PIC18xxx utasításkészlet
|
|
- Máté Pap
- 8 évvel ezelőtt
- Látták:
Átírás
1 1 PIC18xxx utasításkészlet A PIC 18xxx mikrovezérlők kiterjesztett utasításkészlettel rendelkeznek. A legtöbb utasítás egyszavas (16 bit), de létezik 3 kétszavas utasítás is. Mindegyik egyszavas utasítás egy műveleti kódból (MK) amely megadja az utasítás típusát és egy vagy két operandusból amelyre a művelet vonatkozik áll. Az utasításkészlet 4 alapkategóriára osztható: Bájt orientált művelet Bit orientált művelet Konstans művelet Vezérlő utasítás A bájt orientált utasítások operandus mezője 3 részből áll: 1. Fájlregiszter (jele: f). Az eredmény helye (jele: d) 3. Acces memória (jele: a) A fájlregisztert leíró f azt a regisztert jelenti, amire at utasítás irányul. A cél leíró (d) a művelet eredményének helyét adja meg. Amennyiben a d=0 (vagy d=w) az eredmény a WREG-ben keletkezik, amikor pedig a d=1 (vagy d=f) akkor abban a fájlregiszterben, amire az utasítás vonatkozik. A bit orientált utasítások operandus mezője is 3 részből áll: 1. Fájlregiszter (jele: f). A fájlregiszter egy bitje (jele: b) 3. Access memória (jele: a) A bitet megadó b azonosító a fájlregiszteren belül annak a bitnek a sorszáma, amire a művelet vonatkozik. A konstans műveletek operandus mezője a következő részekből áll: A konstans értéke, amit a fájlregiszterbe töltünk (jele: k) A felhasznált FSR regiszter, amibe a konstanst töltjük (jele: f) Nincs operandus (jele: -) A vezérlő utasítások operandus mezője pedig a következő részekből áll: Programmemória cím (jele: n) A CALL vagy a RETURN utasítás módja (jele: s) Tábla írás és olvasás módja (jele: m) Nincs operandus (jele: -) A kétszavas utasítások 3 bitből állnak. A második szó felső 4 bitje 1-es. Amennyiben az első szó is utasításként értelmezett, akkor NOP hajtódik végre. Az egyszavas utasítások 1 gépi ciklus alatt hajtódnak végre, kivéve azokat az elágaztató utasításokat, amelyeknél a PC tartalma módosul. A kétszavas utasítás két gépi ciklus alatt hajtódik végre. Minden utasítás 4 oszcillátor periódust igényel. Ez azt jelenti, ha 4MHz a oszcillátor frekvenciája, akkor 1 utasítás 1µs alatt hajtódik végre. Feltételes ugró utasítás esetén amikor a PC tartalma módosul az utasítás végrehajtásához µs szükséges. Kétszavas elágaztató utasításoknál, ha a feltétel teljesül a végrehajtási idő 3µs lesz. A példákban használt formátum nnnh hexadecimális számot jelent, ahol a h hexát jelent.
2 Mező a RAM hozzáférési bit a=0: a RAM terület az ún. Access RAM-ban van (a BSR-t nem kell figyelembe venni) a=1: a RAM bankot a BSR jelöli ki bbb Bit cím a 8 bites fájlregiszterben d Célkiválasztó bit: d=0(w): az eredmény a WREG-be kerül d=1(f): az eredmény a fájlregiszterbe (f) kerül dest Cél, akár a WREG, akár egy fájlregiszter f 8 bites fájlregiszter neve (pl PORTB) v. címe(0xff) f s 1 fájlregiszter címe (0x000-0xFFF). A forráscím tkp. f d 1 fájlregiszter címe (0x000-0xFFF). A célcím tkp. k Konstans mező, konstans adat, vagy címke (8, 16, ill. 0 bites lehet) label Címke neve mm A TBLPTR regiszter kezelésének módja tábla íráskor és olvasáskor: * Nem változik a TBLPTR értéke (se íráskor, se olvasáskor) *+ Az olvasás vagy írás után 1-gyel növekszik a TBLPTR *- Az olvasás vagy írás után 1-gyel csökken a TBLPTR +* Az olvasás vagy írás előtt 1-gyel növekszik a TBLPTR n Relatív cím (-es komplemensben adott szám) a feltételes elágaztató utasításoknál, vagy közvetlen cím szubrutin hívásnál, visszatéréskor, ugráskor. PRODH A szorzás eredményének felső bájtja PRODL A szorzás eredményének alsó bájtja s Fast call/return módot kiválasztó bit s=0: mentés az árnyékregiszterekbe s=4: mentés/töltés az árnyékregiszterekbe (fast módus) u Nem használt, vagy nem változik WREG Munkaregiszter (akkumulátor) x Figyelmen kívül hagyható (0 v. 1) A fordító nullát generál. Ez a többi Microchip szoftverrel való kompatíbilitáshoz szükséges. TBLPTR 1 bites táblamutató (egy programmemória beli címre mutat) TABLAT A táblából kiolvasott értéket tárolja TOS TOP OF STACK, a verem teteje PC Programszámláló PCL Programszámláló alsó bájtja PCH Programszámláló felső bájtja PCLATH Programszámláló felső bájtját tároló regiszter PCLATU Programszámláló legfelső bájtját tároló regiszter GIE Általános megszakítás engedélyezés WDT Watchdog Timer TO Time-out bit PD Power-down bit C, DC, Z, OV, N Az ALU státuszbitjei: átvitelbit, fél átvitel, zéróbit, túlcsordulásbit, előjelbit [ ] Feltételes ( ) Tartalom Hozzárendelés < > Bitterület a regiszterben Halmaz eleme Dőlt betű A felhasználó által definiált
3 3 Bájt orientált fájlregiszter műveletek ADDWF f,d,a W és f összeadása da ffff ffff C,DC,Z,OV,N 1, ADDWFC f,d,a W, f és az átvitelbit összeadása da ffff ffff C,DC,Z,OV,N 1, ANDWF f,d,a W és f ÉS kapcsolata da ffff ffff Z,N 1, CLRF f,a f törlése a ffff ffff Z COMF f,d,a f komplementálása da ffff ffff Z,N 1, CPFSEQ f,a WREG és f összehasonlítása, átlép ha = 1 ( v.3) a ffff ffff 4 CPFSGT f,a WREG és f összehasonlítása, átlép ha f> 1 ( v.3) a ffff ffff 4 CPFSLT f,a WREG és f összehasonlítása, átlép ha f< 1 ( v.3) a ffff ffff 4 DECF f,d,a f csökkentése da ffff ffff C,DC,Z,OV,N 1,,3,4 DECFSZ f,d,a f csökkentése, átlép ha 0 1 ( v.3) da ffff ffff 1,,3,4 DCFSNZ f,d,a f csökkentése, átlép ha nem 0 1 ( v.3) da ffff ffff 1, INCF f,d,a f növelése da ffff ffff C,DC,Z,OV,N 1,,3,4 INCFSZ f,d,a f növelése, átlép ha 0 1 ( v.3) da ffff ffff 4 INFSNZ f,d,a f növelése, átlép ha nem 0 1 ( v.3) da ffff ffff 1, IORWF f,d,a WREG és f VAGY kapcsolata da ffff ffff Z,N 1, MOVF f,d,a f mozgatása da ffff ffff Z,N 1 f MOVFF f s, f s (forrás)mozgatása 1. szó 1100 ffff ffff ffff d f d -be (cél). szó 1111 ffff ffff ffff MOVWF f,a WREG mozgatása f-be a ffff ffff MULWF f,a WREG és f összeszorzása affff ffff NEGF f,a f kettes komplemensének képzése a ffff ffff C,DC,Z,OV,N 1, RLCF f,d,a f forgatása balra átvitelbiten keresztül da ffff ffff C,Z,N RLNCF f,d,a f forgatása balra átvitelbit kihagyásával daffff ffff Z,N 1, RRCF f,d,a f forgatása jobbra átvitelbiten keresztül da ffff ffff C,Z,N RRNCF f,d,a f forgatása jobbra átvitelbit kihagyásával da ffff ffff Z,N SET f f 1-be állítása a ffff ffff SUBFWB f,d,a f kivonása a WREG-ből áthozattal da ffff ffff C,DC,Z,OV,N 1, SUBWF f,d,a WREG kivonása f-ből da ffff ffff C,DC,Z,OV,N SUBWFB f,d,a WREG kivonása f-ből áthozattal da ffff ffff C,DC,Z,OV,N 1, SWAPF f,d,a f alsó és felső 4 bitjének felcserélése da ffff ffff 4 TSTFSZ f,a f tesztelése és átlépés, ha 0 1 ( v.3) a ffff ffff 1, XORWF f,d,a WREG és az f kizáró-vagy kapcsolata da ffff ffff Z,N Bit orientált fájlregiszter műveletek BCF f,b,a f adott bitjének törlése bbba ffff ffff 1, BSF f,b,a f adott bitjének 1-be állítása bbba ffff ffff 1, BTFSC f,b,a f adott bitjének tesztelése és átlép, ha 0 1 ( v.3) 1011 bbba ffff ffff 3,4 BTFSS f,b,a f adott bitjének tesztelése és átlép, ha 1 1 ( v.3) 1010 bbba ffff ffff 3,4 BTG f,d,a f adott bitjének invertálása bbba ffff ffff 1,. Abban az esetben, ha a művelet a TMR0 regiszterre vonatkozik (d=1, vagy d=f), és az előosztó a 4. Némely utasítás -szó hosszúságú. A második szó ezekben az utasításokban NOP-ként hajtódik végre,
4 4 Vezérlő utasítások BC n ugrás, ha az átvitelbit 1 1 () nnnn nnnn BN n ugrás, ha az előjelbit 1 1 () nnnn nnnn BNC ugrás, ha az átvitelbit 0 1 () nnnn nnnn BNN n ugrás, ha az előjelbit 0 1 () nnnn nnnn BNOV n ugrás, ha túlcsordulásbit 0 1 () nnnn nnnn BNZ n ugrás, ha a zéróbit nnnn nnnn BOV n ugrás, ha túlcsordulásbit 1 1 () nnnn nnnn BRA n feltétel nélküli ugrás 1 () nnn nnnn nnnn BZ n ugrás, ha a zéróbit 1 1 () nnnn nnnn CALL n,s Szubrutin hívás 1. szó s kkkk kkkk. szó 1111 kkkk kkkk kkkk CLRWDT - Watchdog Timer törlése TO, PD DAW - WREG decimális korrekciója C GOTO n feltétel nélküli ugrás 1. szó kkkk kkkk. szó 1111 kkkk kkkk kkkk NOP - kijelölt műveletvégzés NOP - kijelölt műveletvégzés xxxx xxxx xxxx POP - kivétel a veremből PUSH - beírás a verembe RCALL n relatív szubrutin hívása nnn nnnn nnnn RESET Szoftveres reszet mindegyik GIE/GIEH RETFIE s visszatérés megszakítás engedélyezéssel s PEIE/GIEL RETLW k visszatérés a WREG-ben egy konstanssal kkkk kkkk RETURN s visszatérés a szubrutinból s SLEEP - Szundi üzemmód TO, PD 4. Abban az esetben, ha a művelet a TMR0 regiszterre vonatkozik (d=1, vagy d=f), és az előosztó a 4. Némely utasítás -szó hosszúságú. A második szó ezekben az utasításokban NOP-ként hajtódik végre,
5 5 Konstans műveletek ADDLW konstans hozzáadása a WREG-hez kkkk kkkk C,DC,Z,OV,N ANDLW konstans illetve a WREG ÉS kapcsolata kkkk kkkk Z,N IORLW konstans és a WREG VAGY kapcsolata kkkk kkkk Z,N LFSR FSR feltöltése. szó ff kkkk egy konstanssal 1. szó kkkk kkkk MOVLB BSR feltöltése egy konstanssal <3:0> kkkk MOVLW konstans betöltése a WREG-be kkkk kkkk MULLW konstans és a WREG összeszorzása kkkk kkkk RETLW k visszatérés a WREG-ben egy konstanssal kkkk kkkk SUBLW WREG kivonása a konstansból kkkk kkkk C,DC,Z,OV,N XORLW WREG és a konstans kizáró-vagy kapcsolata kkkk kkkk Z,N Adatmemória programmemória műveletek TBLRD* tábla olvasás TBLRD*+ tábla olvasás utólagos növeléssel TBLRD*- tábla olvasás utólagos csökkentéssel TBLRD+* tábla olvasás előzetes növeléssel TBLWT* tábla írás (5) TBLWT*+ tábla írás utólagos növeléssel TBLWT*- tábla írás utólagos csökkentéssel TBLWT+* tábla írás előzetes növeléssel Abban az esetben, ha a művelet a TMR0 regiszterre vonatkozik (d=1, vagy d=f), és az előosztó a 4. Némely utasítás -szó hosszúságú. A második szó ezekben az utasításokban NOP-ként hajtódik végre,
1 Doszpi
ADDLW Konstans hozzáadása W-hez ADDLW k Állított jelződitek: C, DC, Z A 8 bites k konstans hozzáadása W értékéhez; az eredmény a W-be kerül. ADDWF W és f összeadása ADDWF f, d Állított jelződitek: C, DC,
II. számú melléklet. Mikrovezérlő programozása assembly nyelven. Bevezetés
Tartalomjegyzék Bevezetés...2 Egycímes számítógép...2 Harvard architektúra...5 RISC jelleg...6 Az assembly nyelv megjelenése, létjogosultsága...6 Az assembly nyelv felépítése...7 PIC mikrovezérlő utasításkészlete
Vegyes témakörök. 7. Microchip PIC18 mikrovezérlők. Hobbielektronika csoport 2017/2018. Debreceni Megtestesülés Plébánia
Vegyes témakörök 7. Microchip PIC18 mikrovezérlők 1 Microchip PIC18 mikrovezérlők A Megtestesülés Plébánia Hobbielektronika foglalkozásain 2017. április 27-én és 2017. november 30-án már tartotttunk előadást
A 16F84-r l. CMOS Flash/EEPROM technológia: Lábkiosztás
Bevezetés A PIC mikrovezérl k családjában nagy népszer ségnek örvend a 16F84-es típus, köszönhet en sokoldalúságának. Az iskolánkban m köd mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel
CHIPCAD KFT PIC TANFOLYAM PWM 1/7 TERVEZÉSI FELADAT
CHIPCAD KFT PIC TANFOLYAM PWM 1/7 TERVEZÉSI FELADAT A FELADAT EGY 5 khz-es FREKVENCIÁJÚ PWM JELET KIBOCSÁTÓ GENERÁTOR TERVEZÉSE. A PERÓDUSIDEJE A 200 µsec PERÓDUSIDEJŰ JEL KITÖLTÉSÉNEK 1 200 µsec TARTOMÁNYBAN
SZAKDOLGOZAT. Debrecen 2007. Borsi István Norbert
SZAKDOLGOZAT Debrecen 2007 Borsi István Norbert Debreceni Egyetem Informatika Kar MIKROKONTROLLEREK AZ INFORMATIKA OKTATÁSÁBAN Témavezető: Szabó Zsolt Intézeti mérnök Készítette: Borsi István Norbert Informatika
Közepes komplexitású elemek (6xx,7xx,8xx sorozat)
Gépözeli programozás PIC Mirovezérlő Mirovezérlő, miroprocesszoro Miroprocesszor Programvezérlő és adatfeldolgozó funció Teljes örű memória ezelő. Külső memória Processzorbusz felület, 6364 bit Nincs,
PIC18XXX CSALÁD FELÉPÍTÉSE
PIC18XXX CSALÁD FELÉPÍTÉSE (ÖSSZEFOGLALÓ) A Microchip cég legújabb családjánál, a PIC18XXX-es sorozatnál, számos vonatkozásában továbbfejlesztették a PIC 17XXX-es családnál bevezetett felépítést. Mielőtt
C nyelvű programfejlesztés PIC18 mikrovezérlőkre. Összeállította: Molnár Zsolt
C nyelvű programfejlesztés PIC18 mikrovezérlőkre Összeállította: Molnár Zsolt Óbudai Egyetem, KVK, MAI 2012. november. Bevezetés A gyakorlatban felmerülő, mikrovezérlővel felépülő áramkörök esetében az
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
A 16F84-rl. CMOS Flash/EEPROM technológia: Lábkiosztás
Bevezetés A PIC mikrovezérlk családjában nagy népszerségnek örvend a 16F84-es típus, köszönheten sokoldalúságának. Az iskolánkban mköd mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel
A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.
Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos
A 16F84-ről. CMOS Flash/EEPROM technológia: Lábkiosztás
Bevezetés A PIC mikrovezérlők családjában nagy népszerűségnek örvend a 16F84-es típus, köszönhetően sokoldalúságának. Az iskolánkban működő mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel
1. Az utasítás beolvasása a processzorba
A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez
Máté: Számítógép architektúrák
A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus
Máté: Számítógép architektúrák
MPC új tartalma, JMPC JMPC esetén MPC 8 alacsonyabb helyértékű bitjének és MR 8 bitjének bitenkénti vagy kapcsolata képződik MPC-ben az adatút ciklus vége felé (MR megérkezése után). Ilyenkor Addr 8 alacsonyabb
Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás)
Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) 2.1. Lámpa bekapcsolása 2.2. Lámpa villogtatása 2.3. Futófény programozása 2.4. Fény futtatása balra, jobbra 2.5. Fénysáv megjelenítése 2.6.
Máté: Számítógép architektúrák
Az GOTO offset utasítás. P relatív: P értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic 1 program: Main1 P = P + 1; fetch; goto() goto1 OP=P 1 // Main1 nél : P=P+1 1. bájt goto P=P+1;
A PIC18 mikrovezérlő család
Elektronikai rendszerek laboratóriumi mérést előkészítő előadás 1 A PIC mikrovezérlők PIC mikrovezérlők 8 bites 16 bites 10Fxxx (6-pin) 12Cxxx, 12Fxxx (8-pin) 16C5x (baseline) 16Cxxx, 16Fxxx (mid-range)
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
A Számítógépek felépítése, mőködési módjai
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
DSP architektúrák dspic30f család memória kezelése
DSP architektúrák dspic30f család memória kezelése Az adatmemória Az adatmemória 16 bites, két külön memóriazóna van kiépítve, az X és az Y memória, mindkettőnek címgeneráló egysége és adat sínrendszere
2. A PIC MIKROVEZÉRLİK FELÉPÍTÉSE, FEJLİDÉSE
2. A PIC MIKROVEZÉRLİK FELÉPÍTÉSE, FEJLİDÉSE A következıkben összefoglaljuk a PIC mikrovezérlık felépítését, ami az ismétlésben már bemutatott részekbıl áll: CPU Programmemória Adatmemória Perifériák A
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?
Programfejlesztés PIC mikrovezérlőkre II.
Írta: Molnár Zsolt 2007. március 28. Tartalomjegyzék 1. Bevezetés...3 2. Mintafeladatok megoldásának ismertetése... 4 2.1. példa...4 2.2. példa...7 2.3. példa... 10 2.4. példa... 14 3. Mérési feladatok...
Hobbi Elektronika. Mikrovezérlők programozása Microchip PIC mikrovezérlők bevezető előadás
Hobbi Elektronika Mikrovezérlők programozása Microchip PIC mikrovezérlők bevezető előadás 1 High-end Midrange & Enhanced midrange Baseline 8-bites midrange PIC felépítése PIC16F887 3 Forrás: www.mikroe.com
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
PIC MIKROKONTROLLEREK ALKALMAZÁSTECHNIKÁJA
Dr. Kónya László: http://alpha.obuda.kando.hu/~konya konya@novserv.obuda.kando.hu. AZ INFORMÁCIÓFELDOLGOZÁS ÁLTALÁNOS MODELLJE. BEMENET beviteli eszközök KÖRNYEZET (KÜLVILÁG) memória (tároló) központi
Máté: Számítógép architektúrák
NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,
Beágyazott vezérlők tervezése dspic33 eszközökkel MPLAB-X
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR Beágyazott vezérlők tervezése dspic33 eszközökkel MPLAB-X ÓE-KVK 2117 Budapest, 2014. Tartalom Bevezető... 3 1. dspic33 általános áttekintése... 4 1.1. Hardver felépítés
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
Máté: Számítógép architektúrák
Mikroarchitektúra szint Feladata az ISA (Instruction Set Architecture gépi utasítás szint) megvalósítása. Nincs rá általánosan elfogadott, egységes elv. A ISA szintű utasítások függvények, ezeket egy főprogram
A 32 bites x86-os architektúra regiszterei
Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
találhatók. A memória-szervezési modell mondja meg azt, hogy miként
Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési
Beágyazott vezérlők tervezése dspic33 eszközökkel MPLAB-X
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR Beágyazott vezérlők tervezése dspic33 eszközökkel MPLAB-X ÓE-KVK 2117 Budapest, 2014. Tartalom Bevezető... 3 1. dspic33 általános áttekintése... 4 1.1. Hardver felépítés
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
Adatelérés és memóriakezelés
Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Kártyás ajtónyitó tervezése Horváth Gábor BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-02-19 Hálózati Rendszerek és Szolgáltatások
MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka
MPLAB IDE - SIM - - Rövid ismertető a használathoz - 3E22 89/2004 2006. November 14 Szabadka - 2 - Tartalomjegyzék TARTALOMJEGYZÉK 3 SIMULATOR I/O 4 SIMULATOR STIMULUS 4 STIMULUS VEZÉRLŐ (CONTROLLER) 5
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Füvesi Viktor. Elektrotechnikai és Elektronikai Tanszék. 2008. április 24.
Füvesi Viktor Elektrotechnikai és Elektronikai Tanszék 2008. április 24. Rövid történeti áttekintés Mikroprocesszor és mikrovezérlő PIC, mint mikrovezérlő Programfejlesztés PIC 16F628 Architektúra Tulajdonságok
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD
Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.
Hibakeresés MPLAB ICD2 segítségével I-II.
Hibakeresés MPLAB ICD2 segítségével I-II. Írta: Molnár Zsolt 2007. szeptember 20. 1/14 Tartalomjegyzék 1. Bevezetés...3 2. A mérőpanel felépítése... 5 3. Mintafeladat... 9 4. Mérési feladatok az I. méréshez...
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1
INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép
A Texas Instruments MSP430 mikrovezérlőcsalád
1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.
Assembly utasítások listája
Assembly utasítások listája Bevezetés: Ebben a segédanyagban a fontosabb assembly utasításokat szedtem össze. Az utasítások csoportosítva vannak. A fontos kategóriába azok az utasítások tartoznak, amiknek
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
Paraméter átadás regisztereken keresztül
Eljárások paramétereinek átadási módjai Az eljárások deklarációjánál nincs mód arra, hogy paramétereket adjunk meg, ezért más, közvetett módon tudunk átadni paramétereket az eljárásoknak. Emlékeztetőül:
PIC mikrokontrollerek alkalmazástechnikája
Dr. Kónya László: PIC mikrokontrollerek alkalmazástechnikája 1 PIC mikrokontrollerek alkalmazástechnikája Bevezetés - a sorozat elé... A következőkben a Rádiótechnika hasábjain egy több részes sorozatot
Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született.
Balaton Marcell Balázs Assembly jegyzet Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. 1. Regiszterek Regiszterek fajtái a. Szegmensregiszterek cs (code):
PIC perifériák TIMER 1 TIMER1 modul
TIMER 1 TIMER1 modul A TIMER1 modul egy 16 bites időzítő/számláló, amely két 8 bites írható/olvasható regiszterpárból áll (TMR1L, TMR1H). A TMR1 regiszterpár (TMR1H:TMR1L) értéke 0000h-FFFFh értékig növekedhet.
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
1.1. A PIC12F509 mikrovezérl általános ismertetése
1.1. A PIC12F509 mikrovezérl általános ismertetése A PIC12F509 mikrovezérl a Microchip 8-bites PIC mikrovezérlinek kis teljesítmény (Base-Line), 12- bites programmemóriájú családjába tartozik. A FLASH
1. ábra: Perifériára való írás idődiagramja
BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat
INTEL 8085 gépi utasításkészlete
1 INTEL 8085 gépi utasításkészlete ADATMOZGATÓ UTASÍTÁSOK MOV r1,r2 (r1)
A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.
Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
A hibát az alábbi Python program segítségével tudjuk előidézni:
Bevezető Az ismertetésre kerülő biztonsági hiba 0day kategóriába tartozik, ezért sem a termék, sem a teljes hiba kihasználását lehetővé tevő kód bemutatása nem történik meg. A leírás célja az alkalmazott
7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
Számítógép architektúrák
Számítógép architektúrák Kártyás ajtónyitó tervezése 2016. március 7. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Mérési utasítás Mikrokontroller programozás 2.sz. mérés
Mérési utasítás Mikrokontroller programozás 2.sz. mérés Szükséges ismeretanyag: - IBM PC kezelése, szövegszerkesztés, Double Commander - SB80C515 mikrokontroller felépítése, utasításai - HyperTerminál
LOGSYS LOGSYS LCD KIJELZŐ MODUL FELHASZNÁLÓI ÚTMUTATÓ. 2010. november 8. Verzió 1.0. http://logsys.mit.bme.hu
LOGSYS LCD KIJELZŐ MODUL FELHASZNÁLÓI ÚTMUTATÓ 2010. november 8. Verzió 1.0 http://logsys.mit.bme.hu Tartalomjegyzék 1 Bevezetés... 1 2 Kommunikációs interfész... 2 3 Memóriák az LCD vezérlőben... 3 3.1
Központi vezérlőegység
Központi vezérlőegység A számítógép agya a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Az interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
DSP architektúrák dspic30f család
DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
Mutatók és mutató-aritmetika C-ben március 19.
Mutatók és mutató-aritmetika C-ben 2018 március 19 Memória a Neumann-architektúrában Neumann-architektúra: a memória egységes a címzéshez a természetes számokat használjuk Ugyanabban a memóriában van:
Digitális technika HF2 Elkészítési segédlet Gépi szintű programozás
Digitális technika HF2 Elkészítési segédlet Gépi szintű programozás A programozási feladat egy adott probléma 3 féle megoldásának elkészítése. Mindegyik program lehet egyetlen közös forrásfájlban, a megoldás
[cimke:] [feltétel] utasítás paraméterek [; megjegyzés]
Szoftver fejlesztés Egy adott mikroprocesszoros rendszer számára a szükséges szoftver kifejlesztése több lépésből áll: 1. Forrás nyelven megírt program(ok) lefordítása gépi kódra, amihez megfelelő fejlesztő
PIC mikrovezérlők fejlődése. Tartalomjegyzék. Összehasonlítás. A PIC18-as mikrovezérlő család (vázlat) Dr. Hidvégi Timót
PIC mikrovezérlők fejlődése A PIC18-as mikrovezérlő család (vázlat) Dr. Hidvégi Timót Tartalomjegyzék Alkalmazhatóság PIC architektúra összehasonlítás a korábbi és későbbi eszközökkel Fejlesztőeszközök
Informatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
A számítógép alapfelépítése
Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán
Dr. Oniga István DIGITÁLIS TECHNIKA 8
Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók
Perifériák hozzáadása a rendszerhez
Perifériák hozzáadása a rendszerhez Intellectual Property (IP) katalógus: Az elérhető IP modulok listája Bal oldalon az IP Catalog fül Ingyenes IP modulok Fizetős IP modulok: korlátozások Időkorlátosan
Verilog HDL ismertető 2. hét : 1. hét dia
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
Architektúra, megszakítási rendszerek
Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
SzA19. Az elágazások vizsgálata
SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási
Digitális technika VIMIAA02 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák