelése

Radioaktív izotópok a testünkben A prosztata belső sugárkezelése Radioaktív izotópok a testünkben A prosztata belső sugárkezelése A legtöbb embernek a háta is borsódzik, ha arra gondol, hogy sugárzó anyaggal kell kapcsolatba lépnie. Ennél is bizarrabbnak tűnhet, ha

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

I. Külső (teleterápiás) besugárzó-készülékek. 5 db lineáris gyorsító:

I. Külső (teleterápiás) besugárzó-készülékek. 5 db lineáris gyorsító: I. Külső (teleterápiás) besugárzó-készülékek 5 db lineáris gyorsító: Varian TrueBeam 6, 10 és 18 MV foton, 6-18 MeV elektron, képvezérelt, intenzitás modulált, légzéskapuzott és sztereotaxiás sugárkezelés,

Részletesebben

Brachyterápia. Dr. Fröhlich Georgina. Országos Onkológiai Intézet Sugárterápiás Központ Budapest

Brachyterápia. Dr. Fröhlich Georgina. Országos Onkológiai Intézet Sugárterápiás Központ Budapest Brachyterápia Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés teleterápia: sugárzás forrása a betegen kívül

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék

RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék RADIOKÉMIA SZÁMOLÁSI FELADATOK 2005. Szilárdtest- és Radiokémiai Tanszék 1. Az atommag kötési energiája Az atommag kötési energiája az ún. tömegdefektusból ( m) számítható ki. m = [Z M p + N M n ] - M

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Izotópok és radioaktív sugárzások

Izotópok és radioaktív sugárzások Kémia atomok, molekulák közti kölcsönhatások Izotópok és radioaktív sugárzások Kölcsönhatások szubatomi részecskék között Radioaktív sugárzások biológiai hatásai. A sugárterápia alapelvei, megvalósítása

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai

Részletesebben

Sugárbiológia ismeretek jelentősége a diagnosztikában és terápiában. és sugárkémiai alapismeretek.

Sugárbiológia ismeretek jelentősége a diagnosztikában és terápiában. és sugárkémiai alapismeretek. Sugárbiológia ismeretek jelentősége a diagnosztikában és terápiában. Az ionizáló sugárzás típusai, sugárfizikai és sugárkémiai alapismeretek. A sugárbiológia az ionizáló sugárzás élő szervezetre gyakorolt

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN

A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN Pesznyák Cs 1,2, Légrády D 1, Osváth Sz 1, Zagyvai P 1,3 1 BME NTI 2 Országos Onkológiai Intézet 3 MTA EK ORVOSFIZIKUS Az orvosfizikus olyan fizikusi

Részletesebben

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1.

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1. Gamma kamera, SPECT, PET Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, 2010. március 1. Izotópok, bomlás, magsugárzások Izotópok: kémiai részecskék, azonos rendszám de eltérő tömegszám pl.: szén

Részletesebben

(intersticiális. brachyterápia) Dr. Fröhlich Georgina. Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest

(intersticiális. brachyterápia) Dr. Fröhlich Georgina. Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Szövetk vetközi besugárz rzások (intersticiális brachyterápia) Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest BT

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges

1. Az ionizáló sugárzások és. az anyag kölcsönhatása. Prefixumok. levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia szükséges Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2009.04.06 1. Az ionizáló sugárzások és az anyag kölcsönhatása levegőben (átlagosan) 1 ionpár keltéséhez 34 ev = 5.4 aj energia

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Dr. Fröhlich Georgina

Dr. Fröhlich Georgina Szövetk vetközi besugárz rzások - Emlőtűzdel zdelések Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Emlőtűzdelés

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

Fejezetek a klinikai onkológiából

Fejezetek a klinikai onkológiából Fejezetek a klinikai onkológiából Előadás jegyzet Szegedi Tudományegyetem Általános Orvosi Kar Onkoterápiás Klinika 2012. 1 SUGÁRTERÁPIA Technikai alapok Dr. Szil Elemér Bevezetés A daganatos betegek kezelésére

Részletesebben

Fizikai kémia és radiokémia félév 2. zárthelyi megoldások

Fizikai kémia és radiokémia félév 2. zárthelyi megoldások A csoport Fizikai kémia és radiokémia 2012-2013. 1. félév 2. zárthelyi megoldások 1. Mit értünk a magok kötési energiáján és hogyan tudná azt meghatározni. Mekkora a legstabilisabb magok egy nukleonra

Részletesebben

Géresi Enikő Tel.: E-posta: Semmelweis Egyetem Továbbképzési Központ Akkr.pont. Tanfolyami órák

Géresi Enikő Tel.: E-posta: Semmelweis Egyetem Továbbképzési Központ Akkr.pont. Tanfolyami órák Tanfolyam adatlap Alapadatok Kódszám Főcím Állapot Szervező Partner Célcsoport Szemeszter 2013.II.félév Jelleg Brachyterápia továbbképző tanfolyam Országos Onkológiai Intézet és Dr. Major (OOI) 1. sugárterápia

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.08. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet)

Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet) Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet) I. Irányelvek WHO 1988: Mindazon tevékenység, amely biztosítja a céltérfogatra leadott megfelelő sugárdózist az ép

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Orvosi sugáralkalmazás és a páciensek sugárvédelme. Nemzetközi Sugárvédelmi Alapszabályzat (IBSS)

Orvosi sugáralkalmazás és a páciensek sugárvédelme. Nemzetközi Sugárvédelmi Alapszabályzat (IBSS) Orvosi sugáralkalmazás és a páciensek sugárvédelme Nemzetközi Sugárvédelmi Alapszabályzat (IBSS) FELELŐSSÉGEK GYAKORLÓ ORVOS az orvosi sugárterhelés elrendelése a beteg teljeskörű védelme SZEMÉLYZET szakképzettség

Részletesebben

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Atomfizika a gyászatban

Atomfizika a gyászatban Atomfizika a gyógy gyászatban - Sugárter rterápia Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Nov. 8. Sugárterápia - Az egyik fő modalitás a daganatok kezelésében (+kemo,

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Bari Ferenc egyetemi tanár

Bari Ferenc egyetemi tanár Biofizika Biológia MSc 2011/2012 őszi szemeszter Radioaktív sugárzások keletkezése és tulajdonságai (bomlási törvény, bomlási módok, sugárzásfajták). Dozimetria (dózisfogalmak, egységek, sugárzásmérők).

Részletesebben

Hidrogén: 1 p + + különböző számú neutron

Hidrogén: 1 p + + különböző számú neutron Kémia atomok, molekulák közti kölcsönhatások Kölcsönhatások szubatomi részecskék között atommag proton neutron nukleon A kémiai elemet a protonszám határozza meg. magfizika Összeállnak, nem esnek szét!

Részletesebben

Minőségbiztosítás a sugárterápiában

Minőségbiztosítás a sugárterápiában Minőségbiztosítás a sugárterápiában Dr. Szabó Imre DEOEC Onkológiai Intézet Sugárterápia Tanszék Irányelvek WHO 1988: Mindazon tevékenység, amely biztosítja a céltérfogatra leadott megfelelő sugárdózist

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az atomnak az a része, amely az atom tömegének túlnyomó részét tartalmazza. Protonok és neutronok alkotják. vagy: Elektronjaitól megfosztott atom.

Az atomnak az a része, amely az atom tömegének túlnyomó részét tartalmazza. Protonok és neutronok alkotják. vagy: Elektronjaitól megfosztott atom. radioaktív bomlás radioactive decay atommag nucleus nukleon nucleon izotóp isotope izobár isobar izoton isoton izomer mag isomer nucleus nukleogenezis eredetű izotóp nucleogenesis isotope primordiális

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

Az ionizáló és nem ionizáló sugárzások összehasonlító elemzése. Készítette: Guáth Máté Környezettan Bsc Témavezető: Pávó Gyula

Az ionizáló és nem ionizáló sugárzások összehasonlító elemzése. Készítette: Guáth Máté Környezettan Bsc Témavezető: Pávó Gyula Az ionizáló és nem ionizáló sugárzások összehasonlító elemzése Készítette: Guáth Máté Környezettan Bsc Témavezető: Pávó Gyula Fizikai alapok, csoportosítás: Ionizáló és nem ionizáló sugárzások: Fontos

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2011.04.17. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő

Részletesebben

Radioaktív nyomjelzés analitikai kémiai alkalmazásai

Radioaktív nyomjelzés analitikai kémiai alkalmazásai Radioaktív nyomjelzés analitikai kémiai alkalmazásai Nyomjelzés az élő szervezetben In vitro diagnosztika: a vizsgálandó személy nem érintkezik közvetlenül radioaktív anyaggal, hanem a tőle levett (általában

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Sugárterápiás szakasszisztens szakképesítés A besugárzás tervezése modul. 1. vizsgafeladat október 10.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Sugárterápiás szakasszisztens szakképesítés A besugárzás tervezése modul. 1. vizsgafeladat október 10. Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az interaktív vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes

Részletesebben

Röntgensugárzás. Karakterisztikus röntgensugárzás

Röntgensugárzás. Karakterisztikus röntgensugárzás Röntgensugárzás Tudjuk, hogy a különböző körülmények között létrejövő, gyakorlati szempontból fontos elektromágneses hullámok (elektromágneses sugárzás) hullámhosszai egy igen széles mintegy 18 nagyságrendet

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Wilhelm Konrad Röntgen (1845-1923) X-sugárzás1895.

Wilhelm Konrad Röntgen (1845-1923) X-sugárzás1895. Wilhelm Konrad Röntgen (1845-1923) X-sugárzás1895. A sugárterápia alapjai Dr. Urbancsek Hilda Onkológia Intézet Sugárterápia Nem Önálló Tanszék Sugárterápia (RaTh): Sugárfizika (fizika, technika, mechanika,

Részletesebben

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben