Közepes komplexitású elemek (6xx,7xx,8xx sorozat)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Közepes komplexitású elemek (6xx,7xx,8xx sorozat)"

Átírás

1 Gépözeli programozás PIC Mirovezérlő Mirovezérlő, miroprocesszoro Miroprocesszor Programvezérlő és adatfeldolgozó funció Teljes örű memória ezelő. Külső memória Processzorbusz felület, 6364 bit Nincs, vagy processzororientált belső perifériá Védett, Normál, Felügyelő, User módo PIC mirovezérlő Mirovezérlő Teljes család:! PIC c5xxx 8 lábú, minimális iépítés! PIC 6c5xxx 88 lábú alap omplexitás! PIC 6c6xxx! PIC 6c7xxx 840 lábú özepes felszereltség! PIC 6c8xxx! PIC 7c4xxx 4044 lábú felső szintű! PIC 7c5xxx Programvezérlő és adatfeldolgozó funció Belső vagy ülső memória, limitált méret és funció Porto, bitenénti onfigurációs lehetőség So, és soféle periféria, öztü so egzotius eszöz. (időzítő, A/D D/A onverter, PWM, nagyáramú imenete, stb.) Egyszerű programvégrehajtás, legfeljebb megszaításo Közepes omplexitású eleme (6xx,7xx,8xx sorozat) Általános jellemző! Nagy teljesítményű RISC CPU DC 0MHz órajel! Belső programtár, mérete 0,54 utasítás! 35 egyszavas 4 bites utasítás Kód OP cím vagy adat! 8 bites adatstrutúra! 369 nyolc bites regiszter + ALU regiszter (W)! 8 szintű hardver stac, D/I/R címzés, interrupt strutúra! Gazdag perifériaelem észlet: időzítő, ommunniációs interfész, A/D onverter, PWM, stb.! Speciális mirovezérlő funció (Beapcsolási RESET, WDT, is fogyasztású észenléti állapot, soros ISP (In Circuit Programing)

2 Számítógépes rendszere 7 Általános felépítés EPROM Programing Memory 8 level Stac A Program Counter Instr. Reg RAM Register Ban B Adr MUX C Decoder FSR MCLR State Ctrl Pwr Up Pwr Tim WDT Osc Tim ALU Operand Status D E OSC Timing W reg. EEPROM Jellemző:! Harvard architetúra (nem Neumann). Szeparált program és adatmemória:! 4 bit utasítás! 8 bit adat Egymástól független hozzáférés! Minden regiszter (RAM file + perifériá + speciális funció) egyetlen adatmemória területen van! Ortogonális utasításészlet (minden regiszterre ugyanaz végezhető)! Program utasítás = utasítás cilus = Fetch + Execute = 4 órajel (Q..Q4).! Pipeline feldolgozás: az utasítás feldolgozása alatt a övetező utasítás felhozása történi. Így minden utasítás egy utasításcilus alatt végrehajtható, ivéve a feltételes és feltétel nélüli ugró utasításoat. Azo ét utasításcilust igényelne. Pl.:

3 Számítógépes rendszere 73. MOVLW 55H Fetch Ex. MOVWF PORTB Fetch Ex 3. CALL SUB Fetch3 Ex3 3. BSF PORTA,BIT3 Fetch4 Ex4 Memória szervezés Programmemória: ONCHIP: EPROM, OTP (One Time Programing), EEPROM, FLASH PIC 6C84, PIC 6F84 Eletromosan törölhető EEPROM ill. FLASH Utasítás PC: 3 bittel 8 címezhető meg. Ebből általában 0,5...4 van fiziailag megvalósítva. Címzésor a 3 bit ét ülön regiszterből áll elő. Az egyi az utasításszámláló, a mási a (özönséges regiszterént is elérhető) PCLatch: REG:0AH : PCLatch REG:0H : PCL PC Latch: 5bit PCL: 8 bit PC Latch: 5bit Au eredménye számított címmódosításnál bit bit: OPCODE ugrási hely JMP, CALL utasításnál. Memóriaelrendezés: RESET vetor 0H Interrupt vetor 4H... Felhasználói programmemória... Fileregiszter ban FFH, 3FFH, 7FFH, FFFH memória vége A regisztereet egy özös memóriatartományban tároljá: a regiszter banben. Ez 7 (plusz az inidret címzés álregisztere) regiszteres lapoból áll. (7 biten címzün a lapon belül), a lapoat ülön (általános regiszterben lévő) biteel lehet váltani. A...FH illetve 80H 9FH tartományban vanna a speciális regisztere: PC, INDR, STATUS, FSR, INTCON, PORTA, PORTB, PORTC, PORTD, TRISA, TRISB, TRISC,

4 Számítógépes rendszere 74 TRISD, TMR0, TMR, TMR, stb. A többi regiszter (amennyi meg van valósítva) szabadon használható. Programozás Ld. az A melléletet Instruction Set Summary Regiszter címzés So regiszter mindét lapon elérhető. Ilyen például a lapo özötti váltáshoz szüséges STATUS regiszter Közvetlen: A 9 bites regisztercím ét részből áll: BIT8..7: RP..RP0 lapcím, a STATUS regiszter 5. bitje BIT6..0: 7 bites regisztercím a 4 bites utasításódból Indiret: Az INDR (pseudo) regiszteren eresztül és az FSR File Select Register segítségével történi. Az FSRben előészített című regiszter az INDR regiszterben látszi, ott írható, olvasható. Pl.: A CLRF INDR törölni fogja azt a regisztert, amine a címe az FSRben van. Az utasításo ódolása 4 bites, egyszavas utasításo. RISC jelleg, b. 35 utasítás.. Regiszteres művelete OPCODE: 6 bit D: bit Reg. Cím: 7 bit A D bit azt adja meg, hogy az eredmény a művelet elvégzése után hol eletezzen:! D = 0 esetén a W aumulátorban! D = esetén a címzett fájlregiszterben.. Bitművelete OPCODE: 4 bit Bit cím: 3 bit Reg. Cím: 7 bit A megadott fájlregiszter megnevezett bitjével történi a művelet. 3. Közvetlen adat utasításból OPCODE: 6 bit Adat: 8 bit 4. Vezérlő utasításo Két lehetőség van: egyszavas, paraméter nélüli utasításo (Pl. CLRWDT, NOP) OPCODE: 4 bit 5. Ugró utasításo: (pl. JMP, CALL) OPCODE PC:3 bit Cím: bit Utasításo (F=File regisztertömb, azaz 7 bitnyi regiszter cím. W=Aumulátor)

5 Számítógépes rendszere 75 Logiai ANDWF (ÉS apcsolat W és egy F özött), IORWF (özönséges VAGY), XORWF (izáró VAGY), COMF Regiszterművelete: CLRF( Egy F nullázása), CLRW( W nullázása), RLF( Eltolás Carryn át), RRF, SWAPF Adatmozgatás: MOVF (Fből Wbe), MOVWF (Wből Fbe) Feltételes: Bitművelete: Feltételes: Aritmetia: Logia: Töltés: DECFS( F csöentése és a övetező utasítás átlépése, ha nulla), INCFS BCF (Bit törlés egy Fben), BSF (Bit beírás egy Fben) BTFSC (Bitvizsgálat: a övetező utasítás átlépése, ha a bit nulla.), BTFSS ADDWF, SUBWF, ADDLW (onstans és W összeadása), SUBLW ANDLW, IORLW, XPRLW MOVLW (onstans betöltése Wbe), RETLW (visszatérés szubrutinból, Wbe a megadott onstans erül.) Programvezérlés: CALL, GOTO, RETURN, RETFIE (Visszatérés megszaításból), NOP Állapot vezérlés: CLRWDT (Watch Dog Timer törlése), SLEEP (Átlépés alvó módba) STATUS regiszter (8 bit) PRP RP RP0 TO PD DC C 0. C: Carry. D: Digit Carry. : ero PD: Power Down TO: Time Out. Hardware állapot jelző RP0,RP Regiszter ban váltó bite. 7. PRP Regiszter lapcím indiret címzésnél. Belső perifériá Timer modul Timer 0: 8 bites + programozható előosztó...56 arányban. EXT/INT órajel, megszaítás túlcsordulásor. Timer : 6 bites, időzítő vagy számláló EXT/INT órajelről. Timer : 8 bites, előosztó + utóosztó + periódus regiszter Capture/Compare Timer értéét:! Mintavételezi, Capture ha RC változi! Ellenőrzi, Compare és RCt beállítja PWM mode Timer vel Impulzusszélesség moduláció valósítható meg.

6 Számítógépes rendszere 76 Soros ommuniációs interfész I C mode (Inter Integrated Circuit. nyitott olletoros vezetéen megvalósított szinron soros busz. SDAadatvezeté, SCLórajel) Serial Peripherial Interface Syncron master/slave 3 vezetéen (SDI, SDO, SCL) + Slave Selection. Asyncron USART funció full duplex, baudrate generátorral. A/D onverter 8 bites onverter, típusonént eltérő számú bemenettel. (48). Külső vagy belső referencia (5V,GND) vagy RA3 Sebessége b. 40 µs/onverzió. Megszaítás érés a onverzió végén. Analóg Komparátor Input (0...5V) Referenciafeszültség EXT/INT (Programozható szintű) Porto Elsődleges funció: általános célú digitális inputoutput. Másodlagos funció: speciális perifériaegység vezérlő ibemenete. Ha nem használju, aor általános port marad a vonal. Általános célú I/O port A övetező ábra az I/O port alapfelépítését mutatja. A tényleges porto ettől típusonént eltérhetne.

7 Számítógépes rendszere 77 Adatbusz WR PORT Portlatch D Q I/O Láb WR TRIS D Q Trislatch RD TRIS Q D RD PORT Tulajdonságo:! A WR/RD regisztere a normál címtartományban vanna. (Pl.: PORTA, TRISB)! WRRD nem ugyanarra vonatozi. Írásor a PORT Latchbe írun, olvasásor a láb állapotát olvassu. Ha a port imenet, aor a ettő megegyezi, egyébént nem biztos.! A bitművelete mind READMODIFYWRITE jellegűe. (BCF,BSF) előbb olvassa a teljes 8 bitet, azután elvégzi valamelyi bit módosítását, majd a teljes 8 bitet visszaírja. Melléhatás lehetséges. Pl.: 4 db I/O port pin: PORTB 7654 Alapállapot 0 Jelenlegi onfiguráció IOIO A Bemenete állapota.0. Ha a 6. Bitet töröljü, aor BCF PORTB,7 után: Read port: CLRB bit6: 0 Write port: 0 A bit nullázódott.! Write a cilus végén, Read a cilus elején jut érvényre.

8 Számítógépes rendszere 78 PORT A Analóg input. 8 bit, A/D onverterre megy. TIM0 external input is egyben, ez Schmitttriggerelt. PORTB Belső felhúzó ellenállással rendelezi. Eze atív ibe apcsolható eleme, nagyjából µa áramot épese leadni. A port bitje megszaítást tud iváltani, amior megváltozi az állapota (ha inputna van onfigurálva). PORTC TIM órajel bemenete. Itt érhető el a Compare/Capture/PWM modul. Serial Communication Interface (AsyncSync) vonala, I C busz. PORTD 8 bites miroprocesszor port. (Párhuzamos Slave port) PORTE A PORTDhez tartozó vezérlőjele. (RD,WR,CS) A Host port egy 8 bites párhuzamos vonal, amit a RD, WR, CS jellel lehet egy mási számítógép buszrendszerére telepíteni. A D port ötődi a mási gép adatbuszára, a CS jel a iválasztójel (mint egy perifériánál), s a RD WR jel mondja meg az adatátvitel irányát. A D port ilyenor csa abban az esetben imenet, ha a CS és a RD jel egyszerre atív, és aor tölti be a vonala állapotát a belső tárolóba amior a WR és a CS egyszerre atív. Mindét esetben megszaításérés is történi a PICben. Oszcillátor Programozásor onfigurálható az üzemmódja.! RC oszcillátor! Kristály LP mód 3HzHz! Kristály XT mód Hz4MHz! Kristály HS mód 4MHz0MHz Reset PowerOn RESET PowerUp RESET Oscillator Startup Timer MCLR normál műödésnél RESET CLRT Sleep módban (Ébresztés) Beapcsolási feltétele. WDT normál műödésnél (Ha nem nullázzá és engedélyezve van, aor resetel) WDT Sleep módban. SLEEP = Power Down Mode Ilyenor az áramfelfétel,5 µa szintre csöen a normál módban mérhető (frevenciafüggő) pár száz µaről.

9 Számítógépes rendszere 79 A imenete stabil logiai szinten vanna, a bemenete szintén. Ébresztés:! Külső RESET (MCLR jel)! WDT timeout! Megszaítás:! Külső INT! PORTB változás! Timer async mode! Soros STARTSTOP bit! Slave port RD/WR Programozás Soros vonalon át. A soros vonal az RB6 (mint CLK) és az RB7 (mint Data I/O) segítségével történi. Ezalatt az idő alatt az MCLR vonalra Vpp feszültséget ell adni. (ami +V..3V özött van, típustól függően) Programfejlesztés PIC assembler + Simulator + Loader Microchip MPLAB, MPLABC fordító Emulátoro.

10 PIC6C7X 5.0 INSTRUCTION SET SUMMARY Each PIC6CXX instruction is a 4bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC6CXX instruction set summary in Table 5 lists byteoriented, bitoriented, and literal and control operations. Table 5 shows the opcode field descriptions. For byteoriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For bitoriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located. For literal and control operations, '' represents an eight or eleven bit constant or literal value. TABLE 5: OPCODE FIELD DESCRIPTIONS Field Description f Register file address (0x to 0x7F) W Woring register (accumulator) b Bit address within an 8bit file register Literal field, constant data or label x Don't care location (= 0 or ) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = : store result in file register f. Default is d = label Label name TOS Top of Stac PC Program Counter PCLATH Program Counter High Latch GIE Global Interrupt Enable bit WDT Watchdog Timer/Counter TO Timeout bit PD Powerdown bit dest Destination either the W register or the specified register file location [ ] Options ( ) Contents Assigned to < > Register bit field In the set of italics User defined term (font is courier) The instruction set is highly orthogonal and is grouped into three basic categories: Byteoriented operations Bitoriented operations Literal and control operations All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution taes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is µs. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is µs. Table 5 lists the instructions recognized by the MPASM assembler. Figure 5 shows the general formats that the instructions can have. Note: To maintain upward compatibility with future PIC6CXX products, do not use the OPTION and TRIS instructions. All examples use the following format to represent a hexadecimal number: 0xhh where h signifies a hexadecimal digit. FIGURE 5: GENERAL FORMAT FOR INSTRUCTIONS Byteoriented file register operations OPCODE d f (FILE #) d = 0 for destination W d = for destination f f = 7bit file register address Bitoriented file register operations OPCODE b (BIT #) f (FILE #) b = 3bit bit address f = 7bit file register address Literal and control operations General OPCODE (literal) = 8bit immediate value CALL and GOTO instructions only OPCODE (literal) = bit immediate value 997 Microchip Technology Inc. A. mellélet

11 PIC6C7X TABLE 5: Mnemonic, Operands PIC6CXX INSTRUCTION SET Description Cycles 4Bit Opcode Status MSb LSb Affected Notes BYTEORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFS INCF INCFS IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f f Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Sip if 0 Increment f Increment f, Sip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f BITORIENTED FILE REGISTER OPERATIONS BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Sip if Clear Bit Test f, Sip if Set LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW Add literal and W AND literal with W Call subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into standby mode Subtract W from literal Exclusive OR literal with W () () () () bb 0bb 0bb bb x 0 0 xx 0xx 0x lfff 0xxx lfff 0xx0 bfff bfff bfff bfff xxxx 0 0 C,DC, C C C,DC, C,DC, TO,PD TO,PD C,DC, Note : When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, ), the value used will be that value present on the pins themselves. For example, if the data latch is '' for a pin configured as input and is driven low by an external device, the data will be written bac with a '0'. : If this instruction is executed on the TMR0 register (and, where applicable, d = ), the prescaler will be cleared if assigned to the Timer0 Module. 3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.,,,,,,3,,,3,,,,,,,,, Microchip Technology Inc. A. mellélet

1 Doszpi

1 Doszpi ADDLW Konstans hozzáadása W-hez ADDLW k Állított jelződitek: C, DC, Z A 8 bites k konstans hozzáadása W értékéhez; az eredmény a W-be kerül. ADDWF W és f összeadása ADDWF f, d Állított jelződitek: C, DC,

Részletesebben

PIC18xxx utasításkészlet

PIC18xxx utasításkészlet 1 PIC18xxx utasításkészlet A PIC 18xxx mikrovezérlők kiterjesztett utasításkészlettel rendelkeznek. A legtöbb utasítás egyszavas (16 bit), de létezik 3 kétszavas utasítás is. Mindegyik egyszavas utasítás

Részletesebben

A PIC18 mikrovezérlő család

A PIC18 mikrovezérlő család Elektronikai rendszerek laboratóriumi mérést előkészítő előadás 1 A PIC mikrovezérlők PIC mikrovezérlők 8 bites 16 bites 10Fxxx (6-pin) 12Cxxx, 12Fxxx (8-pin) 16C5x (baseline) 16Cxxx, 16Fxxx (mid-range)

Részletesebben

16F628A megszakítás kezelése

16F628A megszakítás kezelése 16F628A megszakítás kezelése A 'megszakítás' azt jelenti, hogy a program normális, szekvenciális futása valamilyen külső hatás miatt átmenetileg felfüggesztődik, és a vezérlést egy külön rutin, a megszakításkezelő

Részletesebben

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú

Részletesebben

Egyszerű RISC CPU tervezése

Egyszerű RISC CPU tervezése IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

SZAKDOLGOZAT. Debrecen 2007. Borsi István Norbert

SZAKDOLGOZAT. Debrecen 2007. Borsi István Norbert SZAKDOLGOZAT Debrecen 2007 Borsi István Norbert Debreceni Egyetem Informatika Kar MIKROKONTROLLEREK AZ INFORMATIKA OKTATÁSÁBAN Témavezető: Szabó Zsolt Intézeti mérnök Készítette: Borsi István Norbert Informatika

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés

Részletesebben

PIC MIKROKONTROLLEREK ALKALMAZÁSTECHNIKÁJA

PIC MIKROKONTROLLEREK ALKALMAZÁSTECHNIKÁJA Dr. Kónya László: http://alpha.obuda.kando.hu/~konya konya@novserv.obuda.kando.hu. AZ INFORMÁCIÓFELDOLGOZÁS ÁLTALÁNOS MODELLJE. BEMENET beviteli eszközök KÖRNYEZET (KÜLVILÁG) memória (tároló) központi

Részletesebben

Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás)

Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) 2.1. Lámpa bekapcsolása 2.2. Lámpa villogtatása 2.3. Futófény programozása 2.4. Fény futtatása balra, jobbra 2.5. Fénysáv megjelenítése 2.6.

Részletesebben

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Rendszer órajel Órajel osztás XTAL Divide Control (XDIV) Register 2 129 oszthat Órajel források CKSEL fuse bit Külső kristály/kerámia rezonátor Külső

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

CHIPCAD KFT PIC TANFOLYAM PWM 1/7 TERVEZÉSI FELADAT

CHIPCAD KFT PIC TANFOLYAM PWM 1/7 TERVEZÉSI FELADAT CHIPCAD KFT PIC TANFOLYAM PWM 1/7 TERVEZÉSI FELADAT A FELADAT EGY 5 khz-es FREKVENCIÁJÚ PWM JELET KIBOCSÁTÓ GENERÁTOR TERVEZÉSE. A PERÓDUSIDEJE A 200 µsec PERÓDUSIDEJŰ JEL KITÖLTÉSÉNEK 1 200 µsec TARTOMÁNYBAN

Részletesebben

A 16F84-r l. CMOS Flash/EEPROM technológia: Lábkiosztás

A 16F84-r l. CMOS Flash/EEPROM technológia: Lábkiosztás Bevezetés A PIC mikrovezérl k családjában nagy népszer ségnek örvend a 16F84-es típus, köszönhet en sokoldalúságának. Az iskolánkban m köd mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel

Részletesebben

Az AVR ATmega128 mikrokontroller

Az AVR ATmega128 mikrokontroller Az AVR ATmega128 mikrokontroller Rövid leírás Ez a leírás a Mérés labor II. tárgy első mikrokontrolleres témájú mérési gyakorlatához készült. Csak annyit tartalmaz általánosan az IC-ről, ami szerintünk

Részletesebben

A 16F84-ről. CMOS Flash/EEPROM technológia: Lábkiosztás

A 16F84-ről. CMOS Flash/EEPROM technológia: Lábkiosztás Bevezetés A PIC mikrovezérlők családjában nagy népszerűségnek örvend a 16F84-es típus, köszönhetően sokoldalúságának. Az iskolánkban működő mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel

Részletesebben

II. számú melléklet. Mikrovezérlő programozása assembly nyelven. Bevezetés

II. számú melléklet. Mikrovezérlő programozása assembly nyelven. Bevezetés Tartalomjegyzék Bevezetés...2 Egycímes számítógép...2 Harvard architektúra...5 RISC jelleg...6 Az assembly nyelv megjelenése, létjogosultsága...6 Az assembly nyelv felépítése...7 PIC mikrovezérlő utasításkészlete

Részletesebben

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Megszakítások (Interrupts: IT) Megszakítás fogalma Egy aszinkron jelzés (pl. gomblenyomás) a processzor felé (Interrupt Request: IRQ), hogy valamely

Részletesebben

A Texas Instruments MSP430 mikrovezérlőcsalád

A Texas Instruments MSP430 mikrovezérlőcsalád 1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.

Részletesebben

A 16F84-rl. CMOS Flash/EEPROM technológia: Lábkiosztás

A 16F84-rl. CMOS Flash/EEPROM technológia: Lábkiosztás Bevezetés A PIC mikrovezérlk családjában nagy népszerségnek örvend a 16F84-es típus, köszönheten sokoldalúságának. Az iskolánkban mköd mikrokontroller programozó szakkör is a legtöbbet ezzel az IC-vel

Részletesebben

Nagy Gergely április 4.

Nagy Gergely április 4. Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.

Részletesebben

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?

Részletesebben

Széchenyi István Egyetem www.sze.hu/~herno

Széchenyi István Egyetem www.sze.hu/~herno Oldal: 1/6 A feladat során megismerkedünk a C# és a LabVIEW összekapcsolásának egy lehetőségével, pontosabban nagyon egyszerű C#- ban írt kódból fordítunk DLL-t, amit meghívunk LabVIEW-ból. Az eljárás

Részletesebben

MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka

MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka MPLAB IDE - SIM - - Rövid ismertető a használathoz - 3E22 89/2004 2006. November 14 Szabadka - 2 - Tartalomjegyzék TARTALOMJEGYZÉK 3 SIMULATOR I/O 4 SIMULATOR STIMULUS 4 STIMULUS VEZÉRLŐ (CONTROLLER) 5

Részletesebben

Mikrokontrollerek. Tihanyi Attila 2007. május 8

Mikrokontrollerek. Tihanyi Attila 2007. május 8 Mikrokontrollerek Tihanyi Attila 2007. május 8 !!! ZH!!! Pótlási lehetőség külön egyeztetve Feladatok: 2007. május 15. Megoldási idő 45 perc! Feladatok: Első ZH is itt pótolható Munkapont számítás Munkapont

Részletesebben

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

Digitális technika VIMIAA01 9. hét

Digitális technika VIMIAA01 9. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?

Részletesebben

Füvesi Viktor. Elektrotechnikai és Elektronikai Tanszék. 2008. április 24.

Füvesi Viktor. Elektrotechnikai és Elektronikai Tanszék. 2008. április 24. Füvesi Viktor Elektrotechnikai és Elektronikai Tanszék 2008. április 24. Rövid történeti áttekintés Mikroprocesszor és mikrovezérlő PIC, mint mikrovezérlő Programfejlesztés PIC 16F628 Architektúra Tulajdonságok

Részletesebben

A mikroprocesszor felépítése és működése

A mikroprocesszor felépítése és működése A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom

Részletesebben

A számítógép alapfelépítése

A számítógép alapfelépítése Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:

Részletesebben

MSP430 programozás Energia környezetben. Az I/O portok kezelése

MSP430 programozás Energia környezetben. Az I/O portok kezelése MSP430 programozás Energia környezetben Az I/O portok kezelése 1 Egyszerű I/O vezérlés Digitális I/O pinmode(pin, mode) kivezetés üzemmódjának beállítása digitalwrite(pin, state) - kimenetvezérlés digitalread(pin)

Részletesebben

Using the CW-Net in a user defined IP network

Using the CW-Net in a user defined IP network Using the CW-Net in a user defined IP network Data transmission and device control through IP platform CW-Net Basically, CableWorld's CW-Net operates in the 10.123.13.xxx IP address range. User Defined

Részletesebben

A Számítógépek hardver elemei

A Számítógépek hardver elemei Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerű perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi

Részletesebben

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások Mechatronika és mikroszámítógépek 2018/2019 I. félév Külső megszakítások Megszakítás, Interrupt A megszakítás egy olyan esemény, vagy feltétel teljesülése, amely felfüggeszti a program futását, a vezérlést

Részletesebben

PIC tanfolyam 2013 tavasz 2. előadás

PIC tanfolyam 2013 tavasz 2. előadás PIC tanfolyam 2013 tavasz 2. előadás Horváth Kristóf SEM körtag SCH1315 szoba psoft-hkristof@amiga.hu Miről lesz ma szó? Elektromos szükségletek Oszcillátor Konfigurációs bitek Reset Energiatakarékos módok

Részletesebben

Vegyes témakörök. 7. Microchip PIC18 mikrovezérlők. Hobbielektronika csoport 2017/2018. Debreceni Megtestesülés Plébánia

Vegyes témakörök. 7. Microchip PIC18 mikrovezérlők. Hobbielektronika csoport 2017/2018. Debreceni Megtestesülés Plébánia Vegyes témakörök 7. Microchip PIC18 mikrovezérlők 1 Microchip PIC18 mikrovezérlők A Megtestesülés Plébánia Hobbielektronika foglalkozásain 2017. április 27-én és 2017. november 30-án már tartotttunk előadást

Részletesebben

Computer Architectures

Computer Architectures Computer Architectures 1. A card and code based door-lock 2016. március 4. Budapest Horváth Gábor associate professor BUTE Department of Networked Systems and Services ghorvath@hit.bme.hu Számítógép Architektúrák

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

Számítógépes alapismeretek

Számítógépes alapismeretek Számítógépes alapismeretek Heti óraszáma: 2 (Bagoly Zsolt, Papp Gábor) + (Barnaföldi Gergely) A tantárgy célja: korszerű információtechnológiai alapismeretek elsajátítása megismerkedés az informatikai

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Megszakítások Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 9. Bevezetés Megszakítások

Részletesebben

Hibakeresés MPLAB ICD2 segítségével I-II.

Hibakeresés MPLAB ICD2 segítségével I-II. Hibakeresés MPLAB ICD2 segítségével I-II. Írta: Molnár Zsolt 2007. szeptember 20. 1/14 Tartalomjegyzék 1. Bevezetés...3 2. A mérőpanel felépítése... 5 3. Mintafeladat... 9 4. Mérési feladatok az I. méréshez...

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus

Részletesebben

PIC mikrokontrollerek alkalmazástechnikája

PIC mikrokontrollerek alkalmazástechnikája Dr. Kónya László: PIC mikrokontrollerek alkalmazástechnikája 1 PIC mikrokontrollerek alkalmazástechnikája Bevezetés - a sorozat elé... A következőkben a Rádiótechnika hasábjain egy több részes sorozatot

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA 4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Perifériakezelés a PCI-ban és a PCI Express-ben 2015. március 9. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Tartalom A

Részletesebben

ARM processzorok felépítése

ARM processzorok felépítése ARM processzorok felépítése Az ARM processzorok több családra bontható közösséget alkotnak. Az Cortex-A sorozatú processzorok, ill. az azokból felépülő mikrokontrollerek a high-end kategóriájú, nagy teljesítményű

Részletesebben

Autóipari beágyazott rendszerek CAN hardver

Autóipari beágyazott rendszerek CAN hardver Scherer Balázs, Tóth Csaba: Autóipari beágyazott rendszerek CAN hardver Előadásvázlat Kézirat Csak belső használatra! 2012.02.19. SchB, TCs BME MIT 2012. Csak belső használatra! Autóipari beágyazott rendszerek

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

Adatok ábrázolása, adattípusok

Adatok ábrázolása, adattípusok Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában

Részletesebben

1.1. A PIC12F509 mikrovezérl általános ismertetése

1.1. A PIC12F509 mikrovezérl általános ismertetése 1.1. A PIC12F509 mikrovezérl általános ismertetése A PIC12F509 mikrovezérl a Microchip 8-bites PIC mikrovezérlinek kis teljesítmény (Base-Line), 12- bites programmemóriájú családjába tartozik. A FLASH

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Mintavételes szabályozás mikrovezérlő segítségével

Mintavételes szabályozás mikrovezérlő segítségével Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés

Részletesebben

Digitális technika VIMIAA02 9. hét

Digitális technika VIMIAA02 9. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák

Részletesebben

ARM Cortex magú mikrovezérlők

ARM Cortex magú mikrovezérlők ARM Cortex magú mikrovezérlők Tárgykövetelmények, tematika Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 Házi feladat: kötelező

Részletesebben

A Számítógépek felépítése, mőködési módjai

A Számítógépek felépítése, mőködési módjai Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor

Részletesebben

Bevezetés az assembly nyelvbe

Bevezetés az assembly nyelvbe Jelfeldolgozás a közlekedésben 2015/2016 II. félév Bevezetés az assembly nyelvbe Memóriacímzési módok Általános forma: instruction destination, source Addressing Modes Címzési mód Instruction /Utasítás

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya The modular mitmót system 433, 868MHz-es ISM sávú rádiós kártya Kártyakód: COM-R04-S-01b Felhasználói dokumentáció Dokumentációkód: -D01a Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és

Részletesebben

Számítógép Architektúrák (MIKNB113A)

Számítógép Architektúrák (MIKNB113A) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 4. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC processzorok Előadó:

Részletesebben

TMS370 EEPROM PROGRAMOZÓ Felhasználói kézikönyv

TMS370 EEPROM PROGRAMOZÓ Felhasználói kézikönyv TMS370 EEPROM PROGRAMOZÓ Felhasználói kézikönyv TARTALOMJEGYZÉK 1. Bevezetés 2. A csomag tartalma és követelmények 3. Telepítés és indítás 4. A LED-ek jelentése 5. Adapterek és eszközök 6. Memória nézet

Részletesebben

Labor 2 Mikrovezérlők

Labor 2 Mikrovezérlők Labor 2 Mikrovezérlők ATMEL AVR - ARDUINO BUDAI TAMÁS 2015. 09. 06. Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT

Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák

Részletesebben

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design

Részletesebben

Digitális áramkörök és rendszerek alkalmazása az űrben 3.

Digitális áramkörök és rendszerek alkalmazása az űrben 3. Budapest Universit y of Technology and Economics Digitális áramkörök és rendszerek alkalmazása az űrben 3. Csurgai-Horváth László, BME-HVT 2016. Fedélzeti adatgyűjtő az ESEO LMP kísérletéhez European Student

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 11. hét Fehér Béla BME MIT MiniRISC mintarendszer

Részletesebben

Újrakonfigurálható eszközök

Újrakonfigurálható eszközök Újrakonfigurálható eszközök 8. Egy minimalista 8-bites mikrovezérlő tervezése 1 Felhasznált irodalom és segédanyagok Icarus Verilog Simulator: htttp:iverilog.icarus.com/ University of Washington Comttputer

Részletesebben

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak

Részletesebben

7. Fejezet A processzor és a memória

7. Fejezet A processzor és a memória 7. Fejezet A processzor és a memória The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Programfejlesztés PIC mikrovezérlőkre II.

Programfejlesztés PIC mikrovezérlőkre II. Írta: Molnár Zsolt 2007. március 28. Tartalomjegyzék 1. Bevezetés...3 2. Mintafeladatok megoldásának ismertetése... 4 2.1. példa...4 2.2. példa...7 2.3. példa... 10 2.4. példa... 14 3. Mérési feladatok...

Részletesebben

AVR assembly és AVR C modulok együttes használata AVR C projektben. Összeállította: Sándor Tamás

AVR assembly és AVR C modulok együttes használata AVR C projektben. Összeállította: Sándor Tamás AVR assembly és AVR C modulok együttes használata AVR C projektben Összeállította: Sándor Tamás //AVR C project létrehozása során a main.c AVR C modulba a következő forráskód részletet //elhelyezni. A

Részletesebben

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális

Részletesebben

MICROCHIP PIC DEMO PANEL

MICROCHIP PIC DEMO PANEL 1 MICROCHIP PIC DEMO PANEL A cél: egy olyan, Microchip PIC mikrokontrollerrel felépített kísérleti panel készítése, ami alkalmas a PIC-ekkel való ismerkedéshez, de akár mint vezérlı panel is használható

Részletesebben

Érzékelők és beavatkozók I.

Érzékelők és beavatkozók I. Érzékelők és beavatkozók I. Mikrovezérlők, mikroszámítógépek (hardver) c. egyetemi tanár - 1 - Mikrovezérlők (Microcontrollers) Teljes számítógép architektúra megvalósítása egy áramköri lapkán Egyszerű

Részletesebben

8051-es mikrovezérlő. mikrovezérlő 1980-ból napjainkban

8051-es mikrovezérlő. mikrovezérlő 1980-ból napjainkban 8051-es mikrovezérlő mikrovezérlő 1980-ból napjainkban Mikrovezérlők A mikrokontroller egy mikroprocesszor és további periféria-áramkörök egyetlen közös egységbe integrálva. Első mikrovezérlő a Texas Instruments

Részletesebben

Új kompakt X20 vezérlő integrált I/O pontokkal

Új kompakt X20 vezérlő integrált I/O pontokkal Új kompakt X20 vezérlő integrált I/O pontokkal Integrált flash 4GB belső 16 kb nem felejtő RAM B&R tovább bővíti a nagy sikerű X20 vezérlő családot, egy kompakt vezérlővel, mely integrált be és kimeneti

Részletesebben

Mechatronika és mikroszámítógépek 2017/2018 I. félév. Bevezetés a C nyelvbe

Mechatronika és mikroszámítógépek 2017/2018 I. félév. Bevezetés a C nyelvbe Mechatronika és mikroszámítógépek 2017/2018 I. félév Bevezetés a C nyelvbe A C programozási nyelv A C egy általános célú programozási nyelv, melyet Dennis Ritchie fejlesztett ki Ken Thompson segítségével

Részletesebben

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV Kommunikációs rendszerek programozása (NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV (5. mérés) SIP telefonközpont készítése Trixbox-szal 1 Mérés helye: Széchenyi István Egyetem, L-1/7 laboratórium, 9026 Győr, Egyetem

Részletesebben

Perifériák hozzáadása a rendszerhez

Perifériák hozzáadása a rendszerhez Perifériák hozzáadása a rendszerhez Intellectual Property (IP) katalógus: Az elérhető IP modulok listája Bal oldalon az IP Catalog fül Ingyenes IP modulok Fizetős IP modulok: korlátozások Időkorlátosan

Részletesebben

Programozó adapter MICROCHIP PIC mikrokontrollerekhez MICROCHIP ICD2 programozó/debuggerhez PICKIT2 programozóhoz Willem égetıhöz

Programozó adapter MICROCHIP PIC mikrokontrollerekhez MICROCHIP ICD2 programozó/debuggerhez PICKIT2 programozóhoz Willem égetıhöz Programozó adapter MICROCHIP PIC mikrokontrollerekhez MICROCHIP ICD2 programozó/debuggerhez PICKIT2 programozóhoz Willem égetıhöz Az újabb kiadású mikrokontrollerek többsége tartalmazza a soros programozás

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

Serial 2: 1200/2400 bps sebességû rádiós modem vagy

Serial 2: 1200/2400 bps sebességû rádiós modem vagy - ATMEL ATmega Processzor - kb Flash memória a program részére - kb belsõ és Kb külsõ EEPROM - kb belsõ és kb külsõ RAM - db többfunkciós soros interfész (kiépitéstõl függõen) Serial : RS- vagy RS-5 (fél-

Részletesebben

0 0 1 Dekódolás. Az órajel hatására a beolvasott utasítás kód tárolódik az IC regiszterben, valamint a PC értéke növekszik.

0 0 1 Dekódolás. Az órajel hatására a beolvasott utasítás kód tárolódik az IC regiszterben, valamint a PC értéke növekszik. Teszt áramkör A CPU ból és kiegészítő áramkörökből kialakított számítógépet összekötjük az FPGA kártyán lévő ki és bemeneti eszközökkel, hogy az áramkör működése tesztelhető legyen. Eszközök A kártyán

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás

Részletesebben

Bevezetés az assembly nyelvbe

Bevezetés az assembly nyelvbe Mechatronika és mikroszámítógépek 2016/2017 I. félév Bevezetés az assembly nyelvbe Makro utasítások felépítése - emlékeztető Általános forma: operation code (Általános forma: instruction 3 című utasítás:

Részletesebben